Notes on QSS Reduction

1 Overview

The purpose of these notes is to describe the qss reduction in a systematic way, and then show several examples of how this works. We suppose that we have a differential equation of the form

$$\frac{du}{dt} = \frac{1}{\epsilon} Au + B(u),$$ \hspace{1cm} (1)

where $\epsilon << 1$. We assume that the eigenvalues of A are non-positive. In order for there to be a separation of time scales, it must be that A has a null-space. So we assume that the null-space of A is spanned by $\{ \phi_i \}, i = 1, \ldots, k$, and that there are corresponding vectors $\{ \psi_i \}, i = 1, \ldots, k$, that span the nullspace of A^T, and form a biorthogonal set, $< \psi_i, \phi_j > = \delta_{ij}$.

To see the separation of time scales directly, we introduce a change of variables,

$$u = Pu + Qu = \sum_i a_i \phi_i + \chi$$ \hspace{1cm} (2)

where $Pu = \sum_i \alpha_i \phi_i$, $\alpha_i = < \psi_i, u >$, $Qu = u - Pu$. Notice that P is a projection, with Pu in the nullspace of A, and Qu is orthogonal to the nullspace of A^T.

We project the equation (1) to find (multiply by ψ_i)

$$\frac{da_i}{dt} = \psi_i^T B(u).$$ \hspace{1cm} (3)

This is the slow-manifold equation. Next we note that $\frac{Qu}{dt} = \frac{du}{dt} - \frac{Pu}{dt}$, so that

$$\frac{d\chi}{dt} = \frac{1}{\epsilon} A\chi + B(u) - \sum_i \psi_i^T B(u) \phi_i.$$ \hspace{1cm} (4)

Now we are essentially done. The leading order qss approximation is $\chi = 0$ with slow dynamics given by

$$\frac{da_i}{dt} = \psi_i^T B(\sum_i a_i \phi_i).$$ \hspace{1cm} (5)

However, it is easy to get a better approximation by taking

$$\frac{1}{\epsilon} A\chi + B(\sum_i a_i \phi_i) - \sum_i \psi_i^T B(\sum_j a_j \phi_j) \phi_i$$ \hspace{1cm} (6)

in which case the slow equation becomes

$$\frac{da_i}{dt} = \psi_i^T B \left(\sum_i a_i \phi_i - \epsilon A^\dagger \left(B(\sum_i a_i \phi_i) - \sum_i \psi_i^T B(\sum_j a_j \phi_j) \phi_i \right) \right).$$ \hspace{1cm} (7)

Notice that this analysis assumes that ϕ_i are independent of time. If they are not independent of time, a similar argument still applies, but with some extra terms.
Figure 1: Model of the RyR. R and RI are closed states, O is the open state, and I is the inactivated state.

2 Examples

2.1 RyR Kinetics

Consider the 4-state chemical reaction network shown in Fig.1

We assume that $k_1 >> k_2$ and $k_{-1} >> k_{-2}$. To simplify the notation, we set $c = 1$. The master equation for this network can be written in the form of (1) by first rescaling $k_{\pm 1} \rightarrow \epsilon k_{\pm 1}$ for some fixed small number ϵ. We don’t specify it completely, because we want to allow k_1, k_2, k_{-1} and k_{-2} to be time varying.

\[
\begin{align*}
 u &= \begin{pmatrix} P_{00} \\ P_{10} \\ P_{01} \\ P_{11} \end{pmatrix}, \\
 A &= \begin{pmatrix} -k_1 & k_{-1} & 0 & 0 \\ k_1 & -k_{-1} & 0 & 0 \\ 0 & 0 & -k_1 & k_{-1} \\ 0 & 0 & k_1 & -k_{-1} \end{pmatrix}, \\
 B &= \begin{pmatrix} -k_2 & 0 & k_{-2} & 0 \\ 0 & -k_2 & 0 & k_{-2} \\ k_2 & 0 & -k_{-2} & 0 \\ 0 & k_2 & 0 & -k_{-2} \end{pmatrix}
\end{align*}
\]

(8)

where the identification of states is $R = \{00\}$, $RI = \{01\}$, $O = \{10\}$, $I = \{11\}$.

The decomposition of the equations uses the vectors

\[
\begin{align*}
 \phi_1 &= \begin{pmatrix} \kappa_{-1} \\ \kappa_1 \\ 0 \\ 0 \end{pmatrix}, \\
 \phi_2 &= \begin{pmatrix} 0 \\ 0 \\ \kappa_{-1} \\ \kappa_1 \end{pmatrix}, \\
 \phi_3 &= \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \\
 \phi_4 &= \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}
\end{align*}
\]

(9)

where $\kappa_{\pm 1} = \frac{k_{\pm 1}}{k_1 + k_{-1}}$, and

\[
\begin{align*}
 \psi_1 &= \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \\
 \psi_2 &= \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \\
 \psi_3 &= \begin{pmatrix} \kappa_1 \\ \kappa_{-1} \\ 0 \\ 0 \end{pmatrix}, \\
 \psi_4 &= \begin{pmatrix} 0 \\ 0 \\ \kappa_1 \\ -\kappa_{-1} \end{pmatrix}
\end{align*}
\]

(10)

Notice that ϕ_1, ϕ_2 span the nullspace of A, ϕ_3, ϕ_4 span the non-zero eigenspace of A, ψ_1, ψ_2 span the nullspace of A^T, and ψ_3, ψ_4 span the nonzero eigenspace of A^T.

We define $y_1 = P_{00} + P_{10}$, $y_2 = P_{01} + P_{11}$, and and learn that (multiply by ψ_1 and ψ_2)

\[
\begin{align*}
 \frac{dy_1}{dt} &= -k_2 y_1 + k_{-2} y_2, \\
 \frac{dy_2}{dt} &= k_2 y_1 - k_{-2} y_2
\end{align*}
\]

(11)
which describes the slow kinetics. The fast kinetics follow (from multiplication by ψ_3, and ψ_4)

$$\left(\begin{array}{c} \kappa_1 \frac{dP_{00}}{dt} - \kappa_{-1} \frac{dP_{10}}{dt} \\ \kappa_1 \frac{dP_{01}}{dt} - \kappa_{-1} \frac{dP_{11}}{dt} \end{array} \right) = -\frac{1}{\epsilon} \left(\begin{array}{c} z_1 \\ z_2 \end{array} \right) + \left(\begin{array}{cc} -k_2 & k_{-2} \\ k_2 & -k_{-2} \end{array} \right) \left(\begin{array}{c} z_1 \\ z_2 \end{array} \right)$$

(12)

where $z_1 = \kappa_1 P_{00} - \kappa_{-1} P_{10}$, and $z_2 = \kappa_1 P_{00} - \kappa_{-1} P_{10}$.

Thus, the leading order qss approximation has $z_1 = z_2 = 0$, or $\kappa_1 P_{00} - \kappa_{-1} P_{10} = 0$, and $\kappa_1 P_{00} - \kappa_{-1} P_{10} = 0$. That is,

$$
\begin{align*}
P_{00} &= y_1 \frac{\kappa_{-1}}{\kappa_1 + \kappa_{-1}}, & P_{10} &= y_1 \frac{\kappa_1}{\kappa_1 + \kappa_{-1}}, & P_{01} &= y_2 \frac{\kappa_{-1}}{\kappa_1 + \kappa_{-1}}, & P_{11} &= y_2 \frac{\kappa_1}{\kappa_1 + \kappa_{-1}}.
\end{align*}
$$

(13)

2.2 Adiabatic Reduction for Master Equations

This same technology can be used to find the slow evolution of drift-jump stochastic processes. We suppose that the transitions between x_k states are fast. If this is the case, then we can write the master equation system as

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial y} (Fp) + \frac{1}{\epsilon} Ap.$$

(14)

Now, it must be that the matrix A has a zero eigenvalue with eigenvector ϕ. The corresponding left eigenvector is ψ with entries $(\psi_j) = 1$. We assume that $\langle \phi, \psi \rangle = 1$. Using these, we split p into two parts

$$p = v\phi + w$$

(15)

where $\langle p, \psi \rangle = v$, and $\langle w, \psi \rangle = 0$. It follows that

$$\frac{\partial v}{\partial t} = -\psi^T \frac{\partial}{\partial y} (F(v\phi + w)), $$

(16)

and

$$\frac{\partial w}{\partial t} = \frac{1}{\epsilon} Aw - \frac{\partial}{\partial y} (Fp) + \psi^T \frac{\partial}{\partial y} (Fp)\phi.$$

(17)

Here, the fast behavior of w is evident, so we take w to be in quasi-steady state. Thus, we take

$$Aw = \epsilon \frac{\partial}{\partial y} (vF\phi) - \epsilon \psi^T \frac{\partial}{\partial y} (vF\phi)\phi + O(\epsilon^2).$$

(18)

This equation can be solved uniquely for w subject to the constraint $\psi^T w = 0$; we denote this as

$$w = \epsilon A^\perp \frac{\partial}{\partial y} (vF\phi) - \epsilon \psi^T \frac{\partial}{\partial y} (vF\phi)\phi + O(\epsilon^2),$$

(19)

where A^\perp is the inverse of the properly constrained A. Consequently,

$$\frac{\partial v}{\partial t} = -\frac{\partial}{\partial y} (\psi^T Fv\phi) - \frac{\partial}{\partial y} \left(\epsilon \psi^T FA^\perp \left(\frac{\partial}{\partial y} (vF\phi) - \psi^T \frac{\partial}{\partial y} (vF\phi)\phi \right) \right),$$

(20)
2.3 Jump Velocity Processes

Consider the simple example of a stochastic differential equation
\[
\frac{dy}{dt} = kx, \tag{21}
\]
where \(x \) is either 0 or 1, with transition rates \(\alpha \) and \(\beta \). The F-P equation is
\[
\frac{\partial p}{\partial t} = \alpha q - \beta p - \frac{\partial kp}{\partial y}, \tag{22}
\]
\[
\frac{\partial q}{\partial t} = \beta p - \alpha q. \tag{23}
\]
We can reduce this to a single pde by observing that \(\frac{\partial q}{\partial t} = -\frac{\partial p}{\partial t} - \frac{\partial ap}{\partial y} \) so that
\[
p_{tt} = -(\alpha + \beta)p_{t} - \alpha kp_{y} - kp_{ty}. \tag{24}
\]
Suppose that \(\alpha \) and \(\beta \) are large compared to \(k \). Then the exchange between states is fast relative to the rate of change of \(y \), and we should be able to do a qss reduction. To do so, we introduce dimensionless time (set \(k = 1 \)) and let \(\epsilon = \frac{1}{\alpha + \beta} \), and introduce \(a = \frac{\alpha}{\alpha + \beta} \) and \(b = \frac{\beta}{\alpha + \beta} \), so that \(a + b = 1 \). In terms of these variables, the F-P equations are
\[
\frac{\partial p}{\partial t} = \frac{1}{\epsilon}(aq - bp) - \frac{\partial p}{\partial y}, \tag{25}
\]
\[
\frac{\partial q}{\partial t} = \frac{1}{\epsilon}(bp - aq). \tag{26}
\]
We introduce the change of variables
\[
v = p + q, \quad w = bp - aq, \tag{27}
\]
so that
\[
p = av + w, \quad q = bv - w. \tag{28}
\]
In terms of these variables the F-P equations are
\[
\frac{\partial v}{\partial t} = -\frac{\partial av}{\partial y} - \frac{\partial w}{\partial y}, \tag{29}
\]
\[
\frac{\partial w}{\partial t} = -\frac{1}{\epsilon} w - b\frac{\partial av}{\partial y} - b\frac{\partial w}{\partial y}. \tag{30}
\]
Now we see the obvious fast-slow separation and take \(w \) to be in quasi-steady state, so that
\[
w = -\epsilon b\frac{\partial av}{\partial y} + O(\epsilon^2), \tag{31}
\]
from which it follows that
\[
\frac{\partial v}{\partial t} = -\frac{\partial av}{\partial y} + \frac{\partial}{\partial y}(\epsilon b\frac{\partial av}{\partial y}) + O(\epsilon^2), \tag{32}
\]
which is the standard F-P equation we seek.
2.3.1 More generally

For the more general problem

\[\frac{dy}{dt} = xf(y) - g(y), \tag{33} \]

the F-P equations are

\[\frac{\partial p}{\partial t} = \frac{1}{\varepsilon} (aq - bp) - \frac{\partial}{\partial y} ((f - g)p), \tag{34} \]
\[\frac{\partial q}{\partial t} = \frac{1}{\varepsilon} (bp - aq) + \frac{\partial}{\partial y} (gq). \tag{35} \]

We now introduce the change of variables (27) and find

\[\frac{\partial v}{\partial t} = -\frac{\partial}{\partial y} ((af - g)v + fw), \tag{36} \]
\[\frac{\partial w}{\partial t} = -\frac{1}{\varepsilon} w - a \frac{\partial}{\partial y} (gq) - b \frac{\partial}{\partial y} ((f - g)p). \tag{37} \]

Again, the fast-slow separation is apparent and we take \(w \) to be in quasi-steady state, so that

\[w = \varepsilon (-a \frac{\partial}{\partial y} (gbv) - b \frac{\partial}{\partial y} ((f - g)av)) + O(\varepsilon^2), \tag{38} \]

from which it follows that

\[\frac{\partial v}{\partial t} = -\frac{\partial}{\partial y} ((af - g)v) + \frac{\partial}{\partial y} \left(\varepsilon f \frac{\partial}{\partial y} (fav) + \varepsilon fgv \frac{\partial}{\partial y} \right) + O(\varepsilon^2), \tag{39} \]

which is the F-P equation we seek.