Math 6730 Course Outline

- 1. Asymptotic Expansions Definitions
 - (a) scaling, order relations, roots of equations
- 2. Regular Perturbation Theory
 - (a) Implicit function Theorem
 - (b) Power series expansions -
 - Gravitational trajectory (Holmes)
 - perihelion of Mercury (JK)
 - Melnikov function?? (JK)
- 3. Singular Perturbation Theory
 - (a) Example: What is a singular perturbation problem? Damped harmonic oscillations
 - (b) Matched Asymptotic Expansions
 - i. Boundary value problems
 - uniform expansions, matching principle
 - Boundary layers, interior layers, corner layers
 - ii. Initial Value problems
 - QSS, initial layers
 - Michaelis-Menten- rapid equilibrium,
 - fast-slow systems
 - adiabatic reduction for stochastic processes Master equations
 - iii. Interior layers, rapid trnsitions
 - FHN/van der Pol
 - traveling waves, fronts and backs
 - (c) Multi-scale analysis
 - i. Two-time scales, averaging
 - forced oscillations, nonlinear resonance, Duffing, vdPol, Hopf bifurcation, Ginzberg-Landau eqn, Mathieu's eqn
 - coupled phase oscillators, phase locking
 - adiabatic invariance
 - ii. Homogenization
 - Effective diffusion/conductance
 - Bidomain equations
 - porous medium equation