
Math 6730
Homework Exercises - Solutions

1 Regular Perturbation Theory

(due Sept. 22, 2015)

1. Find a two-term asymptotic expansion, for small ǫ, for all solutions of the following
equations:

(a)
ǫx3 − 3x+ 1 = 0 (1)

(b)

x2+ǫ =
1

x+ 2ǫ
(2)

(c)
xe−x = ǫ (3)

(d)
x3 − x2 − ǫ = 0 (4)

2. Find a two-term asymptotic expansion, for small ǫ, of the solution of the following
boundary value problems:

(a)

y′′ + y + ǫy3 = 0, y(0) = 0, y(
π

2
) = 1. (5)

(b)
y′′ − y = 0, y(0) = 0, y(1 + ǫ) = 1 (6)

Hint: Use a change of variables to transform this to a problem on a fixed domain
(independent of ǫ).

3. Suppose that a one-dimensional cell that is 10 µm long and the voltage potential is
held fixed at both ends (so that Φ = 0 at the ends). Suppose that the cell contains
approximately equal amounts (say 400mM ) of sodium and chloride, but suppose there
is a slight excess of sodium. How much excess sodium is there if the total difference
between maximal and minimal potential in the cell is 0.1mV? Plot the (approximate)
distribution of potential and ion concentrations for both species.

Hint: Derive the Poisson-Boltzman equation as follows: According to the Poisson
equation,

ǫ∇2φ = −qNa

∑

i

zici (7)
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where ǫ is the dielectric constant of the medium, Na is Avagadro’s number, q is the
unit electric charge, ci and zi are the concentration and unit charge for the ith species.
According to the Nernst-Planck equation,

0 = ∇ci +
ziF

RT
ci∇φ. (8)

Use this information to derive the Poisson-Boltzmann equation in dimensionless units

∇2Φ = −β
∑

i

ziαi exp(−ziΦ), (9)

where

β = q
L2FNA

ǫRT
C0, (10)

and C0 is a characteristic concentration, L is the length of a one dimensional domain.
What is αi? For parameter values, use that ǫ = 6.938 × 10−10C2/Nm2 at 25C, q =
1.6× 10−19C(oulombs), RT

F
= 25.8mV. How large is β for this cell?

Use that the net charge

δ =
∑

i

ziαi. (11)

is a small dimensionless parameter to find the asymptotic solution of the problem.

4. Approximate the time it takes for a projectile whose terminal velocity is VT with height
y(t) above the earth, with y(0) = 0 and yt(0) = V0, to return to earth, assuming that
V 2

0

gR
and V0

VT

are small. What is the effect of drag on the return time?

Hint: Use the equation

ytt = − g

(1 + y

R
)2

− gR

VT (R + y)
yt. (12)

to account for viscous atmospheric drag.

1.1 Solutions

1. (a) There are three solutions,

x =
1

3
+

1

81
ǫ+

1

729
ǫ2 +O(ǫ3), (13)

and

x = ±
√

3

ǫ
− 1

6
∓

√
3

72

√
ǫ+O(ǫ). (14)

(b) Take the logarithm of both sides of the equation to rewrite the equation as

(3 + ǫ) ln x+ ln(1 +
2ǫ

x
) + 2kπi. (15)
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A power series solution in ǫ of the form x = x0+ǫx1+ǫ
2x2+· · · yields x0 = exp(±iπ

3
)

or x = 1 and x1 = −2
3
− x0

3
ln(x0), and x2 =

1
6x0

(3x21 + 4x1 + 4)− x1

3
.

For k = 0, this gives

x = 1− 2

3
ǫ+

2

3
ǫ2 +O(ǫ3). (16)

For k = ±1, the answer is tedious to write out.

(c) To find an asymptotic expansion for

x exp(−x) = ǫ, (17)

make a few changes of variables. Let γ = −1
ln ǫ

and y = γx and set η = γ ln γ and
the equation becomes

y = 1− η + γ ln(y). (18)

Clearly y is nearly 1. A relatively easy way to proceed is iteratively, i.e., let
yn = F (yn−1) where F (y) = 1− η + γ ln(y), so that

y0 = 1, (19)

y1 = 1− η, (20)

y2 = 1− η + γ ln(1− η), (21)

y3 = 1− η + γ ln(1− η + γ ln(1− η)), (22)

and so on. However, this is not an asymptotic series, so to make it into one we
now expand yn as a Taylor series in γ and find

y ≈ −η+γ ln(1−η)+ln(1− η)

(1− η)
γ2+

(

ln(1− η)

(1− η)2
− 1

2

(ln(1− η))2

(1− η)2

)

γ3+O

(

(

ln(1− η)

1− η

)3

γ4

)

(23)
This is an asymptotic series, but a strange one.

(d) There are three solutions

x = 1 + ǫ− 2ǫ2 +O(ǫ3), (24)

and

x = ±i
√
ǫ− 1

2
ǫ∓ 5

8
i
√
ǫ3. (25)

2. (a)

y(x) = sin(x) + ǫ
(1

4
sin(x)− 1

8
sin(x) cos2(x) +

3

8
x cos(x) +

2

8
sin(x)

)

. (26)

(b)

y(x) =
sinh(t)

sinh(1)
+ ǫ
(t cosh(t)

sinh(1)
− cosh(1) sinh(t)

sinh2(1)

)

+O(ǫ2), (27)

where t = x
1+ǫ

.
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3. Take z1 = 1 and z2 = −1 for sodium and chloride, respectively, and then δ = α2 − α1.
It follows that

∇2Φ = −β(−α1 exp(−Φ) + (δ + α1) exp(Φ)). (28)

Set Φ = δΦ1 +O(δ2) and find that to leading order in δ,

∇2Φ1 + 2βα1Φ1 = −β (29)

The solution of this equation is easy, being

Φ1 = − 1

2α1

(

1−
cosh(

√
2βα1(x− 1

2
)

cosh(1
2

√
2βα1)

)

. (30)

Now suppose that the maximum value of Φ is Φ∗. This implies that

δ

2α1
= −Φ∗. (31)

Now by conservation, it must be that

1 =

∫ 1

0

α2 exp(Φ)dx ≈
∫ 1

0

α2(1 + δΦ1)dx, (32)

and since
∫ 1

0

Φ1dx = − 1

2α1

(

1− 2
tanh(1

2

√
2βα1)√

2βα1

)

. (33)

1 = α2

(

1− δ
1

2α1

(

1− 2
tanh(1

2

√
2βα1)√

2βα1

))

(34)

Now we use that β is very large to get

1 = α2

(

1− δ
1

2α1

)

= α2 (1 + Φ∗) . (35)

Similarly, total sodium (in dimensionless units) is

1 + ∆Na = α1

(

1 + δ
1

2α1

)

= α1 (1− Φ∗) (36)

We can now use the three equations (31,35,36) to find that

∆Na =
Φ∗2

(1 + Φ∗)(1− 2Φ∗)
. (37)

Convert to dimensional units: Φ∗ = 0.1
25.8

= 0.00387

∆Na =
Φ∗2

(1 + Φ∗)(1− 2Φ∗)
= 3.0× 10−5. (38)

This is the fractional charge deflection necessary. Thus, if the initial concentration is
400mM, then the charge deflection concentration is 12µM.
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4. Begin by non-dimensionalizing the equation

ytt = − g

(1 + y

R
)2

− gR

VT (R + y)
yt, (39)

with initial data
y(0) = 0, yt(0) = V0. (40)

Rescale time t = στ and length y = LY so that

LYττ = − gσ2

(1 + LY
R
)2

− σg

VT (1 +
LY
R
)
LYτ , (41)

with initial data Yτ(0) =
V0σ
L
. Pick L = V0σ and gσ2 = L so that σ = V0

g
, and L =

V 2

0

g
,

and ǫ = L
R
=

V 2

0

gR
. The rescaled equation is

Yττ = − 1

(1 + ǫY )2
− V0
VT

1

(1 + ǫY )
Yτ , (42)

with initial data Yτ (0) = 1.

Now set V0

VT

= γǫ, expand in ǫ, and find that

Y (τ) = −1

2
τ 2 + t+ ǫ(− 1

12
τ 4 + (

1

6
(γ + 2))τ 3 − 1

2
γτ 2) (43)

and the root is

τ = 2 + ǫ(
4

3
− γ

2

3
). (44)

Convert this back into dimensional parameters to find

t = 2
V0
g

+
4

3

V 3
0

g2R
− 2

3

V 2
0

gVT
. (45)

Notice that the correction due to drag decreases the time of flight.

2 Matched Asymptotic Expansions

(due Oct. 8, 2015)

1. Find a composite expansion for the solutions of each of the following (include a plot
of the approximate solution);

(a)
ǫy′′ + y′ = a(> 0), y(0) = 0, y(1) = 1, (46)

(b)

ǫy′′ + 2y′ + y3 = 0, y(0) = 0, y(1) =
1

2
(47)
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(c)

ǫy′′ − y′ − y2 = 1, y(0) =
1

3
, y(1) = 1 (48)

(d)

ǫy′′ = yy′ − y3, y(0) =
3

5
, y(1) = −2

3
(49)

(e)
ǫy′′ = 9− (y′)2, y(0) = 0, y(1) = 1 (50)

2.1 Solutions

1. (a)
y(x) = ax+ (1− a)(1− e−

x

ǫ ) +O(ǫ). (51)

(b)

y(x) =
1√
3 + x

− 1√
3
e−

2x

ǫ +O(ǫ). (52)

(c)

y(x) = tan(tan−1(
1

3
)− x) + (1− tan(tan−1(

1

3
)− 1))e

x−1

ǫ (53)

(d) There are three solutions

i.

y1(x) =
1

5
3
− x

− 3

2
tanh

(3

2

x− 1

ǫ
+ tanh−1

4

9

)

− 3

2
. (54)

ii.

y2(x) =
4x

1 + 2x
− 2 tanh

(2x

ǫ
− tanh−1(

3

10
)
)

(55)

iii.

y3(x) = H(x− 7

12
)(
12

13
− 1

1
2
+ x

)+H(
7

12
−x)( 1

5
3
− x

−12

13
)−12

13
tanh

(12

13
(
x− 7

12

ǫ
)
)

(56)

(e)

y(x) = −1 + ǫ
1

2 ln
(

cosh(
3x− 1

ǫ
1

2

)
)

(57)

3 QSS Analysis

(due Nov. 12, 2015)

1. The calcium-activated potassium channel has two open states and two closed states
(see Fig. 1). The channel has two binding sites for calcium and can open when one of
the states is occupied and remains open when the second site is bound. The binding
process is a fast process, while the transition between open and closed states is slow.
Find the equation describing slow dynamics of the opening of the channel as a function
of calcium concentration.
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Figure 1: Diagram of the four states for the calcium-activated potassium channel.

2. Suppose that an enzyme can bind two substrate molecules, so can exist in one of three
states, a free moleule S, a complex with one molecule bound C1, and a complex with
two molecules bound C2. The corresponding chemical reactions are

S + E
k1

−→
←−

k
−1

C1
k2−→ P + E (58)

S + C1

k3

−→
←−

k
−3

C2
k4−→ P + C1 (59)

Give a “proper” derivation of the corresponding Michaelis-Menten rate of production
of product P , using the assumption that the amount of substrate is much larger than
the amount of complex.

3. Consider the process of autocatalytic conversion of a substrate to an enzyme given by

S + E
k1

−→
←−

k
−1

C
k2−→ E + E (60)

Find the (slow) rate of substrate conversion under the assumption that k2 ≪ k−1.

4. Suppose a particle randomly switches between three states

S−1

k

−→
←−

k

S0

k

−→
←−

k

S1, (61)

and in states Sj it moves with velocity jV , j = −1, 1, while in state S0 the particle
diffuses with diffusion coefficient D. Suppose the switching rates k are quite large.
Find the effective diffusion coefficient for this particle.

3.1 Solutions

1. The differential equation system is

dpc1
dt

= −k1pc1 + k−1pc2 , (62)

dpc2
dt

= k1pc1 − k−1pc2 − k2pc2 + k−2po1 , (63)

dpo1
dt

= k2pc2 − k−2po1 − k3po1 + k−3po2 , (64)

dpo2
dt

= k3po1 − k−3po2 , (65)
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where k1 and k3 are calcium dependent, k1, k−1, k3, and k−3 are large compared to k2,
and k−2. Set y = pc1 + pc2. The qss approximation implies

0 = −k1pc1 + k−1pc2, (66)

0 = k3po1 − k−3po2, (67)

which implies that

pc1 =
k−1y

k1 + k−1
, pc2 =

k1y

k1 + k−1
, (68)

po1 =
k−3

k3 + k−3
(1− y), po2 =

k3
k3 + k−3

(1− y). (69)

This implies that

dy

dt
= −k2pc2 + k−2po1 , (70)

= − k2k1
k1 + k−1

y +
k−2k−3
k3 + k−3

(1− y), (71)

which is the slow equation for the closed-open transition.

2. The differential equation system is

ds

dt
= −k1es + k−1c1 − k3sc1 + k−3c2, (72)

de

dt
= −k1es + k−1c1 + k2c, (73)

dc1
dt

= k1es− k−1c1 − k2c1 − k3sc1 + k−3c2 + k4c2, (74)

dc2
dt

= k3sc1 − k−3c2 − k4c2, (75)

dp

dt
= k2c1 + k4c2. (76)

Conservation implies that e+ c1 + c2 = E0 so that we eliminate e and find

ds

dt
= −k1s(E0 − c1 − c2) + k−1c1 − k3sc1 + k−3c2, (77)

dc1
dt

= k1s(E0 − c1 − c2)− k−1c1 − k2c1 − k3sc1 + k−3c2 + k4c2, (78)

dc2
dt

= k3sc1 − k−3c2 − k4c2. (79)

Scale the variables using c1 = E0u1, c2 = E0u2, s = S0σ and t = S0

k
−1E0

τ and find

dσ

dτ
= −κ1σ(1− u1 − u2) + u1 − κ3σu1 + κ−3u2, (80)

ǫ
du1
dτ

= κ1σ(1− u1 − u2)− u1 − κ2u1 − κ3σu1 + κ−3u2 + κ4u2, (81)

ǫ
du2
dτ

= κ3σu1 − κ−3u2 − κ4u2, (82)
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where κ1 = S0k1
k
−1

, κ2 = k2
k
−1
, κ3 = S0k3

k
−1

, , κ−3 = k
−3

k
−1
,κ4 = k4

k
−1
, and ǫ = E0

S0
. The

quasi-steady approximation takes

0 = κ1σ(1− u1 − u2)− u1 − κ2u1 − κ3σu1 + κ−3u2 + κ4u2, (83)

0 = κ3σu1 − κ−3u2 − κ4u2 (84)

which we solve to find

u1 =
(κ−3 + κ4)κ1σ

κ1κ3σ2 + κ1σ(κ−3 + κ4) + (κ2 + 1)(κ4 + κ−3)
, (85)

u2 =
κ1κ3σ

2

κ1κ3σ2 + κ1σ(κ−3 + κ4) + (κ2 + 1)(κ4 + κ−3)
. (86)

It follows that

dp

dt
= E0κ1

k2(κ−3 + κ4)σ + k4κ3σ
2

κ1κ3σ2 + κ1σ(κ−3 + κ4) + (κ2 + 1)(κ4 + κ−3)
. (87)

3. The differential equation system is

ds

dt
= −k1es+ k−1c, (88)

de

dt
= −k1es+ k−1c+ k2c, (89)

dc

dt
= k1es− k−1c− k2c. (90)

Set e = E0 − c, so that

ds

dt
= −k1s(E0 − c) + k−1c, (91)

dc

dt
= k1s(E0 − c)− k−1c− k2c. (92)

Under the assumption that k2 ≪ k−1, we take s to be in quasi-equilibrium so that

c =
k1E0s

k1s + k−1
, (93)

and then the slow evolution is

d(s+ c)

dt
= −k2c, (94)

or
d

dt
(s +

E0s

s +Kd

) = − k2E0s

s +Kd

, (95)

where Kd =
k
−1

k1
, which is a differential equation for the (slow) conversion of substrate

to enzyme.
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4. The deterministic part of the motion is

dy

dt
= V n (96)

where n has three states n = −1, 0, 1 with transitions

S−1

k

−→
←−

k

S0

k

−→
←−

k

S1 (97)

The master equations are

∂p−1
∂t

= kp0 − kp−1 + V
∂p−1
∂x

, (98)

∂p0
∂t

= kp−1 + kp1 − 2kp0 +D
∂2p0
∂x2

, (99)

∂p1
∂t

= kp0 − kp1 − V
∂p1
∂x

. (100)

We assume that k is large so introduce the parameter ǫ = 1
k
. Then, the equations

become

∂p−1
∂t

=
1

ǫ
(p0 − p−1) + V

∂p−1
∂x

, (101)

∂p0
∂t

=
1

ǫ
(p−1 + p1 − 2p0) +D

∂2p0
∂x2

, (102)

∂p1
∂t

=
1

ǫ
(p0 − p1)− V

∂p1
∂x

. (103)

The nullspace of the matrix is spanned by the vector

φ =
1

3





1
1
1



 . (104)

We set

p =





p−1
p0
p1



 = vφ+





w−1
w0

w1



 , (105)

and find the equation for v by projecting

∂v

∂t
= V

∂p−1
∂x

− V
∂p1
∂x

+D
∂2p0
∂x2

(106)

= V
∂

∂x
(w−1 − w1) +

1

3
D
∂2

∂x2
(v + w0). (107)

The vector w must satisfy the equation

1

ǫ





−1 1 0
1 −2 1
0 1 −1



w =
1

3





−V ∂v
∂x

0
V ∂v

∂x



 . (108)
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The solution of this problem has

w−1 − w1 =
2ǫ

3
V
∂v

∂x
. (109)

Thus, the effective Fokker-Planck equation (ignoring higher order derivatives) is

∂v

∂t
= Deff

∂2v

∂x2
(110)

where

Deff =
1

3
D +

2ǫ

3
V 2, (111)

which, in case you are checking, has the correct units.

4 Multiscale/Averaging

(due Dec. 3, 2015)

1. Using your choice of method (multiscale analysis or averaging), find approximate so-
lutions for the equations

(a)
u′′ + ǫ(u′)3 + u = 0 (112)

(b)
u′′ − ǫ cos t(u′)2 + u = 0 (113)

(c)
u′′ + ǫ cos(ǫt)(u′)3 + u = 0 (114)

(d)
u′′ + ǫ(ǫ+ u′)u′ + u = 0 (115)

(e)
u′′ + ǫ(ǫ+ (u′)2)u′ + u = 0 (116)

Remark: For this problem, use higher order averaging. Why is this method
preferable for this problem?

4.1 Solutions

1. (a) Using multiscaling, the equation is rewritten as

∂2u

∂τ 2
+ 2ǫ

∂2u

∂τ∂s
+ ǫ2

∂2u

∂s2
+ ǫ(

∂u

∂τ
+ ǫ

∂u

∂s
)3 + u = 0 (117)

Setting
u = A(s)(eiτ+iφ(s) + e−iτ−iφ(s) + ǫu1(τ, s) +O(ǫ2), (118)
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we require

∂2u1
∂τ 2

+ u1 + 2
∂

∂s
(A(s)(ieiτ+iφ(s) − ie−iτ−iφ(s)) +A3(s)(ieiτ+iφ(s) − ie−iτ−iφ(s))3 = 0.

(119)
The solvability condition is

2A′i− 2Aφ′ + A3i = 0 (120)

which, after separating into real and imaginery parts, gives

2A′ + A3 = 0, φ′ = 0 (121)

Notice that this is not structurally stable but that is the nature of the problem
and nothing can be done to rectify this.

(b) Use multiscaling to write the equation as

∂2u

∂τ 2
+ 2ǫ

∂2u

∂τ∂s
+ ǫ2

∂2u

∂s2
+ ǫ cos(τ)(

∂u

∂τ
+ ǫ

∂u

∂s
)2 + u = 0 (122)

where τ = t, σ = ǫt. With u = A(σ) cos(τ + φ(σ)) + ǫu1 we find at O(ǫ):

∂2u1
∂τ 2

+ u1− 2
dA

ds
sin(τ +φ)− 2A

dφ

ds
cos(τ +φ) +A2 cos(τ) cos2(τ +φ) = 0 (123)

Thus, we require
dA

ds
− 1

8
A2 sinφ = 0 (124)

and
dφ

dt
− 3

8
A cosφ = 0 (125)

One cannot find

(c) Use multiscaling to write the equation as

∂2u

∂τ 2
+ 2ǫ

∂2u

∂τ∂s
+ ǫ2

∂2u

∂s2
+ ǫ cos(s)(

∂u

∂τ
+ ǫ

∂u

∂s
)3 + u = 0 (126)

Set u = A(s) cos(t + φ(s) + ǫu1 and find at O(ǫ):

∂2u1
∂τ 2

+ u1 − 2
dA

ds
sin(τ + φ)− 2A

dφ

ds
cos(τ + φ) +A3 cos(s) sin3(τ + φ) = 0 (127)

and then require
dA

ds
=

3

8
A3 cos(s),

dφ

ds
= 0 (128)

(d) For this problem, one can use either averaging or multiscaling, but in either case,
one must go beyond the first order to get a correct approximation. Using a
multiscale approach, choose a slow time scale s = ǫ2t and write the equation as

∂2u

∂τ 2
+ 2ǫ2

∂2u

∂τ∂s
+ ǫ4

∂2u

∂s2
+ ǫ(ǫ+

∂u

∂τ
+ ǫ2

∂u

∂s
)(
∂u

∂τ
+ ǫ2

∂u

∂s
) + u = 0 (129)
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and then the approximation u = u0 + ǫu1 + ǫ2u2 yields

∂2u1
∂τ 2

+ u1 + (
∂u0
∂τ

)2 = 0 (130)

and
∂2u2
∂τ 2

+ u2 + 2
∂2u0
∂τ∂s

+
∂u0
∂τ

+ 2
∂u0
∂τ

∂u1
∂τ

= 0 (131)

Take u0 = A(s) cos(t + φ(s)) and then u1 = A2(1
6
cos(2τ + 2φ) − 1

2
), and the

equation for u2 becomes

∂2u2
∂τ 2

+u2−2
dA

ds
sin(τ+φ)−2A

dφ

ds
cos(t+φ)+A sin(τ+φ)+

1

3
A3 sin(τ+φ) sin(2τ+2φ) = 0

(132)

(e) To use averaging, first introduce polar coordinates u = R cos θ, u′ = R sin θ.
Then, require

R′ cos θ −Rθ′sinθ −R sin θ = 0 (133)

and
R′ sin θ +Rθ′ cos θ + ǫ(ǫ+ (R sin θ)2)R sin θ +R cos θ = 0 (134)

Combining these the appropriate way, we find

R′ + ǫ(ǫ+ (R sin θ)2)R sin2 θ = 0 (135)

and
θ′ + 1 + ǫ(ǫ+ (R sin θ)2) sin θ cos θ = 0 (136)

Finally, set θ = ψ − t so that

R′ = −ǫ(ǫ+R2 sin2(ψ − t))R sin2(ψ − t) (137)

ψ′ = −ǫ(ǫ+R2 sin2(ψ − t)) sin(ψ − t) cos(ψ − t) (138)

Now we seek a change of variables

R = ρ+ ǫR1(ρ, φ, t) + ǫ2R2(ρ, φ, t) · · · , (139)

ψ = φ+ ǫP1(ρ, φ, t) + ǫ2P2(ρ, φ, t) + · · · (140)

so that the equations have the form

ρ′ = ǫH0(ρ, φ) + ǫ2H1(ρ, φ) + · · · (141)

φ′ = ǫG0(ρ, φ) + ǫ2G(ρ, φ) (142)

This means

O(ǫ) : H0+R1t = −ρ3 sin4(ψ−t), G0+P1t = −ρ3 sin3(φ−t) cos(φ−t) (143)

so that

H0 = −3

8
ρ3, R1 = −1

4
sin(φ−t) cos3(φ−t)ρ3+ 5

8
ρ3 cos(φ−t) sin(φ−t) (144)
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and

G0 = 0, P1 =
1

4
ρ3 sin4(φ− t) (145)

To next order the equations are complicated, but the answer is

H1 = −1

2
ρ, G1 =

5

128
ρ6 +

3

512
ρ5 (146)

This gives us the averaged equations we want, namely

ρ′ = −ǫ3
8
ρ3 − ǫ2

1

2
ρ. (147)

The solution of this equation is

ρ(t) =

√

4ǫ

A exp(ǫ2t)− 3
(148)

where A = 3 + 4ǫ
ρ2(0)

> 3, which behaves much differently than the leading order
solution, which decays algebraically.

5 Homogenization

(due Dec. 17, 2013)

1. A laminate material consists of many thin layers of alternating materials with different
thermal conductivities. Suppose the layers have thermal conductivities Di and thick-
nesses li, i = 1, 2. Find the effective conductivity tensor for the composite material.

2. Find the effective diffusion tensor for a periodic medium in which the diffusion coeffi-
cient is rapidly varying in space, according to

D(x, y) = exp
(

α(
x

ǫ
) + β(

y

ǫ
)
)

, (149)

where α(x) and β(y) are periodic functions with period a and b, respectively.

3. Find the coupled phase equations for a system of coupled lambda-omega (λ − ω)
systems, of the form

d

dt

(

xi
yi

)

=

(

λ(ri) −ω
ω λ(ri)

)(

xi
yi

)

+ ǫ

( ∑

j gij
0

)

, (150)

i = 1, · · · , N , where ri = x2i + y2i , ǫ≪ 1, λ(1) = 0, λ′(1) < 0, and

(a)
gij = cij(xj − xi), (151)

(diffusive coupling)

(b)
gij = cijxj (152)

(synaptic coupling).
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5.1 Solutions

1. Use the answer to Problem 2 to calculate the effective diffusion tensor. We find, in the
direction normal to the layers, the diffusion coefficient is

Deff =
D1D2(l1 + l2)

l1D2 + l2D1

. (153)

In the direction parallel to the lamination, the diffusion coefficient is

Deff =
l1D1 + l2D2

l1 + l2
. (154)

2. Follow standard arguments to conclude that

Deff =
1

VΩ

∫

Ω

D(I +∇W )dV, (155)

where W is the vector that satisfies

∇ · (D∇W ) = −∇ · (DI), (156)

where I is the identity matrix.

For this problem with D = exp(α(x) + β(y)), W must satisfy

∇ · (exp(α(x) + β(y))∇W ) = −∇ · (exp(α(x) + β(y))I), (157)

or

(exp(α(x))w1
x)x = −(exp(α(x))x, (exp(β(y))w2

y)y = −(exp(β(y))y, (158)

which integrates once to

exp(α(x))w1
x = K1 − exp(α(x)), exp(β(y))w2

y = K2 − exp(β(y), (159)

w1
x = K1 exp(−α(x))− 1, w2

y = K2 exp(−β(y))− 1, (160)

where

K1 =
(1

a

∫ a

0

exp(−α(x))dx
)−1

, K2 =
(1

b

∫ b

0

exp(−β(y))dy
)−1

(161)

It follows from (155) that

Deff =

(

K1
1
b

∫ b

0
exp(β(y))dy 0
0 K2

1
a

∫ a

0
exp(α(x))dx

)

. (162)
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3. The multiscaled equations are

d

dt

(

xi
yi

)

+ ǫ
d

dσ

(

xi
yi

)

=

(

λ(ri) −ω
ω λ(ri)

)(

xi
yi

)

+ ǫ

( ∑

j gij
0

)

, (163)

so setting xi = x0i + ǫx1i + · · ·, yi = y0i + ǫy1i + · · ·, we find

d

dt

(

x0i
y0i

)

=

(

λ(r0i ) −ω
ω λ(r0i )

)(

x0i
y0i

)

(164)

and

L

(

x1i
y1i

)

≡ d

dt

(

x1i
y1i

)

−

(

λ′(r0)
(x0

i
)2

r0
−ω + λ′(r0)

x0

i
y0
i

r0

ω + λ′(r0)
x0

i
y0
i

r0
λ′(r0)

(y0
i
)2

r0

)

(

xi
yi

)

(165)

= − d

dσ

(

x0i
y0i

)

+

( ∑

j g
0
ij

0

)

, (166)

The leading order periodic solution is given by
(

x0i
y0i

)

=

(

cos(ωt+ φi)
sin(ωt+ φi)

)

. (167)

It is easy to see that the linearized operator L

(

x
y

)

has a nullspace

(

− sin(ωt+ φi)
cos(ωt+ φi)

)

(168)

The adjoint operator is

L∗
(

u
v

)

= − d

dt

(

u
v

)

−
(

λ′(r0)
(x0

i
)2

r0
ω + λ′(r0)

x0

i
y0
i

r0

−ω + λ′(r0)
x0

i
y0
i

r0
λ′(r0)

(y0
i
)2

r0

)

(

u
v

)

(169)

and one can directly verify that the nullspace is spanned by
(

u
v

)

=

(

− sin(ωt+ φi)
cos(ωt+ φi)

)

. (170)

It follows that the solvability condition for the order ǫ system is

dφi

dσ
= − ω

2π

∫ 2π

ω

0

sin(ωt+ φi)
∑

j

g0ij. (171)

We calculate
∫ 2π

ω

0

sin(ωt+ φi)g
0
ijdt =

∫ 2π

ω

0

sin(ωt+ φi)gij(x
0
j − αx0i )dt (172)

=

∫ 2π

ω

0

sin(ωt+ φi)cij(cos(ωt+ φj)− α cos(ωt+ φi))dt (173)

=
1

ω

∫ 2π

0

sin(τ)cij(cos(τ + φj − φi)− α cos(t)dt (174)

= −π
ω
sin(φj − φi) (175)
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It follows that the phase equations are

dφi

dσ
=

1

2

∑

j

cij sin(φj − φi). (176)
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