Math 6730
Homework Exercises - Solutions
1 Regular Perturbation Theory
(due Sept. 22, 2015)

1. Find a two-term asymptotic expansion, for small e, for all solutions of the following
equations:

(a)

e’ —3x+1=0 (1)
(b) '
= T+ 2€ (2)
(c)
re ¥ =€ (3)
(d)
2? -2 —e=0 (4)

2. Find a two-term asymptotic expansion, for small €, of the solution of the following
boundary value problems:

(a)
' +y+e’=0,  y0)=0 y5) =L (5)
(b)
y'—y=0, y0)=0, yl+e=1 (6)

Hint: Use a change of variables to transform this to a problem on a fixed domain
(independent of ¢).

3. Suppose that a one-dimensional cell that is 10 um long and the voltage potential is
held fixed at both ends (so that ® = 0 at the ends). Suppose that the cell contains
approximately equal amounts (say 400mM ) of sodium and chloride, but suppose there
is a slight excess of sodium. How much excess sodium is there if the total difference
between maximal and minimal potential in the cell is 0.1mV? Plot the (approximate)
distribution of potential and ion concentrations for both species.

Hint: Derive the Poisson-Boltzman equation as follows: According to the Poisson
equation,

eV?p = —qN, Z 2iC; (7)



1.1

1.

where € is the dielectric constant of the medium, N, is Avagadro’s number, ¢ is the
unit electric charge, ¢; and z; are the concentration and unit charge for the i** species.
According to the Nernst-Planck equation,

ZZ'F

0= Ve,
VC+RT

Use this information to derive the Poisson-Boltzmann equation in dimensionless units

Vi = -3 Z zia; exp(—z;P), (9)
where N
- A
B =dq ERT 007 (10)

and Cj is a characteristic concentration, L is the length of a one dimensional domain.
What is «;? For parameter values, use that € = 6.938 x 1071°C? /Nm? at 25C, ¢ =
1.6 x 107°C(oulombs), &L = 25.8mV. How large is 3 for this cell?

F
Use that the net charge

)

is a small dimensionless parameter to find the asymptotic solution of the problem.

. Approximate the time it takes for a projectile whose terminal velocity is V with height

y(t) above the earth, with y(0) = 0 and 3,(0) = V4, to return to earth, assuming that
2
Z—% and VL; are small. What is the effect of drag on the return time?

Hint: Use the equation

Yy = — g _ gR
" (1+%)? Vp(R+y)

Y- (12)
to account for viscous atmospheric drag.

Solutions

(a) There are three solutions,

D U T B
x—3+816+7296 +O(¢€), (13)

and
x::t\/g—é:Fg\/EjLO(e). (14)

(b) Take the logarithm of both sides of the equation to rewrite the equation as

2
3+ e)Ine+In(l + f) + 2ki, (15)



A power series solution in € of the form z = zo+ex; €25+ - - yields zy = exp(LF)

orz=1and 21 = —2 — L 1In(x), and x5 = %(3;@ +day +4) -4

For k£ = 0, this gives

2 2
le—?+§¥+06) (16)

For k = £1, the answer is tedious to write out.

To find an asymptotic expansion for

rexp(—x) =, (17)
make a few changes of variables. Let v = ﬁ and y = vx and set n = vIn~y and
the equation becomes

y=1-n+7yh(y). (18)

Clearly y is nearly 1. A relatively easy way to proceed is iteratively, i.e., let
Yn = F(yn—1) where F(y) =1 —n+ ~vIn(y), so that

Yo = 17 (19)

yi=1-n, (20)

y2=1-n+vIn(l—-n), (21)

ys=1—n+7vIn(l —n+ (1l —n)), (22)

and so on. However, this is not an asymptotic series, so to make it into one we

now expand y, as a Taylor series in v and find

mu—n>2(mu—n> umu—mf)g (le—m
T V4O | | ——

y = —n+yn(l-n)+ gl -3
U= = "2 a—ap E—
(23)
This is an asymptotic series, but a strange one.
There are three solutions
r=1+¢€—2+O(), (24)
and ] .

y(x) = sin(z) + e(i sin(z) — %sin(x) cos?(x) + gx cos(z) + ; sin(m)). (26)

_ sinh(t) (tcosh(t) _ cosh(1) sinh(?)

i ) )+0@% (27)




3. Take z; = 1 and z5 = —1 for sodium and chloride, respectively, and then § = as — ;.
It follows that

V20 = —fB(—ay exp(—®) + (6 + ay) exp(P)). (28)
Set ® = 6®; + O(6%) and find that to leading order in 4,
V20, + 2P0, ®; = —f3 (29)

The solution of this equation is easy, being

1 h(y/2 -1
o — L (- cohvV2imlr —g) (30)
20 cosh(5v/2Ba)
Now suppose that the maximum value of ® is ®*. This implies that
o
— = -0, 31
2o (31)
Now by conservation, it must be that
1 1
1= / ag exp(P)dr ~ / as(1+ dPy)dx, (32)
0 0

and since

Now we use that g is very large to get

1
Qs ( 2a1> as (14 @%) (35)
Similarly, total sodium (in dimensionless units) is
1
1—|—ANa:a1 <1—|—5—) = (].—(I)*) (36)
20(1

We can now use the three equations (31,35,36) to find that

@*2
Ave = TG0 - 207 (37)

Convert to dimensional units: &* = % = (0.00387

@*2
A, = =3.0x 107", 38
Ne = T on) (1 — 20 % (38)
This is the fractional charge deflection necessary. Thus, if the initial concentration is
400mM, then the charge deflection concentration is 12pM.
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4. Begin by non-dimensionalizing the equation

g gR
= — - , 39
Yt 1+ %)2 VT(R+y)yt (39)
with initial data

y(0) =0,  5(0) =" (40)

Rescale time t = o7 and length y = LY so that

2

P 2Ly, (41)

1+ Vp(l+ 2

with initial data Y;(0) = 22, Pick L = Vyo and go? = L so that o = %, and L = V?Oz,

and € = % = ;/—222. The rescaled equation is
Vo =~ - TR (42)
with initial data Y;(0) = 1.
Now set “;—; = e, expand in ¢, and find that
Y(r) =~ 4t gt + (G + ) = a7 (43)
2 12 6 2
and the root is 4 5
T:2+€(§—’y§). (44)

Convert this back into dimensional parameters to find

Notice that the correction due to drag decreases the time of flight.

Matched Asymptotic Expansions

(due Oct. 8, 2015)

1. Find a composite expansion for the solutions of each of the following (include a plot

of the approximate solution);

(a)
e +y' =a(>0), y0)=0, y(1)=1, (46)
(b)

e/ +2¢ +y°=0, y0)=0, y(1)= (47)



ef) —y -y’ =1, y0)== y(1) =1

3 9
e =yy' —v°,  y(0)= = y(1) = -3

e =9—-(), y0)=0, y1)=1

2.1 Solutions

1. (a) )
y(r) =azx + (1 —a)(1 —e <)+ O(e).
(b)
(1) = —— — L= 0
Y V3+zr V3

z—1

y(z) = tan(tan_l(%) o)+ (— tan(tan_l(%) )t

(d) There are three solutions

i.

y(r) = 5 — —tanh

1 3 (3:17—1
22—z 2

ii.

4x 3
-~ 9 h(— — tanh™(— )
ya(x) G tan tan (10)
iii.
7., 12 1 7 1 12, 12
g —_—— _ - - ) — — h
ys(w) = Hle—15)(33 %+x)+ (o) gt

y(lr)=—-1+ €2 In (cosh(gz _ 1))

3 QSS Analysis

(due Nov. 12, 2015)

1. The calcium-activated potassium channel has two open states and two closed states
(see Fig. 1). The channel has two binding sites for calcium and can open when one of
the states is occupied and remains open when the second site is bound. The binding
process is a fast process, while the transition between open and closed states is slow.
Find the equation describing slow dynamics of the opening of the channel as a function

of calcium concentration.



(b)

(@)

Xos
=

(d)-1

(©)

(e)

(d)-2
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Figure 1: Diagram of the four states for the calcium-activated potassium channel.

. Suppose that an enzyme can bind two substrate molecules, so can exist in one of three

states, a free moleule S, a complex with one molecule bound C7, and a complex with
two molecules bound C5. The corresponding chemical reactions are

k1

S+E=C “% P4+ E (58)
k_1
k3 L

S+C, 20, — P+Cy (59)
k_3

Give a “proper” derivation of the corresponding Michaelis-Menten rate of production
of product P, using the assumption that the amount of substrate is much larger than
the amount of complex.

Consider the process of autocatalytic conversion of a substrate to an enzyme given by
k1 B
S+E—~2C - FE+F (60)
k_1

Find the (slow) rate of substrate conversion under the assumption that ky < k_;.

Suppose a particle randomly switches between three states
k k
S, 28y =Sy, (61)
k k
and in states S; it moves with velocity jV, j = —1,1, while in state Sy the particle

diffuses with diffusion coefficient D. Suppose the switching rates k are quite large.
Find the effective diffusion coefficient for this particle.

Solutions
The differential equation system is
dp,
d—tl = —klpcl + kf—lpcw (62)
dp.
th = kipe, = k1pey — Kapey + k—2po,, (63)
dp,
dtl - k2p02 - k—2p01 - k3p01 + ]{7_3])02, (64)
dp,
d—tz = /{23]901 - k—3p027 (65)



where k; and k3 are calcium dependent, ki, k_1, k3, and k_3 are large compared to ko,

and k_o. Set y = p., + pe,- The gss approximation implies
0 - _klpcl _'_ k—lpcz,
= k3po1 - k—3p02a
which implies that

pe = My Ry
C1 ]{fl +l{;_1’ Cc2 ]fl _'_k_l?
k_s ks
= (=), pe= 2 (1—y).
p k3+k_3( Y): Do k3+k_3( y)
This implies that
dy
E = _k2pcz+k—2po1a
= L gy,

kit kT kst ks

which is the slow equation for the closed-open transition.

. The differential equation system is

ds
E = —]{?168 + k‘_lcl - ]{53801 + k?_gcg,
de
— = —kies+ k_ic1 + koc,
ql 1 11 2
d01
E = kles — k:_lcl — k‘gCl — k’gSCl + k’_302 + k‘402,
d02
— = kgscy — k_3co — kyco,
o 35C1 3C2 4C2
dp
— = kocy + kyca.
0t 2C1 4C2
Conservation implies that e + ¢; + ¢ = Ej so that we eliminate e and find
ds
% = —kls(Eo —C1 — CQ) + ]{3_101 — ]{33801 + ]{3_302,
dCl
E = ]{518(E0 —C1 — CQ) — ]{3_101 — ]{5201 — ]{33801 + ]{7_302 + ]{?402,
dCQ
— kssc; — k_sco — kyco.
Il 35C] 3C2 4C2
Scale the variables using ¢; = Eyu1, co = Egus, s = Sgo and t = ijEOT and find
do
o = —k10(1 —uy — ug) + uy — Kzouy + K_3uo,
dU1
e = R10(1 — up — ug) — Uy — Koy — K30y + K_3lg + KqUg,
T
dU2
€E—— = K30U; — RK_3Ug — K4Uyg,
dr

(70)

(71)



_ Sk _ k _ _ _ _ E
where k; = T Ry = iR, kg = 98, Koy = ke = and € = 2. The

So*
quasi-steady approximation takes

k10(1 —up — ug) — up — Koy — K30uy + K_3Us + KqUa, (83)

0 = K30U] — K_3Uy — K4l (84)

which we solve to find

(K_3 + K4)R10

_ , 85
" K1k302 + K10 (K_g + K4) + (K2 + 1) (k4 + K_3) (85)
H1I€30'2 (86)
Uy = .
27 Kiks0? + K10 (kg + kg) + (ko + 1) (ks + Kis)
It follows that
d ko(k_ k 2
_p _ Eolil Q(FL 3 -+ I<L4)O' + 1R300 . (87)
dt K1K302 + K10 (K_3 + Ka) + (k2 + 1) (ks + K_3)
. The differential equation system is
% = kyes+ ks, (88)
d
d—j = —k’168 + k_lc + k‘gC, (89)
dc
p7i kies — k_ic — koc. (90)
Set e = Ey — ¢, so that
d
d—j = —kis(Ey —¢) + k_1c, (91)
dc
% = ]{718(E0 — C) - ]{5_10 - ]{720. (92)

Under the assumption that ks < k_1, we take s to be in quasi-equilibrium so that

k’lE()S

= 93
¢ k‘ls + k’_l’ ( )
and then the slow evolution is
d(s+c)

dt 2C, ( )

o d E koF

05 \ _  F2lfoS

dt(s+s+Kd>_ s+ Ky (95)

where K, = kk—*ll, which is a differential equation for the (slow) conversion of substrate
to enzyme.
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4. The deterministic part of the motion is

dy
where n has three states n = —1,0, 1 with transitions
k k
S_1 28 5 (97)
k k
The master equations are
Op—1 Op_1
= kpy—kp_1+V 98
ot Po — Kp—1 + 7 (98)
Ipo po
— = kp_1+kpy — 2k D—— 99
ot P-1+ Kp1 Po + 2 (99)
op1 op1
— = kpy—kpy —V—. 100
ot Po— B o (100)

We assume that k is large so introduce the parameter € = % Then, the equations
become

Op_1 1 Op—1
= - —p_ \%4 101
ot € (po = p-1) + or ’ (101)
Ipo 1 *po
— = —(p_ -2 D 102
ot E(P 1+ p1— 2po) + 92 (102)
(9p1 1 apl
— = —(po—p1) —V—. 103
ot € (po = p1) ox (103)
The nullspace of the matrix is spanned by the vector
1 1
o=-111]. (104)
3\ 1
We set
P-1 wW-1
p=1| po | =vo+| wo |, (105)
P wq
and find the equation for v by projecting
ov Op_4 o d*po
— =V —-V—+D 106
at or 0z | ox (106)
v )+ 102 (0 sy (107)
= V—(w_1—w —D—(v + wy).
or ! Y3 0n2 0
The vector w must satisfy the equation
v
1 -1 1 0 1 -V
- 1 -2 1 w=g 0 . (108)
‘\o 1 -1 Vo



The solution of this problem has
2e__Ov

w_1 — W, = —V—

3 Ox

Thus, the effective Fokker-Planck equation (ignoring higher order derivatives) is

dv 0%
ot T g2
where ] 5
€
D,y = =D+ =V?
=3 + 3

which, in case you are checking, has the correct units.

4 Multiscale/Averaging

(due Dec. 3, 2015)

(109)

(110)

(111)

1. Using your choice of method (multiscale analysis or averaging), find approximate so-

lutions for the equations
u’ +e(u)? +u=0
u” —ecost(u)? +u=0
u” + ecos(et)(u)? +u =0
u +e(e+u ) +u=0

u” +e(e+ (W)Hu +u=0

(112)

(113)

(114)

(115)

(116)

Remark: For this problem, use higher order averaging. Why is this method

preferable for this problem?

4.1 Solutions

1. (a) Using multiscaling, the equation is rewritten as

@4_2 azu + 2@4_ (@4_ g):i
oT2 687'85 ¢ 0s2 ¢ ¢

Setting
u=A(s)(e™H) 4 om0 ey (1,5) + O(€2),

12

(117)

(118)



we require

2 0 o o o o
aTu; +uy + 2@(14(8)(7:6”4—“1)(8) . ’ie_ZT_Zd)(S)) + A3(8)(i€27—+2¢>(s) . ie_ZT_Z¢(S))3 =0.
(119)
The solvability condition is
2A"i — 2A¢" + A% =0 (120)
which, after separating into real and imaginery parts, gives
24" + A =0, ¢ =0 (121)

Notice that this is not structurally stable but that is the nature of the problem
and nothing can be done to rectify this.

Use multiscaling to write the equation as

9u Pu 0% ou  Ou,
5.2 +260T@$ +e 52 +ecos(7')(§+e%) +u=0 (122)
where 7 =t, 0 = et. With u = A(0) cos(T + ¢(0)) + eu; we find at O(e):
8211,1 dA . d¢ 2 2 —
52 T 25 sin(7 4 ¢) — 2A£ cos(T + @) + A% cos(T) cos” (7 + ¢) = 0 (123)

Thus, we require

dA 1 , .

E — éA Sll’lqj) = O (124)
and i 3

L _ZA = 12

i cosp =0 (125)

One cannot find

Use multiscaling to write the equation as

0*u Pu 0% ou 0",
52 T 2687’88 teog+ ecos(s)(a + EE) +u=0 (126)
Set u = A(s) cos(t + ¢(s) + euy and find at O(e):
82uy dA dé

_oda . 999 3 -3 _
572 + uy st sin(7 + ¢) 2Ads cos(T + ¢) + A’ cos(s) sin® (7 + ¢) =0 (127)

and then require
dA 3 do
— = —A%cos(s — =
ds 8 (5), ds
For this problem, one can use either averaging or multiscaling, but in either case,
one must go beyond the first order to get a correct approximation. Using a
multiscale approach, choose a slow time scale s = €2t and write the equation as
P*u o, 0%u ox ou  ,0u Ou ,0u

g T2 s T o T g ) G s

0 (128)

)+u=0  (129)
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and then the approximation u = uy + eu; + €2usy yields

52 Tt (E) =0 (130)
and 02 02 0 Ougp 0
U U Uo Ug OUy
W+u2+287'88+ or +287’ or =0 (131)

Take ug = A(s) cos(t + ¢(s)) and then u; = A%(}cos(27 4 2¢) — 3), and the
equation for u, becomes

2 dA d 1
88;22 +u2_2E sin(T—l—gb)—QAd—f cos(t+¢)+A sin(T—l—gb)—l—gA?’ sin(7+¢) sin(274+2¢) = 0
(132)
To use averaging, first introduce polar coordinates u = Rcosf, v/ = Rsin6.
Then, require
R'cosf — Rf'sinf — Rsinf = 0 (133)
and
R'sinf + RO cosf + e(e + (Rsin)*)Rsinf + Rcosf = 0 (134)
Combining these the appropriate way, we find
R +e(e+ (Rsinf)?)Rsin*0 = 0 (135)
and
0 +1+e(e+ (Rsinf)?)sinfcosd =0 (136)
Finally, set § =1 — t so that
R = —e(e+ R*sin*(¢y —t))Rsin®(y — t) (137)
Y = —e(e+ R*sin®(¢ —t))sin(¢) — t) cos(¢p — t) (138)
Now we seek a change of variables
R = p+€Rl(p>¢>t)+€2R2(pa¢at)"'a (139)
w = ¢+€Pl(p>¢>t)+€2P2(p>¢>t)+"' (140)
so that the equations have the form
po= elo(p,¢) + e Hilp, @) + -+ (141)
¢ = eGolp,0) +G(p,9) (142)

This means
O(e) : Hy+ Ry, = —p’sin® (v —1), Go+ Py, = —p*sin®(¢p—t) cos(p—t) (143)
so that

Hy=—2p”, Ry = —i sin(¢—t) cos3(¢—t)p3+§p3 cos(p—t)sin(p—t) (144)

14



and

1
Go =0, P = Zp?’ sin’(¢ — 1) (145)
To next order the equations are complicated, but the answer is
1 5 3
H =—- =—pt4+—)° 14

This gives us the averaged equations we Want, namely
3 1
/ 3 2
= —e—p* —E-p. 147
p P T EP (147)

The solution of this equation is

Pt = \/A expézt) -3 (148)

where A = 3 + p24—(50) > 3, which behaves much differently than the leading order
solution, which decays algebraically.

5 Homogenization

(due Dec. 17, 2013)

1. A laminate material consists of many thin layers of alternating materials with different
thermal conductivities. Suppose the layers have thermal conductivities D; and thick-
nesses l;, © = 1, 2. Find the effective conductivity tensor for the composite material.

2. Find the effective diffusion tensor for a periodic medium in which the diffusion coeffi-
cient is rapidly varying in space, according to

Dia,y) = exp (al2) + (%)) (149)

where a(z) and [(y) are periodic functions with period a and b, respectively.

3. Find the coupled phase equations for a system of coupled lambda-omega (A — w)
systems, of the form

d [ x; Ar) —w Ti Zj 9ij
- — 1
i) -Coa) G () o
i=1,---,N, where r; = 2? + y?, e < 1, A(1) = 0, N'(1) < 0, and
(a)
gij = cij(x; — x3), (151)
(diffusive coupling)

(b)

Gij = Cijx; (152)
(synaptic coupling).
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5.1 Solutions

1. Use the answer to Problem 2 to calculate the effective diffusion tensor. We find, in the
direction normal to the layers, the diffusion coefficient is

D1 Dy(ly + 1y)

D.sr = . 153
= 1Dy LD, (153)
In the direction parallel to the lamination, the diffusion coefficient is
[y Dy + 13D,
D= ——-"" 154
I L (154)
2. Follow standard arguments to conclude that
1
Desr = — / D(I +VW)dV, (155)
Va Jo
where W is the vector that satisfies
V- (DVW) = -V - (DI), (156)
where [ is the identity matrix.
For this problem with D = exp(«a(z) + (y)), W must satisfy
V- (exp(a(z) + B(y)) VW) = =V - (exp(a(z) + B(y))]), (157)

or

1

(exp(a(@))wy)e = —(exp(a(@))e,  (exp(B(y))wy)y = —(exp(B(y))y, (158)

which integrates once to

exp(a(z))w, = K1 —exp(a(r)),  exp(B(y))w, = Kz — exp(B(y), (159)
wl = Ky exp(—a(z)) — 1, w; = Kyexp(—pB(y)) — 1, (160)
where
K= (5 [ ewt-atopa) " K= (5 [Cew-sia) o
It follows from (155) that
Dusy — ( K3 f, ex(;))(ﬁ(y))dy KoL [? ex(;(a(x))dx ) : (162)
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3. The multiscaled equations are

a () ()= CE )G () oo

so setting @; = 2% +ext + -+, v = ¥ + eyl + - -+, we find

()-8 ) G 100
o ) (z) (165)

Zj gz'oj
(=), (166)
The leading order periodic solution is given by
)\ [ cos(wt+ ¢)
< Y ) N < sin(wt +¢;) ) (167)

It is easy to see that the linearized operator L ( Z ) has a nullspace

< — sin(wt + ¢;) ) (168)

cos(wt + ¢;)

and

b(
VR
< 8

it
~~

[l
S~
VRS
s 5
~_
/N
&

+ >
)
—~ 2

ﬁ S~—
S —

= O
<
=0

£
>~
—~ +
S >

sle S
v\_/

The adjoint operator is

c(n)=a(h)- ( L A)((ro)) WISS <)’ g ) (v) e

and one can directly verify that the nullspace is spanned by

(1) = (marzany, a70)

It follows that the solvability condition for the order € system is

27
do; w [ . 0
1 = o i sin(wt + ¢;) ;gzj- (171)

We calculate
27

/W sin(wt+¢,~)g%dt =
0

ey

sin(wt + gbi)gij(z? — az?)dt (172)

ely

sin(wt + ¢;)c;j(cos(wt + ¢;) — accos(wt + ¢;))dt (173)

I
€l 5— S—

/ sin(7)c;;(cos(T + ¢ — ¢;) — a cos(t)dt (174)

sin(¢; — ¢i) (175)

™
w
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It follows that the phase equations are

dé; 1 .
dqs_ =3 ;cij sin(¢; — ¢;). (176)

18



