
Math 6420
Homework Exercises

1 First Order PDE’s (due Feb. 17, 2016)

1. Find the solution of the problem

ut + cux = f(x, t), u(x, 0) = 0, (1)

where f(x, t) = exp(−t) sin(x).
Solution

In characteristic variables, the equation is

du

dt
= exp(−t) sin(x), dx

dt
= c, (2)

so that x = x0 + ct and
du

dt
= exp(−t) sin(x0 + ct). (3)

Integrating this and applying the initial condition yields

u(t, x0) =
1

1 + c2
(c cos(x0)+sin(x0)−c exp(−t) cos(ct+x0)−exp(−t) sin(ct+x0)), (4)

which, when x0 is eliminated yields

u(t, x) =
1

1 + c2
(c cos(x− ct) + sin(x− ct)− c exp(−t) cos(x)− exp(−t) sin(x)). (5)

2. Solve the Burgers equation ut + uux = 0 with initial data

u(x, 0) =







1 x ≤ 0
1− x 0 < x < 1
0 x ≥ 1

. (6)

Solution

According to the method of characteristics, u = u0 along the straight lines dx
dt

= u0.
Thus,

• u = 1 along curves x = x0 + t for x0 < 0,

• u = 1− x0 along curves x = (1− x0)t+ x0 for 0 < x0 < 1,

• u = 0 along curves x = x0 for x0 > 1.
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This is great except for the fact that this solution is multivalued. In particular, at
t = 1 there is a convergence of characteristics at the point x = 1. Beyond here there
must be a shock, travelling with speed Ṡ

Ṡ =
q(u−)− q(u+)

u− − u+
=

1

2
(u− − u+) =

1

2
, (7)

so that X(t) = 1 + 1
2
(t− 1), for t > 1. Now the solution is uniquely determined with

u = 1 for x < X(t) and u = 0 for x > X(t).

3. A reasonable model for automobile speed in a long single lane tunnel is

v(u) = vm ·
{

1 0 ≤ u ≤ uc,
ln(um

u
)

ln(um
uc

)
uc ≤ u ≤ um,

(8)

where u is the density of cars. Typical parameter values are uc = 7car/km, vm =
90km/h, um = 110car/km, ln(um

uc
) = 2.75.

Suppose the initial density is

u =

{

um x < 0
0 x > 0

. (9)

Determine the trajectory in the x, t plane of a car starting at position x = x0 < 0 and
determine the time it takes for the car to enter the tunnel, and for it to pass through
a tunnel of length 5 km.

Solution We need to sort out the structure of the expansion fan in the vicinity of
x = 0. We start by observing that q(u) = uv(u) and q′(u) = v(u) + uv′(u),

q′(u) = vm ·
{

1 0 ≤ u ≤ uc,
ln(um

u
)−1

ln(um
uc

)
uc ≤ u ≤ um,

(10)

This leads to four solution regimes.

• u = um for x < tq′(um),

• u = u0 on x = tq′(u0) for uc ≤ u0 ≤ um,

• u = uc for q
′(u+c ) <

x
t
< q′(u−c ),

• u = 0 for x > tq′(u−c ).

We invert the relationship for the second region, to find

x
ln(um

uc
)

tvm
+ 1 = ln(

um

u0
), (11)

so that
v =

x

t
+

vm

ln(um

uc
)
, (12)
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provided
tq′(um) < x < q′(u+c ), (13)

which is

−t vm

ln(um

uc
)
< x < tvm(1−

1

ln(um

uc
)
). (14)

Now suppose a car starts at position x0 < 0 at time t = 0. Until time t0 = −x0
ln(um

uc
)

vm
,

the velocity is v = 0. After this, the car path is

dx

dt
=
x

t
− x0

t0
, (15)

which is the path

x =
x0

t0
t(1− ln(

t

t0
)). (16)

Clearly, this hits x = 0 at t = t0e.

Now, let’s find out how long it takes to get through the tunnel. The time that the car
enters region 3 is when

x =
x0

t0
t(1− ln(

t

t0
)) = tvm(1−

1

ln(um

uc
)
), (17)

or
t = t0

um

uc
. (18)

When this happens the car is at position x = x0
um

uc
(1 − ln(um

uc
)). After that the car

travels at velocity vm. To travel through a tunnel of length d, the car must travel total
distance d− x0. Thus the total travel time is

T =
1

vm

(

d− x0 − x0
um

uc
(1− ln(

um

uc
))
)

+ t0
um

uc
(19)

=
1

vm

(

d− x0 − x0
um

uc

)

(20)

which, using numbers given above yields

T =
1

90
(5− 16.6x0)h. (21)

4. Determine the solvability conditions for the linear problem

a(x, y)ux − uy = −u, u(x, x2) = g(x). (22)

Examine the specific case a(x, y) = y

2
, g(x) = exp(−γx2).

Solution

In characteristic form the equation is

dx

dt
= a(x, y),

dy

dt
= −1,

du

dt
= −u, (23)

3



with initial data (t = 0) specified as u(x0, x
2
0) = g(x0). These initial data uniquely

determine the solution provided 2x0a(x0, x
2
0) 6= −1 for all x0.

At a point where this condition fails we require that the matrix

J =

(

a(x0, x
2
0) −1 −g(x0)

1 2x0 g′(x0)

)

, (24)

have rank 1. If this matrix has rank 2, solutions do not exist.

For the specific case at hand, a(x, y) = y

2
and the Cauchy condition is x30 6= −1 which

of course, fails if x0 = −1. Further,

J =

(

x2

0

2
−1 − exp(−γx20)

1 2x0 2γ exp(−γx20)

)

, (25)

which at x0 = −1 is

J =

(

1
2

−1 − exp(−γ)
1 −2 2γ exp(−γ)

)

, (26)

and it has rank 1 only if γ = −1. Hence the problem is well-posed if γ = 2 and not if
γ 6= −1.

5. Solve the Cauchy problem

u2x + u2y = 4u, u(x, 0) = x2 (27)

Solution

Take F = p2 + q2 − 4u. In characteristic form

dx

dt
= 2p,

dy

dt
= 2q,

dp

dt
= 4p,

dq

dt
= 4q,

du

dt
= 8u. (28)

The solution is

u(t) = x20 exp(8t), (29)

p(t) = p0 exp(4t), q(t) = q0 exp(4t), (30)

x(t) =
p0

2
(exp(4t)− 1) + x0, y(t) =

q0

2
(exp(4t)− 1). (31)

Consistency for initial data requires

p20 + q20 − 4x20 = 0, p0 = 2x0 (32)

so that

u(t) = x20 exp(8t), (33)

p(t) = 2x0 exp(4t), q(t) = 0, (34)

x(t) = x0(exp(4t)− 1) + x0, y(t) = 0. (35)

which reduces to u(x, y) = x2.
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2 The Wave Equation (due March 21, 2016)

1. Solve the problem
utt = uxx, 0 < x < 1, t > 0, (36)

subject to initial conditions u(x, 0) = ut(x, 0) = 0 and boundary conditions ux(0, t) =
1, u(1, t) = 0.

Solution

Set u = x− 1 + v and then solve for v using separation of variables to find

v(x, t) =
∑

n

(an cos(λnt) cos(λnx) + bn sin(λnt) cos(λnx)) (37)

where λn = (2n+1)π
2
, subject to initial data vt(x, 0) = 0, v(x, 0) = 1−x. Consequently,

bn = 0 and
∑

n

an cos(λnx) = 1− x (38)

so that

an =
8

π2(2n+ 1)2
, (39)

v(x, t) =
∑

n

8

π2(2n+ 1)2
cos((2n+ 1)

π

2
t) cos((2n+ 1)

π

2
x). (40)

2. Find the characteristics for the equation utt = tuxx.

Solution

Characteristics are level surfaces of the of φ and ψ where

φt −
√
tφx = 0, ψt +

√
tψx = 0, (41)

which are the curves dx
dt

= ±
√
t, or

x = x0 ±
2

3
t
3

2 . (42)

3. Is the problem
utt = uxx, −t < x < t, (43)

subject to conditions u(x, x) = f(x), u(x,−x) = g(x) with f(0) = g(0) well posed? If
it is well posed, find the solution.

Solution

The problem is well posed. The unique solution is

u(x, t) = g(
x− t

2
)− g(0) + f(

x+ t

2
). (44)
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4. Find characteristics and use these to find the general solution of t2utt+2tuxt+uxx−u =
0.

Solution

This equation is parabolic, so there is only one family of characteristics, satisfying

tφt + φx = 0, (45)

with solutions φ = ln t− x = constant. Introduce the change of variables

ξ = φ = ln t− x, η = x, (46)

and calculate that

utt =
uξξ

t2
− uξ

t2
, uxt = −uξξ

t
+
uξη

t
, uxx = uξξ − 2uξη + uηη (47)

so that the equation becomes
uξ = uηη − u. (48)

The fundamental solution of this problem is

u(ξ, η) =
u0√
ξ
exp(−η

2

ξ
− ξ). (49)

5. Solve the problem utt−c2∇2u = 0 in two and three dimensional space for t > 0 subject
to initial conditions u(x, 0) = 0, ut(x, 0) = h(|x|), where h(r) = H(1 − r) for r > 0,
where H is the heaviside function. Plot the solution u(0, t).

3 The Diffusion Equation (due April 11, 2016)

1. Suppose that particles in discrete boxes of size ∆x leave box j to box j± 1 at the rate
λj±1

∆x2 , where λj = λ(j∆x) for some smooth function λ(x). Derive the limiting diffusion
equation, written in conservation form. Identify the different flux terms.

Solution

The balance equation for the ith box is

dui

dt
=

1

∆x2

(

λiui−1 − λi−1ui − λi+1ui + λiui+1

)

,

=
1

∆x2

(

λi(ui−1 − 2ui + ui+1)− (λi−1 − 2λi + λi+1ui)
)

,

≈ λ(x)
∂2u

∂x2
− λ′′(x)u+O(∆x2),

=
∂

∂x

(

(λ(x)
∂u

∂x
− λ′(x)u

)

+O(∆x2), (50)

which leads to the partial differential equation

∂u

∂t
=

∂

∂x

(

λ(x)
∂u

∂x
− λ′(x)u

)

. (51)
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Figure 1: Plot of the dispersal kernel q(x,∞)
α

plotted as a function of αx, α =
√

k
D

in the case

with a steady wind β = v√
Dk

= −2 (solid curve, left), β = 0 (dashed curve), and β = 2 (solid

curve, right).

2. A simple model for the dispersal of seeds is that once they become airborne, they
diffuse and advect with the wind and drop onto the ground at a linear rate. Thus, the
density of seeds in the air (in a one dimensional region) is specified by u where

∂u

∂t
= D

∂2u

∂x2
− v

∂u

∂x
− ku, (52)

and the amount of seed on the ground is determined by q where

∂q

∂t
= ku, (53)

starting from initial data u(x, 0) = δ(x), q(x, 0) = 0.

Find q(x,∞) = limt→∞ q(x, t), and plot it for v = 0 and v > 0, using nondimensional
variables.

Solution Rescale space and time so that seed dispersal is governed by the non-
dimensional equation

∂u

∂t
=
∂2u

∂x2
− β

∂u

∂x
− u, (54)

with β = v√
Dk

.

The solution of this is

u(x, t) =
1

2
√
πt

exp(−(x− βt)2

4t
− t), (55)

and

q(x,∞) =

∫ ∞

0

u(x, t)dt =
1

√

β2 + 4
exp

(

− 1

2
(
√

β2 + 4|x| − βx)
)

. (56)

A plot of the resulting dispersal kernel is shown in Fig. 1.
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3. (a) Find solutions of the diffusion equation ut = uxx of the form u(x, t) = U( x√
t
)

expressed in terms of the error function

erf(x) =
2√
π

∫ x

0

exp(−x2)dx. (57)

(b) Use this solution to solve the equation ut = Duxx on the domain x > 0, t > 0,
subject to conditions u(0, t) = 1 and u(x, 0) = 0 for x > 0.

(c) Find and plot the curve x = X(t) along which u(X(t), t) = 1
2
.

(d) Calculate the total amount of u for x > 0,
∫∞
0
u(x, t)dx, as a function of t.

Solution

(a) With u(x, t) = U(ξ) where ξ = x√
t
, it must be that U ′′ + 1

2
ξU ′ = 0 so that

U ′ =W0 exp(−
ξ2

4
) (58)

and

U(ξ) = U0 +W0

∫ ξ

0

exp(−η
2

4
)dη = U0 + V0erf(

ξ

2
). (59)

(b) To match boundary and initial data take

u(x, t) = 1− erf(
ξ

2
), ξ =

x√
Dt

. (60)

(c) u(x(t), t) = 1
2
along the curve x√

Dt
= 0.956 which is a parabola.

(d) Calculate using integration by parts that

∫ ∞

0

u(x, t)dx = 2

√

Dt

π
. (61)

4. Suppose the population of some organism is governed by the equation

ut = Duxx + ku(1− u) (62)

on the interval 0 < x < L subject to boundary conditions ux = 0 at x = 0, and
Dux+αu = 0 at x = L. Under what conditions on the parameters D, L, k, and α can
such a population survive?

Solution

It suffices to do a linearized analysis, examining the stability of the solution u = 0, by
solving

ut = Duxx + ku. (63)

The solution is
u(x, t) = exp(λt) cos(ax), (64)
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Figure 2: Plot of the critical curve (65).

where aD tan(aL) = α, and λ = k − Da2, and sustainability occurs when λ > 0. To
make physical sense, it must be that α > 0.

One way to represent the curve λ = 0 is parametrically via

α√
kD

= tanβ, L

√

k

D
= β (65)

This curve is shown plotted in Fig. 2.

4 Laplace’s Equation (due April 28, 2016)

1. Find the solution u(r, θ) of Laplace’s equation ∇2u = 0 on the interior of a circular
domain of radius R subject to Dirichlet boundary data u(R, θ) = cos(nθ) for any
integer n.

Solution

Solve Laplace’s equation in polar coordinates with separation of variables by assuming
a solution of the form u(r, θ) = R(r)T (θ) and require

r(rU ′)′ − λ2R = 0, T ′′ + λ2T = 0 (66)

so that T (θ) = cos(nθ), R(r) = Arn and consequently,

u(r, θ) = (
r

R

)n

cos(nθ) (67)

2. Find the solution u(r, θ) of Laplace’s equation ∇2u = 0 on the exterior of a circular
domain of radius R subject to Dirichlet boundary data u(R, θ) = cos(nθ) for any
integer n.

Solution

Using the same methodology as above, find that

u(r, θ) = (
R

r

)n

cos(nθ) (68)
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3. Under what conditions on λ does a solution u(r, θ) of

∇2u = −1, (69)

on the annulus 1 < r < 2, with boundary conditions uν = cos θ at r = 1, and
uν = λ cos2 θ at r = 2, where uν refers to the outward normal derivative? Find a
solution when it exists. Is it unique?

Hint: Make use of Green’s integral identity
∫

Ω
(v∇2u − u∇2v)dx =

∫

∂Ω
(vuν − uvν)dσ

with v = 1.

Solution

Start by setting u(r, θ) = v(r, θ)− r2

4
and then require ∇2v = 0 with boundary condi-

tions on v, ∂v
∂r
|r=2 = 1 + λ cos2(θ), ∂v

∂r
|r=1 =

1
2
− cos θ.

Using separation of variables we set

v(r, θ) = A0 +B0 ln r + (A1r +
B1

r
) cos θ + (A2r

2 +
B2

r2
) cos(2θ), (70)

for which
∂v

∂r
=
B0

r
+ (A1 −

B1

r2
) cos θ + (2A2r − 2

B2

r3
) cos(2θ), (71)

which means we must require

B0

2
+ (A1 −

B1

4
) cos θ + (4A2 − 2

B2

8
) cos(2θ) = 1 +

λ

2
+
λ

2
cos(2θ), (72)

and

B0 + (A1 − B1) cos θ + (2A2 − 2B2) cos(2θ) =
1

2
− cos θ (73)

We see quickly that the solution has B0 = 1
2
and this is a solution if and only if

1 + λ
2
= 1

4
, i.e., if and only if λ = 3

2
. Then we determine the remaining coefficients,

finally finding A1 =
1
3
, B1 =

4
3
, A2 = B2 = −1

5
,

u(r, θ) = A0 +
1

2
ln r +

1

3
(r +

4

r
) cos θ − 1

5
(r2 +

1

r2
) cos(2θ)− r2

4
, (74)

where A0 is arbitrary.

4. Find the Green’s function for a two dimensional disc of radius R.

Solution

Use that the fundamental solution for Laplace’s equation in two dimensions is G =
1
2π

ln |x− y| to write that

G(r, θ, r0, φ) =
1

2π
ln
(

R2 r2 + r20 − 2rr0 cos(θ − φ)

r2r20 +R4 − 2rr0 cos(θ − φ)

)

. (75)
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5. Find the Green’s function for the unit hemisphere in three dimensions x2+y2+z2 ≤ 1,
z > 0.

Solution

Use the method of images to write

G(x,y) =
1

4π

( 1

|x− y| −
R

|x|
1

|x∗ − y| −
1

|x− − y| +
R

|x|
1

|x∗
− − y|

)

, (76)

where x− reverses the sign of the z-component of x, and x∗ = R2

|x|2x.
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