Math 6420
Homework Exercises

First Order PDE’s (due Feb. 17, 2016)
. Find the solution of the problem
u + cuy = f(z,t), u(z,0) =0, (1)

where f(x,t) = exp(—t)sin(z).
Solution

In characteristic variables, the equation is

du . dx
- =exp(=f)sin(z), = (2)
so that x = xg + ¢t and p
d—QZ = exp(—t) sin(zo + ct). (3)

Integrating this and applying the initial condition yields

u(t, o) = (ccos(xg)+sin(xg) —cexp(—t) cos(ct+xy) —exp(—t) sin(ct+zo)), (4)

14 c2

which, when x4 is eliminated yields

%(c cos(z — ct) + sin(z — ct) — cexp(—t) cos(x) — exp(—t) sin(x)). (5)

ult, ) = 1+c¢

. Solve the Burgers equation u; + uu, = 0 with initial data

1 x <0
u(z,0)=< 1—2z 0<z<1 . (6)
0 rz>1
Solution
According to the method of characteristics, u = ug along the straight lines Cfl—f = Ug.
Thus,

e u =1 along curves x = xg + t for x5 < 0,
e u=1—1( along curves x = (1 — )t + x¢ for 0 < xy < 1,

e u = 0 along curves x = x for xg > 1.



This is great except for the fact that this solution is multivalued. In particular, at
t = 1 there is a convergence of characteristics at the point x = 1. Beyond here there
must be a shock, travelling with speed S

. ) —gluy) 1 1

S=2 -7 " “(y_ — _ 7

p— 5 (U-—us) = 2, (7)

so that X (t) =1+ 3(t — 1), for t > 1. Now the solution is uniquely determined with
u=1for z < X(¢t) and u =0 for z > X (t).

. A reasonable model for automobile speed in a long single lane tunnel is

1 0<u<u,,
V(u) = Uy - In(um e < u <y, (8)

a7

~

,_
=]

—~

g

where wu is the density of cars. Typical parameter values are u, = 7car/km, v,, =
90km/h, u,, = 110car/km, In(4™) = 2.75.

Suppose the initial density is

Uy <0
“_{ 0 >0 ©)

Determine the trajectory in the x,t plane of a car starting at position x = z¢y < 0 and
determine the time it takes for the car to enter the tunnel, and for it to pass through
a tunnel of length 5 km.

Solution We need to sort out the structure of the expansion fan in the vicinity of
x = 0. We start by observing that ¢(u) = wv(u) and ¢'(u) = v(u) + uv'(u),

(T Ue S UK Upp,

Uc

, 1 0<u<u,
q(u) = vy - { In(dm)—1 (10)

This leads to four solution regimes.

o u = u, for z < tq¢(uy),

o u=uyonx =tq(ug) for u. < uy < Uy,
o u=ufor ¢'(uf) < <q(u7),

o u =0 for x> tq(u;).

We invert the relationship for the second region, to find

— el 4] =In(—2= 11
] ()
so that . v
— m 12
U7 In(emy (12)



provided

tq' (um) <z < q'(uf), (13)
which is
U (1 — — ) (14)
In (4= ) " In(4m) ™
Now suppose a car starts at position o < 0 at time ¢ = 0. Until time ¢, = —x(]%,
the velocity is v = 0. After this, the car path is
dr = x9
—=_20 15
dt t to (15)
which is the path
Zo t
r=—t(1 —In(—)). (16)
to to

Clearly, this hits x = 0 at t = tge.

Now, let’s find out how long it takes to get through the tunnel. The time that the car
enters region 3 is when

ZTo t 1
xr = Et(l - ln(%)) = tu, (1 — ln(%))’ (17)

or u

t=ty—. (18)
When this happens the car is at position r = zo%=(1 — In(%=)). After that the car
travels at velocity v,,. To travel through a tunnel of length d, the car must travel total
distance d — xy. Thus the total travel time is

1 Um Um, Um,
1 U,

= — (d — Xy — x0—> (20)

'Um Cc

which, using numbers given above yields

1
T = 55(5— 16.6x0)h. (21)

. Determine the solvability conditions for the linear problem
a(x, y)ux — Uy = —U, U(ZL’, lQ) = g(l’) (22)

Examine the specific case a(z,y) = 4, g(x) = exp(—yz?).
Solution

In characteristic form the equation is

dx dy du
E - Q(I,y), % - _17 - = U, (23)
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with initial data (¢ = 0) specified as u(zg,23) = g(xg). These initial data uniquely
determine the solution provided 2zga(xg, 22) # —1 for all .

At a point where this condition fails we require that the matrix

r= (L ) @)

have rank 1. If this matrix has rank 2, solutions do not exist.

For the specific case at hand, a(z,y) = 4 and the Cauchy condition is r3 # —1 which
of course, fails if xg = —1. Further,

.502
1 2zy 2yexp(—vyxg)
—1 —exp(—y) )
J = , 26
( ~2 2yexp(—7) (26)
and it has rank 1 only if v = —1. Hence the problem is well-posed if v = 2 and not if
v # -1

. Solve the Cauchy problem

which at zog = —1 is

=N

Solution

Take F' = p? + ¢*> — 4u. In characteristic form

dr dy dp dq du
T S e L (28)
The solution is
u(t) = xfexp(8t), (29)
p(t) = poexp(4t), q(t) = qo exp(4t), (30)
2(t) = Blexp(at) = 1) +a0,  y(t) = Dlexp(r) - 1) (31)
Consistency for initial data requires
Py + gy — 4z =0, Po = 2z (32)
so that
u(t) = xfexp(8t), (33)
p(t) = 2zgexp(4t),  q(t) =0, (34)
2(t) = wolexp(dt) —1) +a0,  y(t)=0. (35)

which reduces to u(z,y) = 22



The Wave Equation (due March 21, 2016)

. Solve the problem
Uy = Uy, 0<x<l, t >0, (36)

subject to initial conditions u(z,0) = u(z,0) = 0 and boundary conditions u,(0,t) =
1, u(1,t) = 0.

Solution

Set u =z — 1 + v and then solve for v using separation of variables to find

v(z,t) = Z(an cos(Ant) cos(Apx) + by, sin(Ant) cos(A,x)) (37)

n

where A, = (2n+1)%, subject to initial data v,(z,0) = 0, v(x,0) = 1—z. Consequently,

b, = 0 and
Z ay cos(Apz) =1—2x (38)
so that g
y=—_—, 39
= R 2n 1 1) (39)
8 m T
= _ 2 1)— 2 1)=z). 4
v(z,t) zn:ﬂ2(2n+1)2 cos((2n + )Qt)cos(( n + )2:)3) (40)
. Find the characteristics for the equation uy = tug,,.
Solution
Characteristics are level surfaces of the of ¢ and 1 where
G —Vig, =0, ¢+ Vi, =0, (41)
which are the curves fl—f = 4/, or
T =k %ti. (42)
. Is the problem
Uy = Uy, —t <z <t, (43)

subject to conditions u(z,z) = f(x), u(x, —z) = g(x) with f(0) = ¢(0) well posed? If
it is well posed, find the solution.

Solution

The problem is well posed. The unique solution is

L 60+ 1) (4)




4. Find characteristics and use these to find the general solution of 2t + 2ty +yy —u =
0.

Solution

This equation is parabolic, so there is only one family of characteristics, satisfying

tor + ¢, =0, (45)
with solutions ¢ = Int — = constant. Introduce the change of variables
E=¢=Int—uz, n=ux, (46)
and calculate that
U u u u
wp =y =g Um = b Uy = g — 2ugy Uy (47)
t t t t
so that the equation becomes
Ug = Upy — U. (48)

The fundamental solution of this problem is

2

o
u(§,n) = ﬁexp( ¢ £). (49)

5. Solve the problem u;; — c?V?u = 0 in two and three dimensional space for ¢ > 0 subject
to initial conditions u(x,0) = 0,u¢(x,0) = h(|x|), where h(r) = H(1 —r) for r > 0,
where H is the heaviside function. Plot the solution w(0, ).

The Diffusion Equation (due April 11, 2016)

1. Suppose that particles in discrete boxes of size Ax leave box j to box j =1 at the rate
’X;, where \; = A\(jAx) for some smooth function A(x). Derive the limiting diffusion
equation, written in conservation form. Identify the different flux terms.

Solution

The balance equation for the it box is

du; 1
dt = E (Aiui—l - )\i—lui - )\i+1ui + )\iui+1>7
1
= A2 (Ai(ui—l —2u; + uir1) — (Ao — 20 + )\z‘+1ui)),
92w
A )a— N'(2)u + O(Az?),

= (@2~ Na) + O(ar?), (50)

which leads to the partlal differential equation
ou 0 ou ,
o = 5 (Ma)g = X)), (51)
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plotted as a function of ax, o = % in the case

= -2 (sohd curve, left), 5 = 0 (dashed curve), and § = 2 (solid

Figure 1: Plot of the dispersal kerne

with a steady wind 5 = NG

curve, right).

2. A simple model for the dispersal of seeds is that once they become airborne, they
diffuse and advect with the wind and drop onto the ground at a linear rate. Thus, the
density of seeds in the air (in a one dimensional region) is specified by u where

ou_ o ou
ot 022 Ox
and the amount of seed on the ground is determined by ¢ where

dq

starting from initial data u(x,0) = d(z), ¢(x,0) = 0.

Find ¢(z, 00) = limy_,, q(z,t), and plot it for v = 0 and v > 0, using nondimensional
variables.

Solution Rescale space and time so that seed dispersal is governed by the non-
dimensional equation

ou  0*u ou

:__5%

with § = &

The solution of this is

and

o(o,00) = [ (e, )t = p(~ W TR - 5n).  (50)

1
——€X
5214

A plot of the resulting dispersal kernel is shown in Fig. 1.



3. (a) Find solutions of the diffusion equation u; = wu,, of the form wu(z,t) = U (\%)
expressed in terms of the error function

erf(z) = % /Ox exp(—x?)dz. (57)

(b) Use this solution to solve the equation u; = Duyg, on the domain = > 0, ¢t > 0,
subject to conditions u(0,¢) = 1 and u(x,0) = 0 for z > 0.

(¢) Find and plot the curve z = X (t) along which u(X (¢),t) = 1.

(d) Calculate the total amount of u for z > 0, [~ u(z,t)dz, as a function of ¢.

Solution

(a) With u(z,t) = U(€) where { = 2, it must be that U” + 36U’ = 0 so that

2

U =W, exp(—%) (58)
and
¢ Ui £
U(€) = Uy + Wo / exp(~"T)dn = Uy + Vierf (5). (59)
0
(b) To match boundary and initial data take
wo ) = 1—erf(S), = (60)
) 2 Y /Dt'

T

(¢) u(z(t),t) = % along the curve —5; = 0.956 which is a parabola.

(d) Calculate using integration by parts that

/Oou(:z, t)dx =2 & (61)

T
4. Suppose the population of some organism is governed by the equation
uy = Dugy + ku(l — u) (62)

on the interval 0 < x < L subject to boundary conditions u, = 0 at x = 0, and
Du,+au =0 at x = L. Under what conditions on the parameters D, L, k, and a can
such a population survive?

Solution

It suffices to do a linearized analysis, examining the stability of the solution u = 0, by
solving

uy = Dug, + ku. (63)

The solution is
u(z,t) = exp(At) cos(azx), (64)
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Figure 2: Plot of the critical curve (65).

where aD tan(aL) = «a, and A = k — Da?, and sustainability occurs when A > 0. To
make physical sense, it must be that o > 0.

One way to represent the curve A = 0 is parametrically via

o k
\/ﬁ = tan 3, L\/;—ﬂ (65)

This curve is shown plotted in Fig. 2.

Laplace’s Equation (due April 28, 2016)

. Find the solution u(r,6) of Laplace’s equation V*u = 0 on the interior of a circular
domain of radius R subject to Dirichlet boundary data u(R,6) = cos(nf) for any
integer n.

Solution

Solve Laplace’s equation in polar coordinates with separation of variables by assuming
a solution of the form u(r, ) = R(r)T(d) and require

r(rU’) — N>R =0, T+ XNT =0 (66)
so that 7'(f) = cos(nd), R(r) = Ar™ and consequently,
r n
u(r,8) = <E> cos(nf) (67)

. Find the solution u(r, ) of Laplace’s equation V2u = 0 on the exterior of a circular
domain of radius R subject to Dirichlet boundary data u(R,6) = cos(nf) for any
integer n.

Solution
Using the same methodology as above, find that
RA\n
u(r,8) = (—) cos(nf) (68)

r



3. Under what conditions on A does a solution u(r, ) of
Viu = —1, (69)

on the annulus 1 < r < 2, with boundary conditions u, = cos@ at r = 1, and
U, = Acos?f at r = 2, where u, refers to the outward normal derivative? Find a
solution when it exists. Is it unique?

Hint: Make use of Green’s integral identity [,(vV?u — uV?v)dz = [, (vu, — uv,)do
with v = 1.

Solution

Start by setting u(r, ) = v(r,0) — % and then require V?v = 0 with boundary condi-
v 1

tions on v, 22|, 5 =1+ Acos*(0), 2¢[,—; = 1 — cosb.

Using separation of variables we set

B B
v(r,0) = Ay + Bylnr + (A1 + —) cos 0 + (Ayr? + —22) cos(26), (70)
r r
for which 9 B B B
v_2o _ 2 _ 92
i + (A - )cos B + (2Agr — 2 = ) cos(20), (71)
which means we must require
B B B A A
(A — ) cos O+ (44 — 2=2) cos(20) = 1 + = + Z cos(26), (72)
2 4 8 2 2
and ]
By + (A1 — By) cosf + (2A5 — 2Bs) cos(20) = 5 cos 0 (73)

We see quickly that the solution has By = % and this is a solution if and only if

1+ % = i, i.e., if and only if A = % Then we determine the remaining coefficients,

finally finding Ay = 5, By = 5, Ay = By = —1,
_r

1 1 4 1 1
u(r,é’):Ao—l——lnr—l——(r—l—;)cose—g(r2+—)cos(29) 1

2 3 r2 (74)

where A is arbitrary.

4. Find the Green’s function for a two dimensional disc of radius R.
Solution

Use that the fundamental solution for Laplace’s equation in two dimensions is G =
5= In |x — y| to write that

1 ( o, T2+ 15— 2rrgcos(0 — o) ) (75)

G(r,0 =5-In(R
(Ta ,TO, ¢) 271_ n T2T3 + R4 —_ QT’TO COS(H - ¢)
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5. Find the Green’s function for the unit hemisphere in three dimensions x? + 1%+ 2% < 1,
z > 0.

Solution

Use the method of images to write

1 1 R 1 1 R 1
Goy) = (e~ e - b)), (T0)
m\k—yl W -yl x -yl XX -y
where x_ reverses the sign of the z-component of x, and x* = %X.
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