
Homework 1: Due Feb. 5, 2015

1. A quantitative understanding of diffusion was given by Einstein in his theory of Brownian
motion. He showed that if a spherical solute molecule is large compared to the solvent
molecule, then

D =
kT

6πµa
, (1)

where k = R
NA

is Boltzmann’s constant, NA is Avogadro’s number, T is the absolute temper-
ature of the solution, µ is the coefficient of viscosity for the solute, and a is the radius of the
solute molecule. The molecular weight of a spherical molecule is

M =
4

3
πa3ρ, (2)

where ρ is the molecular density, so that in terms of molecular weight,

D =
kT

3µ

( ρ

6π2M

)1/3
. (3)

The density of most large protein molecules is nearly constant (about 1.3 − 1.4 g/cm3), so
that DM1/3 is nearly the same for spherical molecules at a fixed temperature.

Table 1: Molecular weight and diffusion coefficients of some biochemical substances in dilute aque-
ous solution.
Substance Molecular Weight D(cm2/s)

hydrogen 1 4.5× 10−5

oxygen 32 2.1× 10−5

carbon dioxide 48 1.92 × 10−5

glucose 192 6.60 × 10−6

insulin 5,734 2.10 × 10−6

Cytochrome c 13,370 1.14 × 10−6

Myoglobin 16,900 5.1 × 10−7

Serum albumin 66,500 6.03 × 10−7

hemoglobin 64,500 6.9× 10−7

Catalase 247,500 4.1× 10−7

Urease 482,700 3.46 × 10−7

Fibrinogen 330,000 1.97 × 10−7

Myosin 524,800 1.05 × 10−7

Tobacco mosaic virus 40,590,000 5.3× 10−8

Determine how well the relationship D ∼ M−1/3 holds for the substances listed in Table 1 by
plotting D and M on a log-log plot.

2. Suppose a particle moves to the right with probability α and to the left with probability β

and stays put with probability 1− α− β in some fixed increment of time.
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(a) Following arguments given in class, formulate this as a discrete random walk process
and determine the limiting partial differential equation.

(b) Simulate this process on a grid of 101 points starting with a particle at the middle. From
your simulation estimate the expected exit time (each step takes one unit of time) and
the splitting probabilities as a function of α, taking α+ β = 1.

3. (a) Determine the expected time for a diffusing particle of oxygen or hemoglobin to escape
from a domain of radius R (or length 2R in one dimension) starting at the center of the
domain, for a 1-, 2-, or 3- dimensional domain. Determine these times for domains with
radii 10−4, 10−2, and 10 cm.

(b) Perform a stochastic simulation experiment for the previous problem in 1 dimension.
Start with a particle at the origin and allow it to diffuse until it hits a boundary at
distance x = ±R and record the time of the first hit. Do this for many such particles
and plot the distribution of times, and check to see if the mean of this distribution agrees
with what you calculated in the previous exercise. Do this experiment for hemoglobin
and oxygen as in the previous problem.

4. Segel, Chet and Henis (1977) used

D =
πN2

4C2
0
A2T

, (4)

to estimate the diffusion coefficient for bacteria. With the external concentration C0 at
7× 107ml−1, at times t = 2, 5, 10, 12.5, 15, and 20 minutes, they counted N of 1,800, 3,700,
4,800, 5,500, 6,700, and 8,000 bacteria, respectively, in a capillary of length 32 mm with 1 µl
total capacity. In addition, with external concentrations C0 of 2.5, 4.6, 5.0, and 12.0 ×107

bacteria per milliliter, counts of 1,350, 2,300, 3,400, and 6,200 were found at t = 10 minutes.
Estimate D.
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