Selected Hints and Solutions
Principles of Applied Mathematics; Transformation and Approximation

James P. Keener

1.1.2;

; (a) Follows from direct verification.

(b) Follows from a). If the norm is known to be induced by an inner product, then

a) shows how to uniquely calculate the inner product.
(c) Suppose ||z]| = (Zj_y |zx[?)"/7.
(<) If p =2, then (x,y) = Y)_; Txyx induces the norm.

(=) If the norm is induced by an inner product, then from a)

) = (Sl =l = ). )

Take z = (1,0,0,...,0), and y = 0,1,0,...,0). Then (z,z) = 1,(x,y) = 0,
and (z,z +y) = 1 ((2” +1)2/P — 1). Since for an inner product, (z,z + y) =
(z,r) + (x,7), it must be that (2P + 1)>/? = 5. Since (2P + 1)?/? is a monotone
decreasing function of p which aproaches 1 for large p and is unbounded at the

origin, the solution of (27 + 1)2/ P =5 at p = 2 is unique. We conclude that p = 2.

1.1.5; Observe that with 3 = (z,y)/||y||?, * — By is orthogonal to y, so that

|z — ay|]* = ||z — By|I* +|(e = B)ylI*, (2)

which is minimized when a = (. Clearly, if z = ay, then

[, ) = [l [y ]2 (3)

If so, then we calculate directly that ||z — By||> = 0, so that z = SBy.

1.1.6; (a) ¢o=1,01 = 2, = 2° — L, ¢ = 2® — Iz,
(b) ¢o=1,¢1 =x,¢y = 2% — § = 5 cos(2cos ' x), 3 = 2 — Jx = jcos(3cos™ z).

(c) do=1,01 =2 —1,¢9 = 2> —da + 2,3 = 2> — 922 + 18z — 6.

(d) ¢0:17¢1=$,¢2=$2_%a¢3=$3—%x.
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1.2.1; (a) Relative to the new basis, A=| 1 1 2
0 00
113 1 0 0
(b)y Set C =1 2 4 [,andD=1] 0 1 1 |.Then the representation of A in
2 31 0 -1 1
the new basis is
9 —-10 -2
A=D'CACT'D=| 4 -5 -2 |. (4)
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1.2.2; (c) A= ,and B =
01

alent.

) have the same determinant but are not equiv-

1.2.3; (a) Notice that if ABz = Az, then BA(Bzx) = A(Bz).

(b) If AA*z = Az, then Az, z) = (AA*z,x) = (A*x, A*z) > 0.
1.2.4; If Az = \x then \(z,2) = (Az,2) = (x, ATx) = —(x, Az) = —\(z, 7).

1.2.5; (a) R(a) = {(1,1,2)7,(2,3,5)7}, N(A) = 0, R(A*) = R?, N(A*) = {(1,1, ~1)T}.
(b) R(A) = R(A*) = R* N(A) = N(A*) = 0.

1 1o 100
1.26; (a) T=|1 2 1 |, T'AT=]0 1 0
010 00 3
— — 0
(b) T = JTIAT =
1 1 0 =1
1 0 0 100
c)T=|-1 1 0|, T*AT=]0 2 0
111 00 3




1 1 1 000
@T=|-1 1 1 [, T'AT=|0 1L 0
2 4
0 -3 Z 00 %
1 2 30
1.2.7;, T = ,TAT =
-2 -1 0 6

1.2.8; If x is in M, then Pz = z, and if x is in the orthogonal complement of M, the Pz = 0.
1.3.1; Hint: Minimize (Az, ) with a vector of the form 2?7 = (1, -1, 2,0).

1.3.2; (a) Prove that if the diagonal elements of a symmetric matrix are increased, then the

eigenvalues are increased as well.

8 4 4
(b) Find the eigenvalues and eigenvectors of B=| 4 8 —4 |, and use them to
4 —4 8

estimate the eigenvalues of A.

1 2 3
1.3.3; The matrix | 2 2 4 | has a positive, zero, and negative eigenvalue. Apply 1.3.2;

3 47

1.4.1; (a) b must be orthogonal to (1,1, —1)T, and the solution, if it exists, is unique.

(b) The matrix A is invertible, so the solution exists and is unique.
1.4.2; b must be in the range of P, namely M.
1.4.3; (=) Suppose A is invertible, and try to solve the equation Y a;¢; = 0. Taking the

inner product with ¢;, we find 0 = Ac, so that o = 0, since the null space of A is zero.

(<) Suppose {¢;} form a linearly independent set and that Ax = 0. Then (z, Az) =
(X wihi, > ;0;) = 0, so that Y-, z;¢; = 0, implying that z = 0, so that A is invertible
(by the Fredholm Alternative).



1.4.4; Since (Az,z) = (x, A*z) > 0 for all x # 0, the null spaces of A and A* must be empty.
Hence, (b,z) = 0 for all z in N(A*) so that Az = b has a solution. Similarly, the

solution is unique since the null space of A is empty.

2 -1 1
151; (a) A/=%| -1 2 1
0 0 0
Y
V147
1
() Al=5 |3 5
0 —4
—6 2 2
d) A=1| -5 41
—4 2 2
2 9 2
15.4; Q = (¢1,62,¢3), where ¢y = iz | 4 |, ¢2= 45| 18 |.d3= | —1 |, and
9 —10 0
19 28
vI0L 75 e
— 35 25
R=10 " U5 Vs
0 0 5
1.002 0.998
1.5.7; For A = , singular values are /10 and €v/10 with € = 0.0011/10,
1.999 2.001
014+ -2 02— 200.1 —99.8
A = ( eéﬁ ¢ 110 ) = ( ) Using instead singular values
O.I—W 0.24—7E —199.8 100.2
0.1 0.2
V10 and 0, A’ =
0.1 0.2



Vi 0 0 2v/10 0 -
1.5.9;A:PZQWhereP:\/% 0o -1 -2 |,X= 0 3v10 |,Q =
1 -1
0 -2 1 0 0
V51 2
so that A = 20 3030
_v5 1 2
20 30 30

1.5.12; Assuming real vectors, and using Lagrange multipliers, one finds normal equations,
(YYT + M)AT = XYT ATA = I, where M is an arbitrary symmetric matrix. This

system of nonlinear equations has no obvious easy solution.

. _\n 1 _\m 1 1 m—1 1 1 1 2 :
213, For Tpn = Zk:l AR |.Tn — ZCm| = Zk=n+1 A < m Zk:O wF < ml——l < m, which
n

is arbitrarily small for m and n large.

2.1.4; The functions {sinnmz}3 , are mutually orthogonal and hence linearly independent.

2.1.5; max | fu(t) — fm(t)] = 3
large. However, fol |fu(t) — f(t)2dt = (n-m)? _ 1

12nm? 12n "

(1= =) if m > n, which is not uniformly small for m and n

2.1.11; [y (fol f(x,y)dx) dy = — [} (fol f(x,y)dy) dr = —7. Fubini’s theorem fails because
I (fol |f (=, y)|dx) dy = [ (fol ﬁdm) dy = fy itam_1 %dy does not exist.

2.2.1; Using w(z) = 1,p(z) = 22? + <, with w(z) = V1 — 22, p(z) = £=(62® + 1), and with

w(x) = ﬁ,p(fﬁ) = 2 (427 +1).

2.2.2; With the additional assumption that f(x) = a + Bz at two points z = x; and z = x,
x1 < To, we must have that zo—x; = %, and zo+21 = 1, so that a = %f(l)—l (%),ﬂ =

2f(3) —2f(3)-

2.2.3; (a) g(z) = av+bz®+cx®, where a = 322 (7 — 15372 +1485) = 3.10346, b = — 313 (71 —

o
12572 4 1155) = —4.814388, ¢ = 9% (x* — 10572 + 945) = 1.7269.

(b) g(x) = 3.074024z — 4.676347x> + 1.602323z°. A plot of g(z) is barely distinguish-

able from sin 7z on the interval —1 < z < 1.

2.2.4; Use integration by parts to show that the Fourier coefficients for the two repre-

sentations are exactly the same for any function which is sufficiently smooth.



2.2.6;

2.2.12;

Y

2.2.13;

2.2.14;

2.2.16;

2.2.17;

2.2.18;

2.2.19;

2.2.24:

3.1.1;

3.2.1;

b) Write ¢,11 — Anzdn = S p_o Bedr, and evaluate the coefficients by taking inner

products with ¢;, and using part a).
Direct substitution and evaluation of the z integral yields h(t) = 352 frgre'*.

Use direct substitution and the fact that - Y3 " €?™/*/N = 1 if k is an integer multiple

of N (including 0), and = 0 otherwise.

Rewrite the definition of the discrete Fourier transform as a matrix multiplication.

Show that the matrix is orthogonal.
23 =31® 156@ 7 where & means ”"add without carry”.

(by induction) Suppose that Wal(n,1 — z) = (—1)"Wal(n,z). Then, if 0 < z < 3,
Wal(2n,1 — z) = (=1)"Wal(n,1 — 2z) = (—1)>"Wal(n, 2x) = Wal(2n, ). Similarly,
1, then Wal(2n + 1,1 — z) = (=1)""'Wal(n,1 — 2z) = —Wal(n, 2z) =

if0 <z < 3,
Wal(2n + 1, z) as needed.

The relevant identites are:

(a) 2i @2 =2(i  j)

(b) 2@ (2j+1) =22 -1)+1=26(®(G-1)+1)—1

© +D)@Ei+)=Ci-1)+D)aR(-1)+1)=26-1)@2j—1) =
20— (G-1)

Hint: Find the binomial representation of x;, given the binomial representation of j,

and use this information in the representatio of Wal(k, ;) and Wal(j, zy).

2
(a) Differentiate the expresion f; (Efio fivi(z) + aiwi(x)) dx with respect to «;, set

the derivative to zero, and reexpress these equations in matrix notation.

Use Leibniz rule to differentiate the expression u(z) = [y y(z — 1)f(y)dy + [, 2(y —

1) f(y)dy twice with respect to z’

Find a sequence of functions whose L? norm is uniformly bounded but whose value at

zero is unbounded. There are plenty of examples.



3.2.2;

3.2.3;

3.2.4;

3.2.5;

3.3.1;

3.3.2;

3.4.1;

3.4.2;

The proof is the same for all bounded linear operators; see top of page 107.

The null space is spaned by u = 1 when A = 2, therefore solutions exist and are unique

if A # 2, and solutions exist (but are not unique) if A = 2 and V2 (t)dt = 0.

The null space is spanned by v = x when A\ = 3, therefore solutions exist and are

unique if A # 3, and solutions exist, but are not unique, if A = 3 and fol tf(t)dt =0.

The null space is spanned by ¢(z) = cosjz if A = L. Therefore, if A # £ for j =
1,---,n, the solution exists and is unique, while if A\ = % for some j, then a solution

exists only if 7™ f(z) cos jzdr = 0.

u(z) = f(x) + N 7m0, 7 1m cos jtcos jz f(t)dt = sin*z — %z—ﬂm cos 2z, provided

A# 2. For A =2, the least squares solution is u(z) = 1.

u(z) = 5755 Po(x) + 5555 Pi(w) + 1o Po(2), provided X # 3, 2.
Remark: It is helpful to observe that 2? + 2 = $ Py(z) + Py(z) + 3 P (x).

(a) Eigenfunctions are ¢,(z) = sinnnz for A, = ——.

(a) ¢1(z) =sinz, Ay = J, ¢a(x) = cosz, Ay = 5.
(b) ¢n(x) =sinnx, A, = sy forn > 2.

(c) There are no eigenvalues or eigenfunctions.

(2n+1)w
I

(d) ¢n(z) =sina,z, A\, = aiz, where a,, =

3.4.3; A\, 2 — is a double eigenvalue with ¢, (x) = sin "7%, ¥, (7) = cos "5 for n odd.

3.5.1;

3.5.2;

3.5.3;

3.5.4;

3.5.5;

u(z) = fz) + fy e f(t)dt = e* when f(z) =

u(z) = f(x) + [&sin(t — z) f(t)dt = cosz when f(z) = 1.

u(z) = f(z)+ [Fsin(z —t) f(t)dt = e® when f(z) =1+ z.

u(z) = f(2) + 25 Jo* f(t)dt = 2 + ;355 when f(z) =z, provided A # 2.

u(z) = f(z) + 2 [y otf(t)dt = = when f(z) = 2.



i Dyrx sin Z2 .
4.1.1; (a) Use that Si(z) = %% for —1 < x < 1, and then observe that —=*S(x) is
2 2

a delta sequence according to the text.

4.1.4; Observe that x = [*__ ¥(x)dx is a test function, x(0) = 0, so that x = z¢ for some
test function ¢. Hence, 1(z) = L (z¢(x)).

4.1.5; u(x) = c; + coH(x) + ¢36(x).
Hint: Show that a test function 1 is of the form ¢ = %(a:%) if and only if [*°_ ¢dx =
57 bdz = (0) = 0.

4.1.7; Hint: Set u = zv, so that z%v’ = 0, and then u(x) = c;x + cozH(x) (using that
zd(z) = 0).

4.1.8; u(z) = ¢ + c2H ().

4.1.11; In the sense of distribution, x'(z) = d(z)—d(x—1), since (X'(z)p(x)) = —(x(z), ¢'(x)) =
= JZ x(2)¢/ (z)dz = — [y ¢'(z)dz = $(0) — ¢(1).

4.1.12; (a) For distributions f and g, deine (f * g, ¢) = (g, ¢
rangle, where ¥ (t) = (f(x), d(x + t)).

(b) d %6 =d(z).
4.2.1; g(x,t) = —x for 0 <z <t ,g(z,t) = g(t, ).

4.2.2; U(z) = z is a solution of the homogeneous problem. There is no Green’s function.

cos a(%—|z—t|)

4.2.3; g(z,t) = g provided a # 2n.
2

4.2.4; g(z,t)= (2t —t* — D)z for 0 <z <t <1, and g(z,t) = g(t, 7).

4.2.5; u =1 satisfies the homogeneous problem. There is no Green’s function.

—2(3t52 4 2)for0 <z < t
4.2.6; g(x,t) = { 5 ) N

—%(351: + 227%2)forz > ¢

4.2.9; u(z) = [y gz, t)fO)dt — X f) g(z,t)dt + (1 — ) + Bz, where g(x,t) = 2(t — 1) for
0<z<t<lg(zt)=g(tz).



4.2.10;

4.2.11;

4.2.12;

4.3.2;

4.3.3;

4.3.4;

4.3.6;

4.3.9;

4.3.10;

4.3.11;

4.3.12;

4.4.1;

4.4.2;

4.4.3;

4.4.4;

4.4.5;

4.4.6;

w(z) = [y glz, t)f(t)dt — X [y g(z,t)dt where g(z,t) = F(z + 1)(t — 2) for 0 < z < ¢,

and g(z,t) = g(t, x).

u(z) = fy gz, t)f(t)dt — X [y g(z,t)dt where g(z,t) = aa(t" —t) for 0 <z <t <

1,9(x,t) = g(t,x).

g9(z,1)

—1e7l==l and u(z) = § [% e rlu(t)dt — [°2, teT Tl (¢)dt.

2

L*v = —(p(z)v') + g(x)v with p(0)v(0) = p(1)v(1), and p(0)v'(0) = p(1)v'(1).Lu =
—(pu')' + qu = p(1)('(0) = w'(1))d(z — 1) + p(1)(u(1) = u(0))d"(z — 1).

L*v = v" — 40 — 3v with v/(0) = 0,v'(1) = 0.Lu = u” + 41 — 3u+ (4u(0) +u/(0))d(z) —
(4u(1) + u'(1))0(x — 1).

(a) g*(z, thw(z) = g(t, x)w(t)

(b) u(t) = J7 g(t,z) f (x)dz.

This follows from 4.3.2.

Require 7™ f(z)sinzdz = a, and [J™ f(z) cos zdx = .

Require [y f(z)dz = —3.

Require fO% f(z)sinmxdx = 8+ 7o

Require [y f(z)dz = a — 3.

glz,t) =tez+ 5t —x)+ 5 —3(a® +2), for 0 <z <t <1,g9(z,t) = g(t,z).

—_

2

g(z,t) = (3 + 24t =3)(z -+ 1 -1t - —zH(t —z).

g(z,1)

g(z,1)

1

2z

s

t)cosxsint.

T 82

cos2m(z — t) — Lt sin27m(z — t) — L& sin 2w (¢ — ).

coszsint + Zsinzcost — Lsinzsint — 2H(t — z)sinz cost — 2H (z —

g(z,t) = 2ot — x — Z(2? +12) for z < t,g(x,t) = g(t, x).

g(z,1)

1
—2111

(1—2)+ 39l +¢)+ 1 for -1 <z <t<1,9(zt) =gt ).



4.4.7,
4.4.8;
4.4.9;

45.1;

4.5.4;
4.5.5;
4.5.6;

4.5.7,

4.5.8;

4.5.9;

4.5.12;

5.1.1;
5.1.2;
5.1.10;
5.2.2;

5.2.3;

6.1.1;

u(z) = Leos2z + (B — ) +azr — T (a+9).

u(x) = =2z cosz + cos x + g5 sin 3z — = sinx.
u(z) =0
u(z) = 2L — 2 4 aw 4+ 522% + Y00 b2 cosnrz, where b, = —2 [5(f(z) + o —

() cosnmxdx.

No eigenfunction expansion solution exists.

S 1—cos(2n—-1)F
T w(2n—1)2 (2n—1)2/2—1 °

u(r) = ar+ [ — ar + X072, a, cos(2n — 1)7, where a, =
u(z) = —£(32% — Sx. Solution is exact if a + £ = 0.

u(x) = —cLy(x) + (b+ 4c)Ly(x), where Li(z) =1 —xz, and Ly(z) = 5(2? — 4z + 2) are

1
2

Laguerre polynomials.

(Use Hermite polynomials) U9z) = (—£x — % —a — %)6”2/2.

Eigenfunctions are ¢, (z) = sin ' (z + 1), A = 2— so a, = 0 for n even, a, = — % 3"

Tn2—4
for n odd.

For A = 472, eigenfunctions are 1, cos 27z, sin27z. For A\ = 47°n? with n > 1, eigen-

functions are cos 2mnx and sin 27nx.

a) y = constant.

y(z) = 3(z® =3z + 1)

The Euler-Lagrange equation is &4 —y = 0.

Uge = 0 and pyUzpr — pou, = 0 at © =0, 1.

If u is the vertical displacement of the string, require puy = p1 = 8&0 \/T subject to the

Uy

boundary conditions muy + ku = pu—F72—= at x = 0, and muy + ku = —p at
v/ 1+u2 ’ v/ 1+u2

= 1.
a) f(~3) = —iv84, f(1) = —/L, f(5

10



6.1.3; (a) z=72+2n7 — In(2+V/3)

b) z=2nr+iln(v2+1),z2=2n+ 7 +iln(v/2 — 1).

6.1.4; i’ = e~ (/272 for all integer n, In(1 + ¢)™ = —7%(1 + 2n) + T In2, arctan1 has no

value.
6.1.7; The two regions are |z| < 1 and |z| > 1; There are branch points at w = £1.
: _ 158
6.2.1; f(2) = it
6.2.2; [ f(2)dz = —2m/19(15)Y/3e~i"/3
6.2.4; Use that f(z) = z%/? is an analytic function.

L dz=0

+
[=1/2 224241

6.2.6; |,
6.2.7; Jij=1/2 exp[z®In(1 + 2)]dz = 0. (There is a branch point at z = —1.)
6.2.8; [,j1/2 arcsin zdz = 0 (There are branch points at z = +1.)

6.2.9; J, Sinz 7, = 7 sinh 5 L

=1 2244

6.2.10; f, 1y 2Et2dz =0

6.2.11; [, ,—; cot zdz = 2mi

6.2.13; Hint: Use the transformation z = £” where p = é and apply the Phragmen-Lindelof
theorem to g(§) = f(z).

6.3.5; ¢ + i) = a— 2(b—a) — - In(=2)

6.3.6; ¢ + iy = &0 In(=d) —i2(b—a)

_ 27
6.4.1; f—OO am2+bz+c V4ac—b2

6.4.2; [5° Z2tdy = Fel

2+ 2
1+zF — ksin £
.7
6.4.4; fo :1:+1)1P ~ sinmp

11



6.4.5;
6.4.6;
6.4.8;
6.4.9;

6.4.11;

7 e =

(z244)vVz2-1

0o T _
fo wz—i—ldaj_\ﬁ

2v/5

JTp ey = 2™ (H(a — 1)Ina — In(a + 1))

T a2—2acosz+1

ZUJ.’E
= T = her
—00 COSh T cosh %

Io° w2+x+2 =1lnv2-— %ﬁ(arctan\ﬁ — )

6.4.12; ["In(a + bcos 0)dh = 27 In(eFY =t V‘;Z_bz) Hint: Differentiate the integral with respect to

6.4.13;

b, and evaluate the derivative.)

Jgo smaz gy = 1tanh ¢

sinh wzx 2

6.4.14; [y In(sinz)dr = —7ln2

6.4.15;
6.4.20;

6.5.4;

6.5.6;

foo In( 1+z: d.T — 7ln?2

1+2

0 4—1/2 51 — T -
It /e“tdt—ﬂ/mexp(zz )

f(y) _ smﬂonr d fO

(y

Té“} —~dz. Hint: One of the ways to solve this problem is to use

Laplace transforms and the convolution theorem.

W(J,,Y,) =2

T2

6.5.9 Y, (z) = 2L | higher order terms.

6.5.11;
6.5.26;

7.1.2;

nmw 2™

Use that Y00 J,(2)t" = e(t=1/t)z/2

(it
Period = \/73 % i - (lz;z §4)
(a) A with |A\] < 1 is residual spectrum, with |[A| = 1 is continuous spectrum, and

with |[A| > 1 is resolvent spectrum.

(b) Note that Ly =

Li. X with || < 1isresidual spectrum, with |A| = 1 is continuous

spectrum, and with |[\| > 1 is resolvent spectrum.

(c) \p = % for positive integers n are point spectrum, there is no residual spectrum

since L3 is self adjoint, and \ # % is resolvent spectrum, A = 0 is continuous

spectrum.

12



7.1.3;

7.1.4;

7.2.1;
7.2.2;
7.2.3;

7.2.7;

7.2.8;
7.2.9;

7.3.3;

7.3.5;
7.3.6;
7.3.7,
7.3.8;
7.3.9;
7.3.10;
7.3.12;

7.4.2;

Hint: Show that {z,} with z,, = sinnf is an improper eigenfunction.

Show that ¢(x) = sin pz is an eigenfunction for all . Notice that the operator is not

self-adjoint.

§(x — &) =23 sin(Z-Lrr) sin(2% 1 7€)

2 T2
6(x — &) = 2 [5° cos ka cos k&dk
6(z — &) =2 [°sink(z + ¢) sink(§ + ¢)dk where tan ¢ = £.

o

(a) —ipF(p)

(c) e F ()
(d) F(u+Fk)
Joem [ (s)ds

Use the convolution theorem to find u(z) = f(x) — 2 [ f(t)e 1=~ ldt.

3 J—c0

(a) u(x) =[5 f(y) K (z — y)dy where K = L™ (y)-
(b) f(t) = = [ 7o T (¢ — 7)dt
M=1

Mle™] =I'(s)
M= 5
M[ei®] = i°T(s)

M[cos z] = £ cos wsT'(s)

F(p) = Jgrf(r)sinprdr,rf(r) = 2 [5° F(u) sin prdp.

Let un, = 3; gn; fj Where g, = 0,n < j, gnj = 5 (=9 — =) where p? —Ap+1 = 0.
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7.5.1;

7.5.3;
7.5.4;
7.5.9;
7.5.9;

7.5.15;

8.1.3;

8.1.4;

8.1.7;

8.1.9;

8.1.14;

8.1.17;

8.1.19;

cosx,z >0 sinxz,r >0

uy(z) = us(z) =
coshz,x <0 sinhz,z <0
Eigenvalues are A\ = —pu? where tanh py = —ALW, w>0.
A2 = A — u where tanay/A — p = @.
R = o baeobsthsnkos whre f, = ¢
To(k) = sy
R = —e~2ka(kitanha)(ih=1) “pere ig one bound state at k = —itanha if @ < 0 having

(tk—tanh a) (zk—i—l)

u(r) = (tanha — tanh z)efanbalz—a),

(a) Require [°% [0 x(¢r + c¢,)dxdt = 0 for all test functions ¢(z,t).

(b) If u = f(z — ct), make the change of variables £ = = + ¢t,n = z — ct to find
I250 1250 2(fr + ey )dadt = [22, [0, f(§)@pndEdn = 0 since [°3 ¢,dn = 0.

G(z,20) = —iln|;—0—i°1 :
(a) Using the Fourier transform in z, G(z,y, o, yo) = —5= [°5 exp(—ik(z—y)) cosh kﬁ%sgizmh Mk
for y > yo.

(b) Using Fourier series in y, G(z, y, %o, Yo) = exp(—An|x—1x0|) sin A,y sin A,y

nla)\

Suppose f(0) = >X02gancosn(f — ¢y,) then u(r,0) = 302 a,(%)" cosn(d — ¢,) =

LT F(0)d0 + L2 (2)™ [T f(¢) cosn(f — ¢)d¢. This infinite sum can be summed

by converting the cosine to complex exponentials and using geometric series.

Using Mellin transforms u(r, §) = 5= [5° e=*r G(k) sinh s lef}fz)ﬂcosm =) 4k where F(k) =

IOOO ezklnr%dr,G< ) f ezklnr!] d?“

Eigenfunctions are J,(unt ) sinnd for n > 0. Thus, eigenvalues are the same as for

the full circle, with n = 0 excluded.

Eigenfunctions are ¢,,,(¢,6) = P (cos6) sinng (or cos ng) with Ay, = £1/m(m + 1).
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8.1.22;

8.2.6;

8.2.7;

8.2.8;

8.2.11;

8.3.7;

8.4.1;

8.4.2;
8.4.5;
8.4.6;
9.4.5;

10.2.1;

10.2.3;

10.3.1;

10.3.2;

Eigenfunctions are u(r, 0, ¢) = %JmH /2(tmi 35 ) Py (cos 0) cos ng with eigenvalues A, =
(Lmk)? where Jyy1/2(pme) = 0 for m > n. Note that por = 7, 11 = 4.493, oy =
5.763, po2 = 27, pu31 = 6.988, etc.

Hint: Compare the relative amplitudes of the harmonics in the two cases.

For a rectangle with sides a and b, w = % = %\/a% + blz Set A = ab, and find that the

minimum is at a = v A.

s

For a square of side L, the fundamental eigenvalue is A\ = /2 7, whereas for a circle

of radius R the fundamental eigenvalue is A = 242852 Take 7R* = L? and use that

27w
)\,

Construct the Green’s function from Hél)()\|r —¢]) with A = £ and then the solution

c?

idr sin(Aasin 0

is proportional to (up to a scalar constant) ¢ (r,6) = %e S ) for large r.

z=1n2,/22 = 0.82m, ¢t = 22 = 3.47 x 10% = 40 days.

un(t) = exp(—(w)z) sin(227). If we set n = %2 and h = ¢, we have in the limit

1
L X

k — oo, u(z,t) = eXp(—‘lli;) sin(?7%), which is the correct solution of the continuous

heat equation with periodic initial data.

aan = 01(22) (Z - i)

Ep(2) = fo5 Srto(—1)F G

i ettt=1/2qp — m % Zﬁo(_l)k_lw.
Ey(z)=e" Z?;O(_l)kzkk—il'

I3 frmdt = o~ 1" S
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10.3.2; fg et 12dt = [T — e~ /m O sty

10.3.6; [° "t tdt = \/2mye¥ (1 — o -1,

23 _ T
24y — 5762 +°0), wherey =e

10.3.8; Jg e t/3 cos tdt = § 52 (R K1)

10.3.11; b) >3, ( ) kln=% = /™ to leading order for large n.

10.3.13; [g° t"e  Intdt = 2" e Inx (s — g + 0 0)-

10.4.1; o &5 2 da = 2mie 3/ — i 303 (—4) TEH2).

1043, I([E) = us _273/3(1 _ @ + 385 4 O(.’_U_g))

4608x2

E%

10.4.4; Jo(2) = /2 cos(z — 8 — 1) A2l [ 2 gip(p - nm Ty 4 O(275/%)

10.4.6; fol cos(xtP)dt = %(%)Uprl) _ e’

10.4.10; J,(A\x) =0 for A\, = K — 4%2K_1 + O(K?) where K = (2k +n+ 3)3.
105.5; [ f()eo@)de = f(@)D(3) (RG22 e,

12.1.3; With 7 = €*t, u = €3\ the Landau equation is A, = L A(\ — A?).

1
2

Ag

12.2.4; u(t) = 135 + O(e), v(t) = gz + e+ O(e)
12.3.3; u(t) = —tan™'(t) + "/ exp(55%) ( sm(;ff ) — cos(55
12.3.7; (a) u(z) = ;77 — tanh(;, — tanh™ '(2)).

(b) u(z) =421 — 2tanh(Z=! + tanh ™' (1))

4

)) i 161/322/3 exp(21/3(t 1))

(c) u(z) = H(zx — 1)1 + 2(1— H(z — §)) 52 — 2 tanh(Z (z — 1)) where H(z) is

5(z+1) 1/) 253

the usual Heaviside function.

12.3.8; u(z) = “*2=1 4 eln(cosh(2=%H=1)) + O(e)
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