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A question mathematical modelers are getting some relief from in these pandemic
times is “what is the real utility of a mathematical model for medicine, or biology
in general?” The value of mathematics applied to physical systems has persisted un-
challenged for hundreds of years, but the application of mathematical principles to
biological systems has remained controversial at least as far back as Turing’s model of
pattern formation proposed in 1952 [7]. We are naturally suspicious of the limitations
in reducing such complexity. However, this reluctance has diminished as we have been
confronted by a deadly infectious disease about which little was known, yet predictions
needed to be made in order to slow the spread. “Mathematical modeling” has become
part of the public lexicon. Convincing biologically-inclined students of the value of
a quantitative approach and, conversely, attracting students inclined toward computer
science and physics to apply these techniques to problems in medicine, both became a
whole lot easier. Every calculus and differential equations class I have taught since the
spring of 2019 has featured infectious disease modeling as a theme, from estimating
the reproductive number of SARS-CoV-2 from case data to SIR modeling, and stu-
dents have been incredibly receptive to exploring such timely and authentic problems.
Problems like these, as we’re now all too aware, require an interdisciplinary approach
that we should be fostering in our students if we want to see solutions over the coming
years.

How many mathematicians are truly interdisciplinary? A Nature special issue on
the topic published in 2014 poses this very question to scientists (even including a
fun self-quiz) and the editorial of the issue adds this clarification of interdisciplinarity:
“...it is not mere multidisciplinary work — a collection of people tackling a problem
using their specific skills — but a synthesis of different approaches into something
unique” [2]. Useful mathematical models are composed of more than mathematics: a
“good” model of infectious disease spread, for example, that provides actionable pub-
lic health information, takes spatiotemporal data as input that is now available via GIS,
cell phone tracking, or even social media tracking to say nothing of the biological and
medical knowledge required. Developing such models obviously requires familiarity
not just with partial differential equations (PDEs), but with epidemiology, GIS, so-
cial media data extraction, and various programming languages. A specific example of
this, again, is pandemic preparedness and a “modernization” of the SIR model of in-
fectious disease spread to build in a global mobility framework [4]. Further, multiscale
mechanistic models are becoming the gold standard, and can require levels of models
including ODE, PDE, and agent-based. We need people who are trained across these
areas and, even more importantly, who have some experience speaking the language
of multiple disciplines in order to foster collaboration. A 2019 article by Keisuke Oka-
mura revisited the importance of interdisciplinarity to give some verifiable evidence
that scientific research impact increases with the number of distinct disciplines in-
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volved [3]. To give a personal example, I’ve had a collaborative research project with
a developmental biologist fail because we couldn’t agree on the meaning of the word
“output”! As someone who came to biological applications late in my education, I
could have been spared some growing pains by a text like Biology in Space and Time:
A Partial Differential Equation Modeling Approach by James Keener. I saw Keener
speak on modeling diffusion in biological systems as a graduate student in 2016, at the
Biology and Medicine Through Mathematics Conference, when I was just beginning
my research in mathematical biology, and I remember being energized by his ability
to capture the fundamentals of such diverse processes as quorum sensing and mitosis
all with variations on the same equation: ut(x, t) = Duxx(x, t). Exciting connections
like this abound in the text and I can imagine my students being as excited as I was by
questions it leads to, such as “how is an electrical circuit like a nerve axon?”

The text contains that “synthesis of different approaches” mentioned above, com-
bining elements of statistics and probability, computer science, physics, biology, and,
of course, plenty of solid applications of multivariable differential equations. The in-
tended audience, according to Keener, is the advanced undergraduate student with
courses in multivariable calculus and ordinary differential equations under their belt,
as well as some exposure to probability theory and stochastic processes. Some pro-
gramming experience is also helpful, since numerical rather than analytical solution
methods are the focus. A diligent student could probably get by with minimal to no
previous knowledge of stochastic processes and Matlab, however, with the support of
the instructor. A Matlab primer is included in the appendix to complement the codes
used throughout the book.

After an introductory chapter that reviews prerequisites and a second chapter that
discusses modeling in general, most subsequent chapters either expand on or introduce
a class of partial differential equations used in modeling biological processes. Most
texts on the topic, such as Walter A. Strauss’s classic undergraduate text Partial Dif-
ferential Equations: An Introduction [6], cover the wave equation, the heat/diffusion
equation, and the Laplace equation, and are structured around derivations and ana-
lytic solution methods with applications to physical systems. The context of a typical
boundary value problem in a PDE text might be measuring temperature x at time t on
a long insulated wire touching a block of ice at each end, or vertical displacement u of
a string at time t. In contrast, Keener’s text begins with the diffusion equation in Chap-
ter 3 and moves on to the bistable equation, Burger’s equation, advection-reaction, and
advection-diffusion, where some of the models include stochasticity as well. The con-
text of most problems is also different: for example, we are interested in measuring
the concentration of pheromone u at time t emitted by an ant traveling down a long
tube and flux of oxygen in muscle fibers. Numerical solution methods are the heart of
the text, and topics like nonlinear PDEs and bistability get more than usual coverage
because they are widely used in the actual practice of modeling biological systems.
Only Chapter 4 features primarily analytic solution methods, since most biological
problems are too complex to be solved in this way, yet spending some time on these
methods builds intuition.

Each individual chapter presents mathematical and statistical derivations, Matlab
code for simulation, and biological applications problems, and I can imagine selecting
these materials depending on student preparation and interest. For example, at my lib-
eral arts institution where even upper level mathematics courses can be populated with
primarily non-mathematics majors, I might choose to focus class time on building un-
derstanding of partial differential equations via running the numerical simulation codes
and solving exercises and applications, while assigning videos and readings before
each class to build mathematical intuition and walk through some of the derivations. A
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class composed of more mathematically oriented students could easily be structured in
the opposite manner, centered on some of the rigorous mathematical analysis of each
equation—the breadth of approaches covered for each of the PDEs presented in the
text allows a lot of flexibility in the classroom to suit the audience.

In the introduction to the book, Keener states “...it is often the case as illustrated
here that processes transpire according to the same principles and therefore their math-
ematical descriptions have common features that can inform each other even though
the vocabulary describing the details is vastly different.” Chapter 3 is a good example
of this, where the diffusion equation is arrived at via three derivations ranging over
the concrete (flow of a chemical between boxes), the statistical (random walk, with
expected value and variance), and the biological/physical (the cable equation model of
flow of voltage between neurons). Each derivation is brief, but is further explored in
the end of chapter exercises, and there is a lot here to engage the student who is ex-
cited to discover connections between seemingly unrelated phenomena. As someone
who uses active learning in the classroom and reviewed this text with an eye toward
teaching an undergraduate PDE course with it, I can envision assigning students to
attempt to derive a mathematical description of the flow of a chemical between boxes
as a warmup before class. In class, I would first take Keener’s suggestion of getting
students to physically simulate Brownian motion to build some intuition about the dif-
fusion process. Next, we would spend a day or two discussing circuits and how they
can be used to model flow of voltage between neurons with the diffusion equation.

Chapters 4 and 5 expand on the diffusion equation (no pun intended). In Chapter 3,
we discovered that a key feature of a diffusion process beginning at the origin is that
its expected value is zero for all time and its variance is a linear function of time. In
Chapter 4, this leads us to consider how we might leverage these properties to calculate
an “effective diffusion” for biological processes that are not completely explained by
diffusion—and this gives us a nice example of the value of numerical simulation. The
problem of modeling the run and tumble motion of bacteria is presented with the ques-
tion of whether it is a diffusion process: it turns out that it is one if the mean squared
displacement of bacteria is a linear function of time. How can we check this? By de-
veloping a mathematical description, coding it in Matlab, and running simulations as
any applied mathematician would do! The reader of Keener’s book is walked through
this process and then again walked through development of an agent based model.
This is an example of how the text goes beyond training students to solve PDEs in
the classroom to supporting their development as a researcher. My main memories
of an undergraduate PDE course consist of using the separation of variables to solve
various Cauchy problems related to the heat and wave equations; what I recall taking
several weeks of that course is covered in about 9 pages in Chapter 5 on solutions
to the diffusion equation. The focus is instead on the numerical methods that would
actually be used in practice. All of this is tied together at the end of the chapter with
an application that presents the perfect opportunity for some interdisciplinary collab-
oration: measuring the diffusion coefficient of molecules using FRAP (fluorescence
recovery after photobleaching). This experimental technique fluorescently labels the
molecules and then bleaches a circular region with a laser beam so that diffusion of
fluorescent molecules back into the bleached area can be tracked over time. Modeling
this involves numerically solving the diffusion equation on a circular domain, so that
the student must discretize ∂u

∂t
= D

r
∂
∂r

(
r ∂
∂r

)
, where u is the concentration of fluores-

cent molecules, D is the diffusion coefficient, and r is the radius. They will then think
about how the experimental setup must be reflected in the boundary conditions, since
bleaching occurs in the circular region only at t = 0, u(r, 0) = 0 and u(R, t) = U0

for 0 < r < R. This would make a great lab or mini-project: use an established for-
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mula to estimate the diffusion coefficient of a molecule given appropriately normalized
time-course data (for example, this article contains data on diffusion of SARS-Cov-2
neocapsilid protein [5]), then use the estimate to run simulations with the provided
Matlab code and compare results. Better yet, ask your colleagues in the biology de-
partment for data or even if your students can take a “field trip” to collect data in their
lab - I’m fortunate enough to have a colleague that allows this “wet lab” experience
for my undergraduate research and calculus students and it seems to deepen their un-
derstanding of the modeling process significantly.

Chapter 6 begins the discussion of reaction-diffusion equations as modeling such
things as dispersal of populations experiencing growth or decay. This gives a con-
crete feel to some of the properties of diffusion; for example, homogeneous Dirichlet
boundary conditions on growth and diffusion of a population on a finite domain take on
a somewhat more visceral meaning when they correspond to instantaneous death for
organisms leaving the space. Further, the behavior of solutions begins to gain some ad-
ditional meaning within this setting. By this point, students have seen that the general
solution to the diffusion equation contains an exponential term and a trigonometric
term, but having experienced the confusion of students in how to interpret this in a
general way I can see the value of considering these solutions contextually .

Chapters 7 and 8 cover the bistable equation

∂u

∂t
= D

∂2u

∂ξ2
+ kf(u).

In this scenario, in addition to experiencing diffusion, a concentration or population
u also has a reaction rate that at first slowly increases to some threshold, jumps, and
then decays. When we investigate the biological systems modeled, we find that such
diverse systems as spread and control of ecological pests, the dynamics of action po-
tentials along nerve axons, and calcium waves in cell signaling have the common fea-
ture of switching behavior. The constraints on the function f give two stable equilibria
u0 and u2 that lead to this behavior, and the way in which the text guides us through
the solution process provides a good example of the structure of each chapter. Simu-
lations using Matlab code motivate the search for traveling wave solutions when we
notice that some trajectories appear as a fixed shape traveling with constant speed.
Based on the numerical hint, we are told to expect solutions of a certain form, and the
analysis proceeds from there as we search for the appropriate value for the traveling
wave coordinate, calculate speed of propagation, and find the threshold that the initial
stimulus needs to overcome to initiate traveling waves. The visualization of solutions
generated by numerical methods as we perform the intensive work of analytic solution
is a highlight of the text, and it’s hard to imagine working through it without Matlab.
In particular, most of the plots of solutions contain trajectories for many time points
simultaneously so that using the included code to manipulate visualizations could im-
prove interpretability.

In Chapter 9, the advection/transport equation is introduced with structured popula-
tion modeling, where differences among individuals can impact population change. We
can model, for example, u(a, t) as the number of people of age a at time t and model
the population demographics as an advection plus decay process ∂u

∂t
= −∂u

∂a
− µ(a)u,

assuming a death rate of µ(a) ≥ 0. If we move forward in time by ∆t, then individuals
in the age range [0, a] age (are “transported” in time units) by ∆t since aging happens
at the same rate that time passes, less that portion of the population that has died. This
introductory example, which is refreshingly different from the usual “transport of a
pollutant down a stream”, is then extended to age-dependent red blood cell production
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and epidemics in which transmission rate depends on time since infection (as is the
case with SARS-CoV-2). All systems are solved analytically here, using the method
of characteristics, and each solution carries a punchline that illuminates an aspect of
biology. For example, when modeling age-structured populations we find that if the
“fitness” of a population, as measured by the age-dependent reproduction rate, is be-
low a certain level it cannot be sustained. Simulation methods for advection equations
are then covered, including how to numerically implement the method of character-
istics, followed by Burger’s equation for nonlinear advection and the possibility of
multivalued solutions that pops up for many real nonlinear processes, and then three
more detailed presentations of model development and solution finish the chapter. It’s
hard to imagine spending less than a couple of weeks on this rich topic that does not
usually get much attention in an undergraduate course.

Diffusion augments advection in the following chapter where the run and tumble
motion of bacteria that appeared in Chapter 4 can now occur at differing rates in either
direction along a line. This can no longer be modeled with simple diffusion, giving a
great opportunity to show students how we build on previous ideas to extend models.
Ornstein-Uhlenbeck processes model constrained motion of a particle as a mass-spring
system and epidemic spread in this chapter. Like many examples of stochasticity in the
text, the topic seems intuitive enough that I can see a student with minimal background
in probability doing just fine as long as they are familiar with some basic concepts
in statistics. For example, just as we see in modeling diffusion-only processes, we
can pretty easily shift from taking the deterministic steps we’re accustomed to, dx =
vdt, to taking steps dx = vdt +

√
2DtN (0, 1) which can be understood as simply

adding noise that scales with the variance as a linear function of time. Similarly, when
random walks are referenced throughout the text the context is so intuitive that not
much background may be needed. Exposing students to modeling randomness in the
natural world is critical. And teaching them to use code and other tools that they don’t
yet fully understand is an important part of “getting used to” the business of fumbling
in the dark a bit to solve problems. Welcome to real math!

Chapters 11-14, as Keener notes in the introduction, do not introduce new mathe-
matics but instead present a series of biological processes and ask “how do we model
this and learn something useful given our existing knowledge?” Topics include move-
ment of cells and organisms along chemical gradients (Chapter 11), spatial pattern
formation in animals, plants, and cells (Chapter 12), invasive species dynamics (Chap-
ter 13), and quorum sensing and flocking (Chapter 14). I particularly like the end-of-
chapter exercises for these applications, which include modifying the Matlab code and
also exploring the impact of modifying model parameters - they feel like the playful
reward for doing all the heavy lifting of the previous chapters. With seven distinct bio-
logical applications that extend the PDEs learned previously, groups of students could
be assigned one each to present as a final project.

Full disclosure on my perspective: I worked through this text with the simultaneous
viewpoint of (a) an undergraduate student, since I have not worked much with PDEs
since I was a teaching assistant for an undergraduate course about a decade ago, and (b)
a professor intending to use the text in a special topics course. From either perspective,
reading this text was an education: there are so many rabbit holes to go down that I ex-
pect to have a difficult time developing a syllabus that can be covered in one semester!
So much is covered that many of the derivations and techniques presented are brief
and readers may need to review their differential equations from other sources. For
example, the part of Chapter 6 dedicated to the Fisher equation includes topics such as
nondimensionalization, linearization, the Jacobian, bifurcations, both stable and unsta-
ble manifolds, traveling wave solutions, and a comparison theorem. All in just twelve
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illustrated pages. That is a lot of mathematical ground to cover, but the big picture of
how to approach these problems comes across; as von Neumann famously said regard-
ing the method of characteristics “...in mathematics, you don’t understand things. You
get used to them.” Here, we “get used to them” chapter by chapter by solving a variety
of problems using the same methods. Along the way, we gain not only practice and
familiarity but a sense of connection across wide branches of human knowledge that
motivates the effort.

Students who learn the material in this book, and embrace its spirit through the
models referenced throughout the application problems, will be deeply rewarded in
their understanding. For my part, I am looking forward to having some exceptionally
prepared undergraduate research students the summer after teaching a sequence of dif-
ferential equations with the new modeling focused text from SIMIODE [1], which pro-
vides a brief introduction to PDEs, followed by a partial differential equations course
using this text.
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