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ABSTRACT

Platelets play a critical role in repairing the vasculature as a major component of blood

clots. Platelet simulations tend to focus on the motion of a single platelet in isolation inter-

acting with a flat vessel wall or the tendency of platelets to marginate through interactions

with red blood cells. This dissertation, in part, focuses on the interactions between platelets

in a vessel lined by a bumpy wall.

We introduce a discretization of force densities on smoothly reconstructed surfaces based

on analytic formulae. We derive methods for quadrature on homogeneous surfaces, such as

the sphere. Using the geometry of the smooth surface reconstructions, we obtain weights

for quadrature on smoothly perturbed surfaces. This results in a discrete set of surface

forces. We present results for spherical harmonic- and radial basis function-based surface

reconstructions.

We develop a fine-grained parallelization of the interaction operations used by the

immersed boundary method. The algorithm avoids atomic operations and relies on the

well-studied parallel key-value sort and segmented reduce primitives. The result is an

algorithm that scales independently of the background grid. The algorithm exhibits nearly

perfect scaling for increasing numbers of processors/threads and increasing problem size.

The resulting method is appropriate for use on shared memory parallel machines, including

general-purpose graphical processing units.

These two advances are used as components in immersed boundary simulations of

whole blood, focusing on the interaction between red blood cells, platelets, and the en-

dothelium. We consider the effect of endothelial geometry on platelet motion. We find red

blood cells to be crucial for understanding the motion of platelets, to the point that wall

geometry has a negligible effect. We observe behaviors for which the platelet remains near

the endothelium for extended periods and red blood cell-mediated interactions between

platelets and endothelium for which the platelet has reduced speed. We suggest these

behaviors as mechanisms for vascular maintenance.



For Liz.
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CHAPTER 1

INTRODUCTION

Blood is a complex mixture of cellular and fluid components, most notably composed of

red blood cells (RBCs) and platelets suspended in plasma. RBCs are primarily a transport

mechanism for oxygen throughout the body. Platelets, meanwhile, play a key role in the

maintenance of the vasculature. Blood flows through vessels, which vary in diameter

between a few centimeters in the aorta to several micrometers in the capillaries. The lumens

of healthy vessels are lined by a single layer of endothelial cells, called the endothelium.

Interactions between platelets and RBCs, and between platelets and the endothelium, are

important for a platelet’s function, but these interactions are typically studied in isolation.

This chapter is devoted to the biological background that motivates this dissertation.

1.1 Red blood cells

At rest, RBCs are biconcave disk-shaped cells approximately 8
µ
m in diameter. The

volume fraction occupied by RBCs, or hematocrit, ranges approximately from 36% to 45%

in healthy humans. RBCs are anucleate, making them, in essence, sacs of hemoglobin, an

oxygen-carrying metalloprotein. The hemoglobin within the RBC gives the cytoplasm a

viscosity approximately five times that of the enclosing blood plasma. The biconcave disk

shape gives RBCs a high surface area to volume ratio, thereby reducing the transport time

of oxygen across the membrane.

In order to deliver oxygen throughout the body, RBCs must be extremely flexible, as some

vessels are smaller than the cell itself. The cytoskeleton of an RBC is composed of spectrin

arranged in a sparse hexagonal mesh, which allows for such large deformations. Due to the

wide variety of shapes exhibited by RBCs, their mechanical properties were studied intently

during the 1970s and 80s. Canham theorized that the biconcave disk shape minimizes

bending energy [2]. Skalak et al. devised a purpose-built constitutive law to describe the

tension of RBC membranes [15]. Under the assumption of a viscoelastic response, Evans &

Hochmuth estimated the membrane viscosity [5]. Mohandas & Evans gave estimates of the

shear, bulk, and bending moduli [13], which have guided RBC models ever since.
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At low shear rates, dilute suspensions of otherwise highly deformable RBCs behave as a

rigid particle and tumble in the flow direction. At higher shear rates RBCs take on an elon-

gated, convex shape. They incline at an angle above horizontal, and the membrane rotates

around its internal fluid while maintaining roughly the same shape. Numerous studies

use these two behaviors as validation of their RBC models [6, 14, 19, 20]. At physiological

hematocrits, red blood cells tend toward the center of the blood vessel.

1.2 Platelets

Platelets in their inactive state are ellipsoidal disks, approximately 3–4
µ
m by 1

µ
m in

size. They are much more rigid than RBCs, a property afforded to the platelet by its small

size. Platelets are also much less prevalent, with 10–20 RBCs per platelet. In whole blood,

the size and relative rigidity of platelets contribute to the margination of platelets: as RBCs

migrate to the center of the vessel, they exclude platelets vessel, resulting in a “cell-free”

layer near the wall that is devoid of RBCs and inhabited primarily by platelets. The size

of this region depends on the size of the vessel, the shear rate, and the hematocrit, but is

typically a few microns in size.

Less is known about the mechanical properties of platelets. Models range from perfectly

rigid ellipsoids [17] to systems of springs with [4, 16] or without [18] a preferred curvature.

One study estimates the shear modulus and viscosity for platelets [8], but models tend to

use a higher shear modulus than estimated and neglect viscous effects altogether.

Platelets travel along the vasculature and respond to vascular injury. This response

involves structural changes and the release of chemical signals, a process known as activation.

These signals activate other platelets and recruit them to the injury site, while also setting off

a complex cascade of chemical reactions to ultimately form fibrin. Activated platelets that

come into contact with one another form an aggregate, which, together with the fibrin, form

a clot. The clot prevents the loss of blood, and the ability to transport oxygen. However, the

chemicals advect with the fluid, washing downstream in an instant. We have a paradox:

how can the chemical signals activate upstream platelets while simultaneously being swept

away [7]? At low shear rates, chemical diffusion may suffice. In pathological shear rates,

platelets activate in response to increased shear rate [9]. This leaves only intermediate shear

conditions. The prevailing theory relies on fast bonding to slow the platelet for activation

and strong bonds to form [10]. Modeling the near-wall dynamics of platelets is therefore of

the utmost interest.
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1.3 Endothelium

Endothelial cells line the entirety of the vessel. They are tightly packed and bound to the

subendothelium, as exposure of the subendothelium to platelets triggers their activation.

Endothelial cells contain a rigid nucleus. The nucleus gives the endothelial cell a shape that

protrudes into the lumen of the blood vessel, giving it a bumpy texture. This protrusion is

approximately 1
µ
m in height, roughly the minor axis length of a platelet. Since platelets tend

to occupy the space near the endothelium, this may have a marked effect on the dynamics

of the platelets.

Few details about the mechanical properties of the endothelium are known. Models for

which the interior of the endothelial cell is an elastic solid give a wide range of possible

parameters [1]. The alignment of endothelial cells is dependent upon the shear rate of the

blood plasma. Experiments with cow [3, 12] and dog [11] aortas illustrate the dependence of

endothelial cell shape on the shear stress. Endothelial cells exposed to a low shear arrange

into a cobblestone-like pattern with a footprint aspect ratio of approximately 1:1. Under

higher shear stress, the cells elongate in the flow direction, with some cells exhibiting much

higher aspect ratios. Simulations of blood tend to ignore the geometry of the endothelium

entirely, instead opting for a flat plane or smooth tube. We model the endothelium with a

more physiologically relevant shape and aim to determine what effect, if any, the shape has

on the motion of nearby platelets.

The remainder of this dissertation starts from a standard view of the immersed boundary

method, which is a popular tool for fluid-structure interaction. Chapter 2 gives preliminary

details of the immersed boundary method and geometry on surface reconstructions. The

study presented in Chapter 3 is a collaboration with Ondrej Maxian and Wanda Strychalski

and details the calculation of membrane forces from smooth membrane reconstructions. In

Chapter 4, we introduce a novel parallelization scheme for the interaction operations of the

IB method. We apply these methods to the problem of whole blood simulation in Chapter 5.

Finally, we summarize the contributions of this dissertation and give future directions in

Chapter 6.
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CHAPTER 2

NUMERICAL METHODS AND MODELS

Blood plasma is a mixture of primarily water, proteins, and other small molecules and

electrolytes. It therefore behaves like water, i.e., an incompressible Newtonian fluid, with

density ρ = 1 g/cm
3

and viscosity µ = 0.1 cP. The plasma velocity field evolves according

to the incompressible Navier-Stokes equations for Newtonian fluids,

ρ(ut +∇ · (u⊗ u)) = µ∇2u−∇p + f , (2.1)

∇ · u = 0, (2.2)

where u = u(x, t) is the fluid velocity, p = p(x, t) is the pressure, and f = f (x, t) is an

external force density, each at location x = (x, y) in two dimensions and x = (x, y, z) in

three, and at time t. In two dimensions, u has components (u, v), and in three dimensions,

(u, v, w). The advection in Equation (2.1) is written in conservative form, and ⊗ denotes

the outer product. Though we do not consider the two-dimensional case in this dissertation,

we describe them for completeness and for ease of exposition. The methods are also equally

applicable to two-dimensional problems.

RBCs and platelets are other major constituents of blood, and together with the endothe-

lium are modeled as elastic interfaces. Each of these cell types has its own mechanical

properties. Let Γ denote one such cell membrane, which has parametrization X(θ, ϕ, t) at

material coordinates (θ, ϕ) and time t. We define the energy functional

E [X] =
∫

Γ
W dX, (2.3)

where W is an energy density function or constitutive law specific to the cell type, and is a

function of X or its derivatives. The force density on the cell membrane is found via

F = −δE , (2.4)

where δ denotes the first variation.

This chapter covers the minor implementation details, such as parallelization provided

through library functions, and mathematical preliminaries which will be useful in the
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upcoming chapters. These include the method of solving the Navier-Stokes equations, the

elastic models for the cell membranes, the method of constructing cell surfaces from point

clouds, and an overview of the immersed boundary method.

2.1 Solution of the incompressible Navier-Stokes equations

This section describes the fluid solver used in Chapters 4 and 5. Its design is recursive so

that it is equally applicable to problems in two or three dimensions. For ease of exposition,

we illustrate the method in two dimensions. However, the method will ultimately be applied

to three-dimensional blood flow.

Let Ω be a rectangular d-dimensional (d = 2 or 3) domain, filled with plasma. We

discretize Ω into a regular grid of rectilinear cells with side length h. We refer to this grid as

the background grid. To discretize Equations (2.1) and (2.2), we use a marker-and-cell (MAC)

grid [35]: denoting the center of cell i by xi, scalar-valued function s(x) is discretized at xi,

and component ea · v of vector-valued function v(x) at xi− 1/2hea, for a = 1, . . . , d, where ea

is a canonical basis vector for Rd
. Figure 2.1(a) and (b) show the discretization locations for u

in two dimensions. For fixed ea, we define Ωa
h as the set of points at which ea · v is discretized.

These points are staggered relative to the background grid by hga = 1/2h(1− ea), where 1

is a vector of d ones. We refer to ga as the staggering of Ωa
h. Let na

ω be the number of points

in Ωa
h, which may differ from the number of vertices on the background grid or the size

of the other such sets. Each grid point x ∈ Ωa
h decomposes into x = h(i + ga), where the

components of i are integers. While there is one such set per spatial dimension, we will

often consider only one at a time, which we will refer to simply as Ωh, its cardinality as nω,

and its staggering as g.

Define the centered difference operators

Daφ(x) =
φ(x + 1/2hea)− φ(x− 1/2hea)

h
, a = 1, . . . , d,

for which, e.g., D1 approximates a derivative in the x direction. The discrete divergence,

gradient, and Laplacian are built upon this operator, resulting in a 2-point stencil for each

discrete first derivative and the standard 2d + 1-point discrete Laplacian. By averaging u in

the y direction and v in the x direction, we obtain collocated approximations to u and v at

the center of a cell edge. Averaging, e.g., u in the x direction or v in the y direction yields

an approximation at the cell center. We use the averaged values to construct the values of

u⊗ u. We define the centered average operators

Aaφ(x) =
φ(x + 1/2hea) + φ(x− 1/2hea)

2
, a = 1, . . . , d.
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Figure 2.1: A cross-section illustrating the steps in computing D2[(A2u)(A1v)] from the

first component in the discrete advection. The horizontal and vertical velocity component

discretization locations are marked by u and v, respectively. Arrows emanate from points

contributing to a stencil and point to the center of the stencil. (a) A1 averages v in the x
direction, yielding an approximation v̄ at grid vertices (in 3D, centers of cell edges for which

x and y are constant). (b) A2 averages u in the y direction, yielding an approximation ū
at the same points as (a). The quantities A1v and A2u are collocated and can be directly

multiplied to obtain an approximation of uv at locations marked ūv̄. (c) D2 approximately

differentiates uv in the y direction, yielding the desired quantity at each point marked ?.

The approximation of uv is also used to compute D1[(A1v)(A2u)] in the second component

of the advection, wherein application of D1 instead yields approximations collocated with

locations marked v in (a).

We then discretize the components of the three-dimensional advection term by

∇h · (u⊗ u) :=

 D1[(A1u)(A1u)] + D2[(A1v)(A2u)] + D3[(A1w)(A3u)]
D1[(A2u)(A1v)] + D2[(A2v)(A2v)] + D3[(A2w)(A3v)]

D1[(A3u)(A1w)] + D2[(A3v)(A2w)] + D3[(A3w)(A3w)]

 . (2.5)

The symbol ∇h· denotes the discrete divergence operator. Figure 2.1 illustrates the steps in

computing D1[(A1v)(A2u)], which appears in the first component in Equation (2.5). The

two-dimensional case is identical, but with the last row and column (terms involving A3 or

D3) deleted, and off-diagonal elements of u⊗ u approximated at grid vertices. Analysis by

Morinishi et al. show that this scheme, Div.− S2 in their parlance, is conservative under the

assumption that u is discretely divergence-free [38].

To advance the solution, we use an implicit-explicit Runge-Kutta (RK) method. We

use a first-order method based on either the 1-stage backward-forward Euler scheme [22]

or the 2-stage scheme described by Peskin [41]. For the backward-forward Euler scheme,

discretizing Equation (2.1) to advance time from t to t + ∆t yields linear solves of Helmholtz

type,

(I − ∆tρ−1µ∇2
h)u
∗ = un + ∆t

[
ρ−1( f n+1 −∇h pn)−∇h · (un ⊗ un)

]
in Ω, (2.6)

with boundary conditions

u∗ = un+1
b + ∆t∇hqn

on ∂Ω, (2.7)
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where superscripts indicate the time step, ub is velocity boundary data, and ∇2
h and ∇h

are the discrete Laplacian and gradient, respectively. The force density f n+1
is advanced

explicitly, as will be discussed in Section 2.4. The intermediate velocity field u∗ may not be

divergence-free. To obtain a velocity field that is discretely divergence free, we use projection

method II (PmII) of Brown et al. [24]. PmII updates the pressure,

pn+1 = pn + (ρI + ∆tµ∇2
h)q

n+1,

and generates the divergence-free velocity field

un+1 = u∗ − ∆t∇hqn+1
(2.8)

using pseudo-pressure qn+1
, which satisfies

∆t∇2
hqn+1 = ∇h · u∗ in Ω

n · ∇hqn+1 = 0 on ∂Ω.
(2.9)

The velocity update (2.8) provides the boundary conditions (2.7) using a lagged value of

the pseudo-pressure. The 2-stage RK method consists of a backward-forward Euler step

followed by a Crank-Nicolson-midpoint step, which involves only minor modifications to

Equation (2.6). In total, we perform 3 Helmholtz solves and 1 Poisson solve per RK stage.

We employ preconditioned conjugate gradients (PCG) to perform the solves. We precon-

dition the Helmholtz solves with Chebyshev iteration. We precondition the Poisson solve

with multigrid (MG) whose error smoothing procedure and direct solver are also based

on Chebyshev iteration. Chebyshev iteration is a generalization of weighted Jacobi, and is

effective in reducing PCG iterations compared to Gauss-Seidel iteration [21]. Given a range

0 ≤ λ1 ≤ λ2, Chebyshev iteration uses a matrix polynomial derived from a Chebyshev

polynomial to damp eigenvalue modes between λ1 and λ2. Because the Helmholtz and

Poisson systems involve symmetric matrices, we use Geršgorin’s theorem to find bounds

on the matrix spectrum. These bounds are used directly in Chebyshev iteration precon-

ditioning, while λ1 is chosen to conservatively separate low and high-frequency modes

for MG error smoothing. This λ1 also recovers the optimal weight for Jacobi iteration

(Chebyshev iteration derived from T2(x) = 2x2 − 1) for equilateral domains. Chebyshev

iteration requires only the ability to perform sparse matrix polynomial-vector multiplication.

Chebyshev iteration (MG) PCG is therefore parallelized by iterated application of a parallel

sparse matrix-vector multiplication routine within Horner’s method. We use cuSPARSE from

NVIDIA
®

to provide sparse matrix-vector multiplication [39]. Convergence to tolerance

τ = 10−11
is typically achieved inO(10) iterations for time steps ranging from ∆t = 10−8

to
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10−6 sec for Helmholtz solves, and O(1) for the MG on grids presented in this dissertation.

However, MG iteration is much more expensive, and the Poisson solve (2.9) accounts for

approximately 60% of wall clock time.

For domains with Dirichlet and Neumann boundaries, we extrapolate using values at the

neighboring grid points and boundary data to fill ghost points. For some grid staggerings,

the discrete second derivative operator approximates a nonunit multiple of its continuous

counterpart near the boundary. To account for this, but maintain symmetry of the Helmholtz

matrices, we scale equations involving near-boundary values, excluding the offending

discrete second derivative and ghost cell terms. This error does not affect the Poisson

solve (2.9). The correction recovers up to quadratic solutions exactly while retaining the use

of PCG for the linear solves, but requires 3 additional diagonal matrix-vector multiplications

per RK stage. For details, see Appendix A.

2.2 Cell energy models

In this section, we describe the various forms of energy density used in our simulations

and give analytic expressions for each. We consider four kinds of energy densities: those

corresponding to (damped) spring forces, tensions, dissipative forces, and Canham-Helfrich

bending forces. The different cell types respond differently to deformation. We list the

energy densities used to model each type of cell and the accompanying parameter values

but defer discussion of force discretizations to Sections 3.2.2 and 3.2.3. Because our ultimate

goal is a three-dimensional simulation, we limit our descriptions to the three-dimensional

case. Considerations for the two-dimensional case are treated elsewhere [27].

We begin with Hookean and damped spring energy density, which is the simplest energy

density we consider. It depends only on surface locations X and the surface velocity Ẋ,

where the superposed dot denotes partial differentiation with respect to t, and takes the

form

Wspring(X, Ẋ) =
k
2
(X − X ′)2 +

η

2
(Ẋ − Ẋ ′)2. (2.10)

where X ′ is the tether location, Ẋ ′ = ∂X ′/∂t is the prescribed velocity, k is the spring

constant, and η is the damping constant. Due to the lack of information about the mechanical

properties of endothelial cells, we model the endothelium as a rigid, stationary object with

k
endo

= 2.5 dyn/cm and η
endo

= 2.5× 10−7
dyn · s/cm, chosen to be as large as possible for

the chosen spatial and temporal step size, and Ẋ ′ = 0. We compare different choices for X ′

in Chapter 5.
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Next, we consider the tension densities for RBCs and platelets. These penalize stretching

and areal dilation of the cell membranes. Let λ1 and λ2 be the principal extensions, i.e., the

maximal and minimal ratios of stretching relative to a reference configuration. We define

the invariants I1 = λ2
1 + λ2

2− 2 and I2 = λ2
1λ2

2− 1, which measure relative changes in length

and area, respectively, such that I1 = I2 = 0 correspond to a rigid body motion. We express

the tension density in terms of these invariants. Skalak’s Law was designed specifically for

RBCs [45]:

W
Sk
(I1, I2) =

E
4
(

I2
1 + 2I1 − 2I2

)
+

G
4

I2
2 . (2.11)

E is the shear modulus, and G is the bulk modulus. The shear and bulk moduli for RBCs

is estimated to be E = 6× 10−3
dyn/cm and G = 5× 102

dyn/cm [37], but we follow Fai

et al. and use ERBC = 2.5× 10−3
dyn/cm and GRBC = 2.5× 10−1

dyn/cm [30]. We use the

shape given by Evans & Fung for the reference RBC with radius R0 = 3.91
µ
m [28]:

X̂RBC(θ, ϕ) = R0

 cos θ cos ϕ
sin θ cos ϕ

z(cos2 ϕ) sin ϕ

 ,

where z(r) = 0.105 + r− 0.56r2
. Platelets, on the other hand, do not have a purpose-built

constitutive law, but are stiffer than RBCs. We use the neo-Hookean model

WnH(I1, I2) =
E
2

(
I1 + 2√
I2 + 1

− 2
)
+

G
2

(√
I2 + 1− 1

)2
(2.12)

with E
plt

= 1× 10−1
dyn/cm and G

plt
= 1 dyn/cm, and an ellipsoidal reference configura-

tion [32]

X̂
plt
(θ, ϕ) =

 1.55
µ
m cos θ cos ϕ

1.55
µ
m sin θ cos ϕ

0.5
µ
m sin ϕ

 .

Platelets and RBCs also respond to changes in membrane curvature. Let H be the

membrane’s mean curvature. The Canham-Helfrich bending energy density takes the

form [25]

WCH(H) = 2κ(H − H′)2, (2.13)

where κ is the bending modulus in units of energy, and H′ is the spontaneous or preferred

curvature. RBCs generate a relatively weak response to changes in curvature. Its bending

modulus is estimated to be in the range 0.3–4× 10−12
erg [37]. We use a bending modulus

of κRBC = 2 × 10−12
erg and a preferred curvature H′ = 0 for RBCs. RBCs, therefore,
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tend to locally flatten their membranes. For platelets, we use a larger bending modulus

of κ
plt

= 2 × 10−11
erg and a preference for its reference curvature. Together with the

neo-Hookean tension above, this maintains a fairly rigid platelet.

Finally, we consider dissipative energy, which causes the membrane to exhibit a vis-

coelastic response to strain. It takes the form [42]

W
dissip

(λ̇1, λ̇2) =
ν

2

(
λ̇2

1

λ2
1
+

λ̇2
2

λ2
2

)
, (2.14)

where ν is the membrane viscosity, and λ̇i is the rate of change of λi. We imbue only the RBC

with viscoelasticity. We find this effective in eliminating some numerical instabilities. While

Evans and Hochmuth suggest a viscosity of approximately 1× 10−3
dyn · s/cm [29], we

find this to be prohibitively expensive in practice, due to time step restrictions, and instead

use νRBC = 2.5× 10−7
dyn · s/cm.

2.3 Geometry of reconstructed surfaces

Let Γ denote the membrane of an RBC, platelet, or the endothelium at time t. To discretize

Γ, we choose a fixed set of material coordinates. Throughout a simulation, we track their

corresponding Cartesian locations. From these points, we approximately reconstruct the

entire cell membrane. We aim to construct a sufficiently smooth reconstruction from which

we approximate surface forces. The tool of choice is radial basis function interpolation.

2.3.1 Interpolation with radial basis functions

Radial basis functions (RBFs) are a meshfree approach to scattered data approximation

where structural information is encoded purely as pointwise distances. With some excep-

tions, they are an appropriate tool for interpolation at arbitrary locations. This contrasts

with, e.g., polynomials, where points must be chosen at grid vertices, or spherical harmonics,

for which special node sets are typically used. RBFs are a viable approach for representing

cells on par with Fourier methods [43]. They are therefore appealing for representing blood

cells.

Because our choice of force model for the endothelium does not require geometric

information, we limit the discussion to RBCs and platelets, which are topologically spherical.

The 2-sphere, S2
, has parametrization

χ(θ, ϕ) =

 cos θ cos ϕ
sin θ cos ϕ

sin ϕ

 ,
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(θ, ϕ) ∈ (−π, π]× [−π/2, π/2]. Let Θd = {(θi, ϕi)} be a set of nd distinct data sites, and

χd
i = χ(θi, ϕi) for each (θi, ϕi) ∈ Θd

. Suppose we wish to approximate ψ(χ), defined on S2
.

From basic function φ, we form our interpolatory basis with the RBFs φ(‖χ−χd
i ‖). Attractive

choices for φ are the polyharmonic splines (PHS),

PHS: φ(r) =

{
r2k log r,
r2k+1,

for k ∈N,

which do not require a shape parameter, unlike Gaussian or multiquadric kernels [31].

However, PHS are finitely differentiable and conditionally positive definite; they require

additional polynomial terms up to degree k to guarantee a unique interpolant. Heuristically,

nd is chosen so that data sites outnumber polynomials at least 2-to-1 to maintain reasonable

conditioning. On S2
, the polynomials are typically spherical harmonics. We denote the

polynomials by pk(χ), k = 1, . . . , np. The interpolant takes the form

s(χ) =
nd

∑
i=1

ciφ(‖χ− χd
i ‖) +

np

∑
k=1

dk pk(χ), (2.15)

and exactly recovers ψ at each of the data sites, s(χd
j ) = ψ(χd

i ), for j = 1, . . . , nd. We further

constrain ci so that the polynomials recover polynomial data,

nd

∑
i=1

ci pk(χ
d
i ) = 0. (2.16)

Collecting the values Φ = (φ(‖χd
j − χd

i ‖)), P = (pk(χ
d
j )), c = (ci), d = (dk), and ψ =

(ψ(χd
j )), we form the dense symmetric block system[

Φ P
PT 0

] [
c
d

]
=

[
ψ
0

]
, (2.17)

where the matrix block 0 is the np × np zero matrix and 0 is a vector of np zeros. Because Θd

is fixed, we need only construct this matrix once.

For RBC and platelet parametrizations, we identify the point X(θ, ϕ, t) on Γ with the

point χ(θ, ϕ) on S2
. Each component of X is a function defined on S2

. By sampling X at

each point in Θd
, we can approximately reconstruct the surface by interpolating each of the

components. It is clear from Equations (2.11)–(2.14) that computing the force density (2.4)

requires values of I1, I2, and H, among others. These values are derived from the first and

second derivatives of X. To meet the smoothness requirements to evaluate force densities,

we use φ(r) = r7
for each cell, with up to 5th

order spherical harmonics for RBCs and just

the constant polynomial for platelets. While this does not guarantee a unique interpolant

for the platelet, the resulting system (2.17) is invertible nonetheless. The interpolants are

then thrice differentiable. We now need the appropriate discrete differential operators.
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2.3.2 Discrete linear surface operators

Let L be a linear operator. In particular, we are interested in the first- and second-

order partial differential operators, ∂/∂θ, ∂2/∂θ∂ϕ, etc. We approximate Lψ by applying L
analytically to s. This is straightforward, given a parametrized metric. For S2

, this is

‖χ(θj, ϕj)− χ(θi, ϕi)‖ =
√

2(1− cos ϕj cos ϕi cos(θj − θi)− sin ϕj sin ϕi)

=
√

2(1− χ(θj, ϕj) · χ(θi, ϕi)).
(2.18)

However, evaluating Ls at each data site involves dense operations against a nd × (nd + np)

matrix. Depending on the needs of the simulation, the number of data sites may be large. In

the interest of saving memory and time for such cases, we opt instead to use fewer data

sites to reconstruct the surface, and choose a larger set of ns sample sites, Θs
. We must then

also consider L the identity operator in order to obtain X at sample sites. Evaluating Ls

at each sample site, χs
j = χ(θj, ϕj) for each (θj, ϕj) ∈ Θs

, and collecting values LΦ =

(Lφ(‖χ− χd
i ‖)|χ=χs

j
) and LP = (Lpk(χ)|χ=χs

j
), we have

[
LΦ LP

] [ c
d

]
=
[
LΦ LP

] [ Φ P
PT 0

]−1 [
ψ
0

]
:=
[

L ∗
] [ ψ

0

]
,

(2.19)

where we have used Equation (2.17) to substitute for c and d. The matrix L is the discrete

analogue of L applied at each sample site. The block marked by ∗ is multiplied by zeros,

and can be discarded. We perform this procedure for each first and second derivative

operator, and for the identity operator if Θd 6= Θs
. The discrete identity operator evaluates

the interpolant at sample sites to obtain locations Xs
j , at which we compute force density.

When we do not need to make a distinction, we use the notation Γh to represent the set

of Cartesian locations corresponding to every data or sample site, and nγ to represent the

appropriate cardinality. For fixed Θd
and Θs

, we construct these operators only once. The

cuSOLVER library provides a parallel LAPACK-like interface to solve the linear systems on the

GPU [39].

The quantities I1, I2, and H in Section 2.2 are calculated using local geometric data.

Their computation is trivially parallelizable given approximations to the first and second

derivatives of X with respect to material coordinates. Application of the dense discrete

differential operators is also performed in parallel with a parallel implementation of BLAS.

NVIDIA
®

provides cuBLAS for this purpose [39]. To compute a force from a force density,

we need to approximate quadrature weights, or surface patch areas, for each sample site.
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2.3.3 Radial basis function-based quadrature

We now use the known parametrization of S2
to compute RBF-based quadrature weights

on S2
as a preliminary step in computing quadrature weights on any surface diffeomorphic

to S2
, namely, RBC and platelet membranes.

As before, consider a function ψ(χ) : S2 → R. We wish to find a set of quadrature

weights ωj such that

∫
S2

ψ(χ)dχ ≈
ns

∑
j=1

ωjψ(χ
s
j ).

We use a variant of the technique described by Fuselier et al. [33]. Choosing ψ(χ) = φ(‖χ−
χs

i ‖) for each χs
i we see that

ns

∑
j=1

ωjφ(‖χs
j − χs

i ‖) ≈
∫

S2
φ(‖χ− χs

i ‖)dχ := Lφ|χ=χs
i
. (2.20)

However, because the spherical metric (2.18) depends only on the angle between two points,

S2
is homogeneous. As a consequence, Lφ is constant over the sphere. We therefore expect

the left hand side to be a constant, which we denote −Iφ. We require further that ωj sum to

the surface area of S2
, i.e.,

ns

∑
j=1

ωj = 4π. (2.21)

Treating Iφ as an unknown scalar, we rewrite the constraints (2.20) and (2.21) as a symmetric

block linear system for ωj. Let Φ = (φ(‖χs
j − χs

i ‖)), ω = (ωj), 0 be a vector of ns zeros, and

1 be defined similarly with ones. Then[
Φ 1
1T 0

] [
ω
Iφ

]
=

[
0

4π

]
. (2.22)

Iφ serves as a Lagrange multiplier that enforces (2.21), and −Iφ is a good approximation to

Lφ. By choosing φ(r) = r, we guarantee a unique solution with weights that converge at

3
rd

order. It is possible to improve the order of the quadrature weights by increasing the

order of the PHS at the potential cost of poorer conditioning and either loss of invertibility

or requiring knowledge of higher-order moments [33]. For each set of quasiuniform points

on S2
we tested, the system is invertible for φ(r) = r2k+1

for 1 ≤ k ≤ 4, but quality of the

quadrature weights deteriorates with increased number of sample sites or higher-order

PHS, typically becoming unusable around k = 4. When higher-order moments are used to

improve the order, poor conditioning typically causes the approximation to Lφ to become

nonconstant. From quadrature weights and geometric information for the cell surface, we



16

can compute quadrature weights for RBCs and platelets, We complete this calculation in

Section 3.2.4.2.

The methods described in this section are not restricted to the sphere. In Chapter 5,

we simulate the endothelium, which is a topological torus, due to the periodicity of the

domain. Though we do not need geometric information for the force model applied to the

endothelium, the RBF methods above are also applicable to the torus, and therefore the

endothelium. We refer the reader to Appendix B for details. We use a modification of these

methods as part of the simulation initialization process, described in Section 5.2.1.

Fluid solver and surface representations at hand, we need a way to allow the fluid and

cells to interact. We achieve this through the immersed boundary method, which we detail

in the next section.

2.4 The immersed boundary method

To simulate whole blood, we use the immersed boundary (IB) method. The IB method

was developed by Peskin to study the flow of blood around heart valves [40]. It has since

been used to simulate, among numerous others, vibrations in the inner ear [23], the opening

of a porous parachute [36], and sperm motility [26], and has generated numerous related

methods. The use of RBF-based methods to represent immersed structures within the

IB method has been used to simulate flow around an aggregate of platelets, and bears

the moniker RBF-IB [44]. The IB method remains popular for modeling fluid-structure

interaction because of its simplicity. By treating the immersed structures as an extension of

the fluid, an arbitrary parcel in Ω is assumed to behave like a fluid, so its motion is governed

by the incompressible Navier-Stokes equations (2.1) and (2.2), whether the parcel contains

a portion of a membrane or not. This allows for the use of the MAC grid from Section 2.1

without modification. As a further simplification, we will ignore the difference in viscosity

between the plasma and the interior of the blood cells.

Γ is assumed impermeable to the fluid and moves at the local fluid velocity. Analytically,

the fluid velocity can be evaluated at surface point X by integrating u(x, t) against the

translated Dirac delta function, δ(x− X). However, the components of the fluid velocity are

only known at a fixed set of points, and different components at different sets of points. It is

extremely unlikely that X would ever coincide with an Eulerian grid point, and even so,

we could only interpolate one component of the velocity. When discretized, the IB method

replaces the singular Dirac delta function with a smoothed, h-dependent analogue, δh. The
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Lagrangian point X then evolves according to

ea · Ẋ = h3
na

ω

∑
i=1

ea · u(xi)δh(xi − X)

≈
∫

Ω
ea · u(x)δ(x− X)dx,

(2.23)

where i enumerates the points in Ωa
h. Because we discretize each component of u at different

spatial locations, it necessary to consider each component individually, which we write as

a dot product with canonical basis vector ea for a = 1, . . . , d. As a boundary deforms, it

generates a force density F = F(θ, ϕ, t), which it imparts onto the fluid as f in (2.1). By

similar reasoning as the velocity, F is transferred to the fluid at x via

ea · f (x) =
nγ

∑
j=1

∆AjeaF(Xj)δh(x− Xj)

≈
∫

Γ
ea · F(X)δ(x− X)dX,

(2.24)

where j enumerates Lagrangian grid points, and ∆Aj is the integration weight corresponding

to Lagrangian grid point Xj. By evaluating Equation (2.24) at each point in Ωa
h, we can

gather the values of δh(xi − Xj), with Xj the value of X evaluated at the jth data site, into a

spreading matrix, S . The values used in interpolation are similar, but X is now sampled at

sample sites. We denote the interpolation matrix I . Traditionally, forces are spread from,

and velocities interpolated to, the same set of points. This results in adjoint spreading

and interpolation operators and guarantees conservation of energy. The interface points

are heuristically chosen to be within h of one another as a means of preventing leakage

across an interface. We choose the sample sites to satisfy this condition, but fewer data

sites, which still provides a good surface reconstruction [44]. As a result, surface points

corresponding to sample sites may not move at the local fluid velocity, but this alone may

not be problematic [34].

Equations (2.23) and (2.24) are the glue that couple the Eulerian components, (2.1)

and (2.2) to the Lagrangian ones, (2.4). Collectively, these comprise a single step of the

IB method. At time t = nk, we

(a) interpolate un
to Xn

to get Ẋn
,

(b) predict new Lagrangian locations, X∗ = Xn + ∆tẊn
,

(c) compute Lagrangian force densities, Fn+1
,

(d) spread Fn+1
to X∗ to get f n+1

,

(e) solve for fluid velocity un+1
,
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(f) interpolate un+1
to Xn

to get Ẋn+1
, and

(g) update Lagrangian locations, Xn+1 = Xn + ∆tẊn+1
,

with some steps modified or repeated, depending on the timestepping scheme. We have

already described (e) in Section 2.1. The updates (b) and (g) are simple applications of the

axpy routine from BLAS. Chapter 3 bridges the gap between our interpolated surfaces and

the surface forces for (c). Chapter 4 provides parallelization strategies for the remaining

steps. Finally, the pieces are put together to simulate blood in Chapter 5.
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CHAPTER 3

A CONTINUOUS ENERGY-BASED IMMERSED
BOUNDARY METHOD FOR ELASTIC SHELLS

In this chapter, we present a method for computing surface forces for smooth global

interpolants. We use the term continuous energy in the sense that the interpolation scheme

allows us to evaluate surface energy, or a force derived from it, at an arbitrary location on

the surface. In contrast, discrete methods define energy and forces only at fixed locations.

The paper presented in this chapter appears in Journal of Computational Physics 371

(2018) 333–362. It is reprinted with permission from the publisher. Here, we use spherical

harmonics to construct the cell surface representations. These methods are analogous to

those in the previous chapter, where we describe them in the context of RBFs. The additional

details presented here, for analytically computing force densities, surface forces densities,

and surface quadrature weights, are equally applicable to RBF-based surface representations.
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The immersed boundary method is a mathematical formulation and numerical method for 
solving fluid–structure interaction problems. For many biological problems, such as models 
that include the cell membrane, the immersed structure is a two-dimensional infinitely 
thin elastic shell immersed in an incompressible viscous fluid. When the shell is modeled 
as a hyperelastic material, forces can be computed by taking the variational derivative of 
an energy density functional. A new method for computing a continuous force function 
on the entire surface of the shell is presented here. The new method is compared to a 
previous formulation where the surface and energy functional are discretized before forces 
are computed. For the case of Stokes flow, a method for computing quadrature weights is 
provided to ensure the integral of the elastic spread force density remains zero throughout 
a dynamic simulation. Tests on the method are conducted and show that it yields more 
accurate force computations than previous formulations as well as more accurate geometric 
information such as mean curvature. The method is then applied to a model of a red blood 
cell in capillary flow and a 3D model of cellular blebbing.

 2018 Elsevier Inc. All rights reserved.

1. Introduction

The immersed boundary (IB) method was first introduced by Charles Peskin in 1972 to model blood flow around heart 
valves [1]. Since then, it has been applied to a wide variety of biological models, including insect flight [2,3], animal swim-

ming [4], and cellular mechanics [5]. In three-dimensional models, computing the elasticity of an immersed 2D elastic 
membrane or 3D elastic solid as it deforms is more challenging than in 2D because it involves stress tensors. The first 
studies in this area used lattice-spring models of elasticity (e.g. [6]), but these methods are disconnected from a constitutive 
law. The finite element method has also been used to compute the elasticity of immersed structures [7–10], but has not 
been extended to infinitely thin shells. The IB method has been applied to hyperelastic solids or shells whose energies are 
governed by a strain energy density functional [11,12]. However, the surface or solid representation has been assumed to 
be piecewise linear, and the accuracy of force computations with such a method has not been rigorously tested.

The authors showed in [11] that for a hyperelastic solid, forces can be computed without using stress tensors. In this 
work, the derivation was limited to Cartesian coordinates and applied to solids and thick elastic shells. The method was 
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later applied to infinitely thin elastic shells represented in two curvilinear coordinates and was subsequently used to model 
red blood cells [12], osmotic swelling [13], and two-phase gels [14]. However, these models have used a piecewise linear 
boundary representation (surface triangulation) [12] or marker and cell discretization of the surface [14]. Both approaches 
are based on the assumption that curved surfaces are locally planar, which introduces surface discretization error and fails 
to capture the inherent curvature of the surface.

Studies on surface representations have generally been conducted separately from those on force computations. In [15,
16], the authors focus on representing thin surfaces continuously with spherical harmonic or radial basis function (RBF) 
interpolants. In both cases, force computations are treated through simple explicit expressions for surface tension [15] or 
fiber elasticity [16]. The authors do not consider finding forces through variational derivatives.

Boundary integral methods (BIMs) have been progressing concurrently with the IB method and have been used by others 
to model fluid–structure interactions in zero Reynolds number flow [17–20]. In BI methods, the “hydrodynamic traction 
jump” across the membrane [17], which is equivalent to the Lagrangian elastic force density per unit current area [20], 
must be computed independently prior to integration. [21] and [22] both demonstrate the use of a spectrally convergent 
spherical harmonic representation for surfaces that allows for the calculation of force in BIMs. However, the computations 
in [21] and [22] both follow the traditional formulation of BI methods in computing the traction jump from a system of 
equations involving the Cauchy stress tensor, which itself comes from a series of tensor expansions. Additionally, BI methods 
require numerical schemes to resolve integrals that are singular at the immersed surfaces.

The aim of this work is to provide a “bridge” between the fields of surface representation and energy-based force func-
tions within the IB method. Our goal is to use the continuous surface representations from [15] to formulate a continuous 
function that represents the force density on the membrane as a function of its curvilinear coordinates. In this manner, 
we avoid the discretization error from surface representation. The advantages of the approach presented here are that the 
force is computed directly in a single computation, bypassing the need to compute stress tensors at each time step, the 
interpolation of structure velocities in the IB method occurs over a coarser mesh, and the use of the IB method avoids the 
need for numerical methods to compute singular integrals as in BI methods.

Since many biological phenomena occur on the cellular level, the small length scales (microns) lead to very small 
Reynolds numbers (Re ∼ 10−5–10−2). In order to simulate Stokes equations with periodic boundary conditions, the in-
tegral of the force density over the fluid domain must be zero [23]. In [24], the authors proposed a method for ensuring 
this condition is met when tether forces are used in the IB method. For translation invariant hyperelastic materials repre-
sented by continuous functions, the integral condition is satisfied in the continuous formulation [25]. However, extra care 
must be taken to ensure that the discrete integral of the forces in the IB method is zero. Another feature of this work is 
that we provide a method for computing the correct quadrature weights for closed surfaces so that the IB method can be 
used with 3D Stokes flow.

The rest of the paper is organized as follows. In Section 2, we present the mathematical formulation of the immersed 
membrane problem, including our method of computing force densities and correct area quadrature weights to ensure 
that the forces on the fluid integrate to zero in Stokes’ flow. We continue by describing an alternative method based on 
piecewise linear surface discretization, which we use for comparison. In Section 3, we discuss the numerical formulation 
and discretization of the problem and provide implementation details. We conclude by presenting our results in Section 4, 
where we perform force computations and IB simulations on two test objects. In Section 5, we apply our model to two 
different biological processes: a red blood cell flowing through a capillary and a 3D model of cellular blebbing.

2. Mathematical formulation

In this section, we begin by presenting an overview of the model equations and mathematical formulation. We then 
describe how a continuous elastic force density function can be computed on shells using the energy-based formulation. 
We provide a method for computing quadrature weights so that the forces applied to the fluid integrate to zero. We 
compare this to the discretized surface formulation from [12,26] and conclude by presenting the energy functionals used in 
our numerical tests.

2.1. Immersed boundary method formulation

Our model system is an infinitely thin elastic shell immersed in a viscous fluid. For our applications, the shell represents 
the cell membrane. Due to the small length scales on the cellular level, inertial forces can be neglected and the fluid obeys 
Stokes’ equations,

μ�u − ∇p + f = 0, (1)

∇ · u = 0, (2)

where u represents the fluid velocity, p is the pressure, f is an external force, and μ is the fluid viscosity. The model 
is formulated using the IB method so that the thin elastic shell is represented on a moving Lagrangian coordinate system 
while the velocity and pressure are represented on a fixed Eulerian grid. Elastic forces are computed on the Lagrangian grid 
and spread onto the Eulerian grid to construct the external force density. The spreading operator S is defined as

22
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f = SF =
ˆ

Ŵ

F (q, t)δ(x − X(q, t))dq, (3)

where Ŵ represents the Lagrangian structure (shell), q = (q1, q2) represents material surface coordinates, X(q, t) represents 
the position of the structure at time t , and δ(x) represents the Dirac delta function. We use the convention that lower case 
letters indicate quantities on the Eulerian grid and capitalized letters denote quantities on the Lagrangian structure. The 
structure is updated with the local fluid velocity, satisfying the no-slip boundary condition,

dX

dt
= U , (4)

where U is the interpolated fluid velocity. The interpolation operator is the adjoint of the spreading operator in Eq. (3) and 
is given by

U = S∗u =
ˆ

�

u(x, t)δ(x − X(q, t))dx, (5)

where � denotes the fluid domain.

2.2. Computing the elastic forces

We outline two different methods to compute Lagrangian forces analytically based on the assumption that the structure 
is a hyperelastic material characterized by an energy density functional

E =
ˆ

Ŵ0

W dq, (6)

where W is a strain energy density specified by a constitutive law, such as the neo-Hookean model. Exact forms of W
are provided in Section 2.6. The energy-based model for computing Lagrangian forces on an immersed surface was derived 
in [11]. Let the surface Ŵ with undeformed configuration Ŵ0 be defined by Lagrangian coordinates q1 and q2 (qi ’s are the 

parameters). Then the force density per unit reference configuration is related to the variational derivative of energy 
δE
δX

by

F = − δE
δX

(q1,q2, t), (7)

where E is the surface energy and t is time.

The variational derivative is defined as follows. Let φδX (α) = E(X + αδX). Then the variational derivative is the function 
δE
δX

that obeys

dφδX (α)

dα

∣

∣

∣

∣

∣

α=0

=
ˆ

Ŵ0

δE
δX

(q1,q2, t) · δX(q1,q2)dA0. (8)

In [11], this theory was applied to discrete solids in Cartesian coordinates. We extend the theory further to curvilinear 
coordinates on continuous closed surfaces.

In the subsequent sections, we describe two different approaches for computing the force density in Eq. (7). We first 
outline a procedure to find the variational derivative of the continuous energy density functional and follow with a dis-
cussion on computing the proper area weights to obtain force from force density. We next discuss the second method, the 
linear discrete surface method (LDSM) from [12]. The difference between the two methods lies primarily in the fact that 
our formulation relies on a continuous force function whose integral is discretized after forces are computed, whereas in 
LDSM, the surface and energy functional are first discretized. Forces are then computed after the discretized surface energy 
is exactly integrated.

2.3. Computing forces from the variational derivative of the energy functional

Since the surfaces in our applications are topological spheres, we parameterize our surface in terms of spherical coor-
dinates. However, our derivations can be generalized to any coordinate system. We begin by defining a two dimensional 
surface in terms of spatial coordinates q1 = λ and q2 = θ . Let

Z(λ, θ) =

⎛

⎝

X̂(λ, θ)

Ŷ (λ, θ)

Ẑ(λ, θ)

⎞

⎠ and X(λ, θ) =

⎛

⎝

X(λ, θ)

Y (λ, θ)

Z(λ, θ)

⎞

⎠ (9)
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be the reference and current configurations of the surface, respectively, where −π < λ ≤ π and −π/2 < θ ≤ π/2. Here 
X, Z : (λ, θ) �→ R3 , and we have intentionally expressed Eq. (9) in a general form to emphasize that our derivation can be 
applied to any particular choice of X that describes a closed, smooth surface. Define the matrices

∇θX =
(

∂X

∂λ

∂X

∂θ

)

(10)

and

∇θZ =
(

∂ Z

∂λ

∂ Z

∂θ

)

, (11)

where 
∂X

∂λ
is a vector in R3 that represents the component-wise partial λ derivative of X (the other components of ∇θX

and ∇θZ are defined similarly). The matrix ∇θX is the deformation gradient and the rectangular analogue of the square 
matrix F in [11]. We define the metric tensors

G = (∇θX)T(∇θX) =

⎛

⎜

⎜

⎝

∂X

∂λ
· ∂X

∂λ

∂X

∂λ
· ∂X

∂θ

∂X

∂θ
· ∂X

∂λ

∂X

∂θ
· ∂X

∂θ

⎞

⎟

⎟

⎠

(12)

and

G0 = (∇θZ)T(∇θZ) =

⎛

⎜

⎜

⎝

∂ Z

∂λ
· ∂ Z

∂λ

∂ Z

∂λ
· ∂ Z

∂θ

∂ Z

∂θ
· ∂ Z

∂λ

∂ Z

∂θ
· ∂ Z

∂θ

⎞

⎟

⎟

⎠

. (13)

The Green–Lagrange strain energy tensor is defined as

γ = 1

2
(G − G0). (14)

In Cartesian coordinates, the Cauchy–Green deformation tensor is given by C = ATA, where A is the surface displacement 

gradient, A = dX

dZ
[18]. As in [12] we consider a related tensor,

C = GG−1
0 . (15)

In hyperelastic materials, the energy density functional W is defined in terms of two deformation invariants, I1 and I2 , 
where I1 = tr(C) − 2 and I2 = det(C) − 1. As noted in [11,18], the neo-Hookean energy density can be represented as a 
function of the invariants, i.e. W (I1, I2), or as a function of the deformation gradient, ∇θX. The total energy of the surface 
is given by an integral of the energy density

E(X) =
ˆ

Ŵ0

W (I1, I2)dA0 =
ˆ

Ŵ0

W (∇θX)dA0 =
ˆ

Ŵ0

W (∇θX)
√

detG0 dλdθ, (16)

where Ŵ0 is the undeformed shell surface, and the area differential dA0 denotes integration over the reference configuration. 

The final equality comes from the fact that 
√
detG0 = ‖n0‖, where n0=

∂ Z

∂λ
× ∂ Z

∂θ
is the normal (not necessarily a unit 

vector) to the surface in the reference configuration, as shown in [12]. We note that the factor 
√
detG0 is a function of the 

coordinates λ and θ , but not of the current configuration X or its deformation gradient ∇θX.

In order to compute the Lagrangian force density Eq. (7), consider a deformation by δX . Evaluating Eq. (8), we have

φδX (α) = E(X + αδX) =
ˆ

Ŵ0

W (∇θ (X + αδX))
√

detG0 dλdθ. (17)

To compute the variational derivative, we follow the derivation from [11] and first apply the chain rule for ∇θX (note that 
the area weight 

√
detG0 is unaffected),

dφδX (α)

dα

∣

∣

∣

∣

∣

α=0

=
3

∑

i=1

2
∑

j=1

ˆ

Ŵ0

∂W

∂(∇θX)i j

∂ δXi

∂q j

√

detG0 dλdθ. (18)
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The index i describes the Cartesian coordinates (indexed from 1 to 3), and the index j describes the curvilinear coordinates 
λ and θ (indexed from 1 to 2). We note that the first Piola–Kirchhoff stress tensor is

P = ∂W

∂(∇θX)
. (19)

Applying integration by parts on each of the coordinates λ and θ , we have

dφδX (α)

dα

∣

∣

∣

∣

∣

α=0

= −
3

∑

i=1

2
∑

j=1

ˆ

Ŵ0

∂(Pi j

√
detG0)

∂q j

δXi dλdθ. (20)

The boundary terms evaluate to zero under the assumption that the surface is closed. We obtain an area integral by multi-

plying and dividing by 
√
detG0 ,

dφδX (α)

dα

∣

∣

∣

∣

∣

α=0

= −
3

∑

i=1

2
∑

j=1

ˆ

Ŵ0

1√
detG0

∂(Pi j

√
detG0)

∂q j

δXi dA0. (21)

Using the surface divergence operator in the undeformed state

∇θ · = 1√
detG0

(

∂

∂λ

√

detG0 e1 + ∂

∂θ

√

detG0 e2

)

· , (22)

we can write the variational derivative from Eq. (7) as

δE
δX

= −∇θ ·PT. (23)

The above notation differs from [11] and instead follows [27]; it relies on a traditional tensor expansion in which P is 
written in terms of base dyads as 

∑

i, j

Pi jeie j . As shown in Appendix A, using ∇θ from Eq. (22) and carrying out the dot 

product via tensor expansion in Eq. (23) yields the product in Eq. (21). The force density per unit undeformed configuration 
in Eq. (7) is then

F = − δE
δX

= ∇θ ·PT. (24)

We point out the analogy with [11], where the surface divergence operator in Cartesian coordinates has been replaced by the 
curvilinear surface divergence. Although we have obtained a representation for the force, it is in practice quite cumbersome 

to compute P = ∂W

∂(∇θX)
by directly differentiating the energy density (however, it is possible for some simple forms of W ). 

We therefore expand the matrix PT using the chain rule with the Green–Lagrange strain tensor, γ , as an intermediate:

PT = ∂W

∂(∇θX)T
= ∂W

∂γ
: ∂γ

∂(∇θX)T
, (25)

where the double dot product : arises from the product of a fourth order tensor 
∂γ

∂(∇θX)T
and second order tensor 

∂W

∂γ
to 

form the second order tensor PT (see Appendix A for a detailed expansion). We denote the symmetric second order tensor 
∂W

∂γ
= S , where S is the second Piola–Kirchhoff stress tensor [20]. We show in Appendix A that

PT = ∂W

∂(∇θX)T
= ∂W

∂γ
: ∂γ

∂(∇θX)T
= S : ∂γ

∂(∇θX)T
= S · (∇θX)T. (26)

By the symmetry of γ (and S), the transpose of both sides in Eq. (26) yields

P = (∇θX) · ST = (∇θX) · S. (27)

In Eq. (27), we recover the correspondence between the first and second Piola–Kirchhoff stress tensors [28].
To compute the tensor S in terms of the coordinates λ and θ , we begin by observing that in Eq. (15), C = I2 + 2γG−1

0 , 
where I2 is the rank 2 identity tensor. Applying the chain rule and differentiating C directly with respect to γ yields

S = ∂W

∂γ
= ∂W

∂C : ∂C
∂γ

= 2
∂W

∂C · G−1
0 . (28)

25
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Computing 
∂W

∂C by the chain rule, we have

∂W

∂C = ∂W

∂ I1

∂ I1

∂C + ∂W

∂ I2

∂ I2

∂C , (29)

where each 
∂ I j

∂C is a second order tensor obtained from taking the derivative of each invariant I j with respect to each 

element of C . We show in Appendix A that

∂ I1

∂C = I2 (30)

and

∂ I2

∂C = (detC)
(

G−1G0

)

. (31)

Substituting Eqs. (30) and (31) into Eqs. (28) and (29),

S = 2
∂W

∂C · G−1
0 = 2

(

∂W

∂ I1

∂ I1

∂C + ∂W

∂ I2

∂ I2

∂C

)

· G−1
0 , (32)

S = 2

(

∂W

∂ I1
I2 + ∂W

∂ I2
(detC)

(

G−1G0

)

)

· G−1
0 , (33)

S = 2
∂W

∂ I1
G−1
0 + 2

∂W

∂ I2
(detC)G−1. (34)

Since the constitutive law is often expressed in terms of the invariants I1 and I2 , this formulation allows us to find F with 
respect to λ and θ using Eq. (27).

Returning to the computation of force density as F = ∇θ ·PT from Eq. (24), we apply the surface divergence operator in 
the undeformed state in Eq. (22). Then the force density can be expressed as

F = 1√
detG0

(

∂

∂λ

√

detG0

(

S11
∂X

∂λ
+ S12

∂X

∂θ

)

+ ∂

∂θ

√

detG0

(

S21
∂X

∂λ
+ S22

∂X

∂θ

))

. (35)

Further details are located in Appendix A. It is also possible to arrive at Eq. (35) by expanding the tensor P in Eq. (18) prior 
to integrating by parts.

2.4. From force density to force

The method developed in Section 2.3 allows us to find the force density per unit reference configuration at any point X . 
However, because the IB method requires the force to be spread onto the fluid, it remains to compute the area weights as-
sociated with each point on the surface. While some applications do not require precise area weights, discretized structures
in Stokes flow must have the correct area weights so that the discretized integral of force over the surface is zero. Because 
Eq. (35) is a translation invariant force density function, it can be shown [25] that its integral is zero in the continuous 
sense. The discretization of the force integral must preserve this property for structures immersed in Stokes flow. In our 
formulation, this condition becomes one on the surface quadrature weights. If accurate surface quadrature weights can be 
computed, the force density will integrate to zero discretely (within some quadrature error); the reason is that the integral 
of the force generated by a translation invariant hyperelastic energy over a closed surface is known to be zero [25].

Let n be the number of points at which the force is evaluated and consider the discretized integral of the force over the 
reference configuration

ˆ

Ŵ0

F dA0 ≈
n

∑

i=1

F (X i) (�A0)i . (36)

The factors (�A0)i are the appropriate area weights. Our goal is to determine the vector of area weights �A0 = �A0(Z)

(of length n) such that the integral in Eq. (36) is as close to exact as possible; that is, we are computing quadrature weights 
for integration over the undeformed configuration. Since the integral is over the reference configuration, the weights �A0

only need to be computed once for the undeformed shape. In our applications, the undeformed shape is usually a sphere 
of radius 1, but the method we outline here can be used to compute the area weights in any reference configuration.
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2.4.1. Weights on a sphere of radius 1
Beginning with the unit sphere S2 , we use a method from [29] to compute nonnegative weights �A0 . Note that the 

nonnegativity constraint is necessary due to the physics of the problem; the force and force densities should point in the 
same directions, so the area weights should be nonnegative.

Let n be the number of points at which the force function from Section 2.3 is evaluated (we refer to these as evaluation 
points.) Following [29], we compute nonnegative quadrature weights (�A0)i such that

ˆ

S2

f (X)dA0 =
n

∑

i=1

f (X i)(�A0)i (37)

is exact for all functions, f ∈ 
N = span
{

Y k
ℓ : ℓ = 0,1, . . .N,k = −ℓ, . . . ,0, . . . ℓ

}

. Here 
N is the (N +1)2 dimensional space 
of spherical harmonics up to degree N , defined as

Y k
ℓ (λ, θ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

(2ℓ + 1)

4π

(ℓ − k)!
(ℓ + k)! P

k
ℓ(sin θ) cos(kλ) k ≥ 0

√

(2ℓ + 1)

4π

(ℓ + k)!
(ℓ − k)! P

−k
ℓ (sin θ) sin(−kλ) k < 0,

(38)

where Pk
ℓ is an associated Legendre function of degree ℓ and order k. Let f (X) = f (λ, θ) = Y 0

0 (λ, θ)Y k
ℓ (λ, θ). Then to satisfy 

Eq. (37),

ˆ

S2

f (X)dx =
¨

S2

Y 0
0 (λ, θ)Y k

ℓ (λ, θ)dA0 (39)

=
n

∑

i=1

Y 0
0 (λi, θi)Y

k
ℓ (λi, θi)(�A0)i (40)

= 1√
4π

n
∑

i=1

Y k
ℓ (λi, θi)(�A0)i . (41)

The last equality is due to the fact that Y 0
0 = 1√

4π
. Since spherical harmonics form an orthonormal set,

ˆ

S2

f (X)dx =
¨

S2

Y 0
0 (λ, θ)Y k

ℓ (λ, θ)dA0 =
{

1 ℓ = 0

0 ℓ 
= 0.
(42)

Equating Eqs. (41) and (42), we have that

n
∑

i=1

Y k
ℓ (λi, θi)(�A0)i =

{√
4π ℓ = 0

0 ℓ 
= 0.
(43)

Let the matrix

Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Y 0
0 (λ1, θ1) Y 0

1 (λ1, θ1) Y−1
1 (λ1, θ1) Y 1

1 (λ1, θ1) . . .

Y 0
0 (λ2, θ2) Y 0

1 (λ2, θ2) Y−1
1 (λ2, θ2) Y 1

1 (λ2, θ2) . . .

...
...

...
...

...

Y 0
0 (λn, θn) Y 0

1 (λn, θn) Y−1
1 (λn, θn) Y 1

1 (λn, θn) . . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈Cn×(N+1)2 . (44)

Then in Eq. (43) we seek the nonnegative least squares solution to

Y∗
�A0 =

√
4πe1, (45)

where e1 = (1 0 . . . 0)T is an (N + 1)2 dimensional vector. The nonnegative least squares solution for �A0 gives the 
area weights for Eq. (37).

To solve Eq. (45) for �A0 , we use the available implementation from [30] to obtain the nonnegative area weights �A0

for a unit sphere. Although any point set can be used in Eq. (45), we let n = (N + 1)2 and choose evaluation points that 
maximize the determinant of the Gram matrix YY∗ . For these “maximal determinant” (MD) points, which are discussed in 
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[31,32] and can be downloaded from [33], it has been conjectured that the quadrature weights satisfying the equality in 
Eq. (45) exist and are positive for all N [32].

Choosing weights that satisfy Eq. (45) ensures that the integral in Eq. (37) is exact for functions in 
N , the space of 
spherical harmonics up to degree N . However, the calculated weights can still be used to integrate any function on the 
sphere. In fact, the force function in Eq. (35) is not necessarily in 
N since it involves derivatives of arbitrary position 
functions. A quadrature error is therefore introduced. In [32], it is shown that the quadrature error, ǫ , in a certain Hilbert 
space is bounded by

ǫ ≤
√
4π

(N + 1)1/2
=

√
4π

n1/4
, (46)

where the last equality holds only in the case that n = (N + 1)2 . For MD points, the measured worst case error is much 
better; it is O(n−3/4) (see [32], Table 2). Our observations in Section 4.1 confirm this, as the actual quadrature error in 
integrating the force function was found to be several orders of magnitude lower than the theoretical bound, even for a 
highly irregular shape.

2.4.2. Weights on an arbitrary reference configuration
We use the formulation from [34] to determine the quadrature weights on an arbitrary configuration. Let L denote a 

space diffeomorphic to S2 , and let ZS2 (λ, θ) and ZL(λ, θ) be the mappings from Eq. (9) that describe ( X̂, Ŷ , Ẑ) from (λ, θ)

on each space. Then, as shown in [34], the surface elements for each configuration are given by

dAL =
√

det (G0 (ZL))dλdθ (47)

and

dAS2 =
√

det
(

G0

(

ZS2
))

dλdθ, (48)

where G0 is evaluated for each surface according to Eq. (13). From Eqs. (47) and (48), it is clear that

dAL =
√

det (G0 (ZL))

det
(

G0

(

ZS2
)) dAS2 . (49)

Thus the analogous integral to Eq. (36) is

ˆ

L

f (X)dAL =
ˆ

S2

f (X)

√

det (G0 (ZL))

det
(

G0

(

ZS2
)) dAS2 =

n
∑

i=1

f (X i)

√

det (G0 (ZL))

det
(

G0

(

ZS2
)) (�A0)i . (50)

According to Eq. (50), the weights for the arbitrary reference configuration are given by

�AL =
√

det (G0 (ZL))

det
(

G0

(

ZS2
))�AS2 . (51)

For example, if the reference configuration is a sphere of radius r, then det (G0 (ZL)) = r4 det
(

G0

(

ZS2
))

, so �AL = r2�AS2 , 
as expected since the surface area of a sphere scales by r2 .

With the area weights from Eq. (51), we have finally found the force, F̂ at point i from the force density F as a function 
of position in (λ, θ),

F̂ i(λ, θ) = F i(λ, θ)(�A0)i . (52)

2.5. The linear discrete surface method (LDSM)

In LDSM (first introduced in [26]), the surface of the shell is triangulated and the integral for energy is discretized as 
such. Consider an energy functional from Eq. (6) of the form

E =
ˆ

Ŵ0

W (I1, I2)dA0. (53)

The above integral can be discretized into a sum over the surface triangles as follows,

E =
∑

tri

ˆ

tri

W (I1, I2)dA0. (54)
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LDSM uses barycentric coordinates (γ1, γ2, γ3) to represent a deformed triangle t with vertices X1, X2, X3 in the deformed 
configuration that corresponds to a reference triangle s with vertices Z1, Z2, Z3 in the undeformed configuration. Any point 
within the triangle can be written as

X = γ1X
1 + γ2X

2 + γ3X
3 (55)

and

Z = γ1Z
1 + γ2Z

2 + γ3Z
3, (56)

where γ1 + γ2 + γ3 = 1 and γ1, γ2, γ3 ≥ 0. Using the relation γ3 = 1 − γ1 − γ2 , the surface can be represented in terms 
of two material coordinates (note that, for γ3 ≥ 0 to be satisfied, γ1 ≤ 1 − γ2). As in the continuous case, we define the 
matrices

∇qX =
(

∂X

∂γ1

∂X

∂γ2

)

=
(

X1 − X3 X2 − X3
)

(57)

and

∇qZ =
(

∂ Z

∂γ1

∂ Z

∂γ2

)

=
(

Z1 − Z3 Z2 − Z3
)

. (58)

Denote X i − X j = X i j (and likewise for Z ). Then we can again define the metric tensors

G = (∇qX)T(∇qX) =
(

X13 · X13 X13 · X23

X23 · X13 X23 · X23

)

(59)

and

G0 = (∇qZ)T(∇qZ) =
(

Z13 · Z13 Z13 · Z23

Z23 · Z13 Z23 · Z23

)

. (60)

The tensors G and G0 are constant on any triangle t or s. Therefore, the tensor C = GG−1
0 and its invariants I1 and I2 are 

constant on t and s. Thus any energy density functional defined in terms of the invariants is also constant on t and s and 
can be defined in terms of the vertices X1, X2, X3, Z1, Z2, and Z3 . Denote the energy density of a triangle as W (t, s) (it is 
a function of the deformed triangle t and undeformed triangle s). The discretized energy is then

E =
∑

tri

ˆ

s

W (I1, I2)dA0 =
∑

tri

ˆ

s

W (t, s)(detG0)
1/2 dγ1 dγ2. (61)

Note that the integration is carried out over the reference triangle s and that dA0 = (detG0)
1/2 dγ1 dγ2 since (detG0)

1/2 is 
the magnitude of the normal to the reference triangle [12]. Evaluating the integral, we have

E =
∑

tri

W (t, s)(detG0)
1/2

ˆ

s

dγ2 dγ1, (62)

E =
∑

tri

W (t, s)(detG0)
1/2

1
ˆ

0

1−γ1
ˆ

0

dγ2 dγ1, (63)

E = 1

2

∑

tri

W (t, s)(detG0)
1/2. (64)

From the above equation, note that �A0(s) =
1

2
(detG0)

1/2 , which is expected a priori since it is simply the formula for the 

area of the reference triangle s. Since the energy functional has already been integrated, the area weights at each point have 
already been accounted for, and the force (not force density), F̂ , at a point X i due to triangle t can be computed by taking 
the derivative of the energy with respect to that point,

F̂ i(t) = − ∂E
∂X i

(t) = − ∂

∂X i

(

1

2
W (t, s)(detG0)

1/2

)

. (65)
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The force at each point is then the sum of the force contributions from each triangle that includes the point, i.e.

F̂ i

(

X i
)

=
∑

t∋X i

− ∂E
∂X i

(t) =
∑

t∋X i

− ∂

∂X i

(

1

2
W (t, s)(detG0)

1/2

)

. (66)

It can be shown using vector calculus that the sum of the forces over the points in LDSM is zero. The force in Eq. (66)
therefore satisfies the discrete integral constraint for Stokes flow. The force density per unit undeformed area is computed 
by dividing the force at each point by its associated area weight in the undeformed configuration. The area weight at point 
i in LDSM is given by 1/3 of the sum of the reference triangle areas that include point i. That is,

�(AL0)i =
1

3

∑

s∋Z i

(detG0(s))
1/2. (67)

Further details are located in [12].

2.6. Energy functionals

In this section, we describe energy functionals for neo-Hookean energy, surface tension, and bending (or curvature) 
energy.

2.6.1. Neo-Hookean energy
We follow Evans & Skalak’s formulation for the neo-Hookean energy density [35] (for other possible neo-Hookean con-

stitutive laws, see [18]). In terms of the invariants,

WNH = Gs

(

I1 + 2

2
√

I2 + 1
− 1+ A

2

(

I2 + 2− 2
√

I2 + 1
)

)

(68)

= Gs

(

trC
2(detC)1/2

− 1+ A

2

(

detC + 1− 2(detC)1/2
)

)

(69)

= Gs

(

trC
2(detC)1/2

− 1+ A

2

(

(detC)1/2 − 1
)2

)

(70)

= K

2

(

(detC)1/2 − 1
)2

+ Gs

2

(

trC
(detC)1/2

− 2

)

, (71)

where K = AGs is the area dilation modulus and Gs is the shear modulus. Eq. (71) gives the form used in [12]. We take 
derivatives of Eq. (68) with respect to I1 and I2 to find the tensors P , S , and force density F in Eq. (35).

2.6.2. Surface energy
The most common representation of “surface energy” is EST = σ

´

dA, where dA is the area element in the current
configuration and σ is the surface tension (with units of force/length) of the surface. For both the variational force density 
method and LDSM, dA = (detG)1/2 dλ dθ , but this must be expressed with respect to the integral over the reference area to 
satisfy our method. Therefore we use Eq. (50) and [34] to write

EST =
ˆ

Ŵ

σ dA =
ˆ

Ŵ0

σ

(

detG
detG0

)1/2

dA0 =
ˆ

Ŵ0

σ (detC)1/2 dA0. (72)

We can then express the surface energy in the form of Eq. (16) with W ST = σ (detC)1/2 = σ (I2 + 1)1/2 . Derivatives of this 
density with respect to I1 and I2 can easily be calculated to evaluate the first and second Piola–Kirchhoff stress tensors P , 
S and force density F in Eq. (35).

The variational derivative can be carried out over the current configuration as well to yield force density per unit de-
formed area [15,36,37]. When this formulation, which is related directly to the mean curvature of the surface, is used, a 
transformation must be made to express the force per unit reference area.

F ST
cur dA = σ (2H) n̂dA = σ (2H) n̂

(

detG
detG0

)1/2

dA0. (73)

The force per unit undeformed configuration then is,

F ST = σ (2H) n̂

(

detG
detG0

)1/2

, (74)
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where n̂ is the unit normal vector in the current configuration,

n̂ =
∂X

∂λ
× ∂X

∂θ
∥

∥

∥

∥

∂X

∂λ
× ∂X

∂θ

∥

∥

∥

∥

. (75)

H is the mean curvature (one half the total curvature, or the average of the two principle curvatures) given by the formula

H = eG − 2 f F + gE

2(EG − F 2)
, (76)

where E , F , and G are coefficients of the first fundamental form

E = ∂X

∂λ
· ∂X

∂λ
F = ∂X

∂λ
· ∂X

∂θ
G = ∂X

∂θ
· ∂X

∂θ
, (77)

and e, f , and g are coefficients of the second fundamental form,

e = ∂2X

∂λ2
· n̂ f = ∂2X

∂λ∂θ
· n̂ g = ∂2X

∂θ2
· n̂. (78)

It can be shown using elementary vector calculus that Eq. (74) is equivalent to Eq. (35) when W ST = σ (I2 + 1)1/2 is used. 
We emphasize that for this simple case, we were able to take a surface energy given over the current configuration and 
transform it so we could integrate over the reference configuration and apply our method.

More complex energy functionals given over the current configuration are not as easily transformed. In these cases, 
differential geometry can be used to find the variational derivatives and force per unit deformed area. These expressions 
can then be transformed to the undeformed configuration by multiplying by the ratio of area weights as in Eq. (74). Bending 
energy is an example of such an energy functional and is described in the next section.

2.6.3. Bending energy
In this section, we describe the variational formulation of forces due to bending. It is worth noting that piecewise linear 

representations of the surface (such as LDSM) must use a method different from that of Section 2.5, where the energy 
is evaluated on each triangle, to compute forces due to bending. This is because bending energies are directly related to 
curvature, and in a piecewise linear surface representation the triangles have zero curvature. In the case of [12], the method 
used to compute forces due to bending does not ensure that the bending force integrates to zero (despite the bending 
energy being translation invariant), and therefore cannot be used in the context of Stokes flow. Our method allows for the 
true bending energy functional to be used because we can properly resolve the curvature of the surface. In addition, the use 
of the correct quadrature weights ensures that the bending force integrates to zero over the fluid domain.

Interestingly, variational principles have been used to derive forces due to bending rigidity for quite some time, with one 
early example from [38]. These previous studies addressed the problem of determining the equilibrium shape of membranes 
experiencing bending forces by setting the force density equal to zero. The derivation of the force density due to bending 
begins with the energy functional

Ebend = kbend

ˆ

Ŵ

(2H)2 dA, (79)

where kbend is the bending rigidity and the energy is an integral of the total curvature (2H) over the deformed configuration. 
The variational approach calls for the energy functional to be written in the form

δEbend =
ˆ

Ŵ

−F BR
cur · δX dA. (80)

As shown in [36,39], arguments from differential geometry can be used to write the force density per unit deformed 
configuration as

F BR
cur = −kbend

(

4∇2
s H + 8H3 − 4HR

)

n̂, (81)

where H is the mean curvature defined according to Eq. (76), n̂ is the unit normal defined in Eq. (75), and ∇2
s is the surface 

Laplacian in the deformed state, defined as

∇2
s =

2
∑

i=1

2
∑

j=1

1√
detG

∂

∂qi

(

√

detG G−1
i j

∂

∂q j

)

. (82)
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Finally, R is the scalar curvature, or twice the Gaussian curvature, defined as

R = 2det

(

G−1

(

e f

f g

))

, (83)

where the fundamental forms e, f , and g are defined in Eq. (78). In a similar manner to that of Eq. (74), Eq. (81) can be 
written per unit undeformed area as

F BR = −kbend

(

detG
detG0

)1/2
(

4∇2
s H + 8H3 − 4HR

)

n̂, (84)

which gives the force due to bending per unit undeformed area.

3. Numerical formulation

In this section, we describe the discretization of the surface and fluid grids. We then describe the fluid solver and 
temporal update for dynamic simulations.

3.1. Lagrangian surface and force discretization

For the variational force density method, some mapping must be chosen for X in Eq. (9). Our method allows any 
mapping that defines a closed surface to be used, including interpolants composed of Lagrange, spherical harmonic, or 
radial basis functions. We choose to use a spherical harmonic interpolant for the maps X , Y , and Z in Eq. (9) (the reference 
configuration Z is generally taken to be the unit sphere unless otherwise specified). Each interpolant is computed in the 
same manner and is also described in [15]. Suppose we have a set of m = (M + 1)2 points in (x, y, z) space. Then we use a 
spherical harmonic interpolant of order M to approximate the function X(λ, θ) in Eq. (9). For example,

X(λ, θ) =
M

∑

ℓ=0

⎛

⎝

−1
∑

k=−ℓ

cxℓ,kY
k
ℓ (λ, θ) +

ℓ
∑

k=0

cxℓ,kY
k
ℓ (λ, θ)

⎞

⎠ , (85)

where the spherical harmonics are as defined in Eq. (38) and the other interpolants Y , Z , X̂ , Ŷ , and Ẑ are defined similarly. 
In [15], it is shown that Eq. (85) corresponds to a linear system

Ycx =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Y 0
0 (λ1, θ1) Y 0

1 (λ1, θ1) Y−1
1 (λ1, θ1) Y 1

1 (λ1, θ1) . . .

Y 0
0 (λ2, θ2) Y 0

1 (λ2, θ2) Y−1
1 (λ2, θ2) Y 1

1 (λ2, θ2) . . .

...
...

...
...

...

Y 0
0 (λm, θm) Y 0

1 (λm, θm) Y−1
1 (λm, θm) Y 1

1 (λm, θm) . . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

cx1

cx2

...

cxm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

X1

X2

...

Xm

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (86)

where m = (M+1)2 exactly and X1, X2, . . . , Xm are the x coordinates of the first, second, and mth points, respectively. Since 
the coordinates of the interpolation points are constant throughout the algorithm, the LU factorization of the matrix Y in 
Eq. (86) can be precomputed at the start of the algorithm. Then at each timestep, O(m2) flops are required to solve Eq. (86).

For the variational force density method, we follow [15] and define the m points in (x, y, z) space that are used to 
construct the interpolant as interpolation points. Note that there are typically much fewer interpolation points than evalua-
tion points (m ≪ n). Because the matrix in Eq. (86) must be invertible, we use the maximal determinant points mentioned 
previously (downloaded from [33]) that maximize the determinant of the Gram matrix YY∗ . See [31] for more details on 
choosing points on a sphere for interpolation.

The interpolant from Eq. (85) is the map X(λ, θ) in Eq. (9), and given a reference configuration Z(λ, θ) we proceed in 
computing force densities from the variational method in Eq. (35) at a different set of n maximal determinant evaluation 
points. We find the spherical coordinates of the evaluation points and use the function X to map them to our deformed 
configuration, where we evaluate the forces using Eq. (35) with the area weights from Eq. (45). The calculation of the forces 
in Eq. (35) requires the derivatives of X at each of the evaluation points. In practice, this is accomplished by multiplying 

matrices of spherical harmonic derivatives (e.g. 
∂Y

∂λ
, where the derivatives are taken on each element) by the vector of 

function weights (c j ). Each derivative is thus a matrix-vector multiplication problem and requires O(mn) operations, al-

though this could easily be parallelized to reduce computational time. Once the derivatives are computed, O(n) operations 
are required to compute the forces in Eq. (35) from the derivative values (this step could also easily be done in parallel). 
The leading order term in the flop count for the force calculation in our method is therefore O(mn).

In LDSM, the force is computed directly at each of the evaluation points using Eq. (66) with the triangles from the 
surface discretization. Since the force is computed triangle by triangle and there are approximately 2n triangles, the entire 
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force calculation for LDSM is O(n). We perform timing tests in Section 4.2 to compare the computational costs of our 
method with LDSM in practice.

Each of the weights (�A0)i in Eq. (45) is computed for the n evaluation points and multiplied by its respective force 
density to get a total force at each of the evaluation points. Since the continuous force density representation is exact for 
a given position function X , the only errors introduced are in representing the surface by a continuously differentiable 
spherical harmonic interpolant and in using a quadrature rule to integrate the continuous force density function. A detailed 
study of the errors associated with a spherical harmonic representation can be found in [15]. An analytic estimate for the 
quadrature error is located in [32]. We also analyze the error in force computations and compare it to the error in LDSM in 
Section 4.1.

3.2. Eulerian discretization

The fluid domain is discretized on a periodic three dimensional domain [−L, L] × [−L, L] × [−L, L] with mesh spacing 
�x = �y = �z = 2L/η, where η is the grid size. We use a spectral fluid solver to compute the pressure and velocity at each 
time step in O(η3 logη3) operations [40]. The evaluation points are chosen so that approximately two Lagrangian points lie 
within an Eulerian cube of dimension �x3 .

3.3. Time update

We outline the time stepping procedure for the variational derivative method first. Given a set of m interpolation points 
and n evaluation points on the reference configuration, and the map Z(λ, θ) in Eq. (9), the area weights �A0 in Eq. (45), 
and matrix Y in Eq. (86) (and its LU factorization) are precomputed. Then at the kth time step,

1. The m interpolation points in the current configuration (xi, yi, zi) are used to solve Eq. (86) for the map X (O(m2)

operations).

2. The computed maps X and Z are used to find the force densities in Eq. (35) at each of the n evaluation points (O(mn)

operations).

3. The forces are spread onto the Eulerian grid using the discrete delta function from [25] with the area weights from 
Eq. (45) that ensure the spread force integrates to zero (O(43n) operations because we are using a 4 point discrete 
delta function).

4. The Stokes equations are solved on the Eulerian grid (O(η3 logη3) operations).

5. The fluid velocity is interpolated back to the structure at the m interpolation points (O(43m) operations).

6. The interpolation points are updated with the local fluid velocity,

Xk+1
i

= Xk
i + �t U k+1, (87)

where U k+1 indicates the interpolated fluid velocity from step 5 (O(m) operations).

In LDSM, we work with only the set of n evaluation points. We begin with a triangulated surface and use the locations 
of the points in the current and reference configurations to compute the forces, then proceed with steps 3–6 as above, 
with the exception being that the structure velocity is computed at the same n points where the force was evaluated. The 
interpolation of the velocity in LDSM therefore requires O(43n) operations instead of O(43m), and the forward Euler update 
is O(n) in LDSM instead of O(m) in our method. If m ≪ n, our method results in fewer operations in steps 5 and 6.

4. Results

In this section we test the accuracy of LDSM and the spherical harmonic/variational derivative (SHVD) approaches in 
the context of both force computations and dynamic immersed boundary simulations. We first consider the accuracy of the 
force computation on an ellipsoid and perturbed ellipsoid and proceed with dynamic simulations on each surface.

4.1. Accuracy of force computations

We consider the accuracy of surface tension and neo-Hookean forces on two surfaces given by

Ellipsoid: X =

⎛

⎜

⎝

a cosλ cos θ

b sinλ cos θ

c sin θ

⎞

⎟

⎠
(88)
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Fig. 1. The shapes for study. 529 evaluation points are shown. The distribution of other sets of evaluation points is similar.

and

“Perturbed ellipsoid”: X = V f

⎛

⎜

⎜

⎜

⎝

a

(

1+ B

5
exp(− sin θ)

)

cosλ cos θ

b (1+ B exp(− sin θ)) sinλ cos θ

c (1+ B exp(− sin θ)) sin θ

⎞

⎟

⎟

⎟

⎠

. (89)

We use parameters a = 1.1, and b = c = 1√
1.1

in Eq. (88) and a = 0.1, b = c = 0.2, and B = 0.25 in Eq. (89). In both cases, 

the reference configuration is the unit sphere, Z = (cosλ cos θ, sinλ cos θ, sin θ), and the parameter V f in Eq. (89) is set so 
that the volume of the perturbed ellipsoid is the same as that of the unit sphere (in our case, V f ≈ 5.14). For simplicity, 
we also let σ = K = A = Gs = 1 in the force and energy functionals in Eqs. (68) and (74). The shapes are shown in Fig. 1
along with the positions of the set of 529 evaluation points (sets with a higher number of evaluation points are similarly 
distributed).

We fix a number of evaluation points so that the quadrature error given by the weights in Eq. (45) is on the order 10−5

or less. The quadrature error is measured by the value of the discrete force integral since the exact integral of the translation 
invariant continuous force function evaluates to zero. We then compute the exact solution for the neo-Hookean or surface 
tension force densities at the n evaluation points using Eq. (35) to take the variational derivative of the exact mappings X
from Eqs. (88) or (89).

Next, we construct a spherical harmonic interpolant for the surface of the form in Eq. (85) using some number m of 
interpolation points. We then use this interpolant to compute the force densities in Eq. (35). We multiply both the exact 
force density and the force density from SHVD by the weights in Eq. (45) to get a force. In this way, we isolate the error 
from representing the surface with a spherical harmonic interpolant. Finally, we compute the LDSM forces by evaluating 
Eq. (66) with the triangle vertex locations given by Eq. (88) or (89).

We denote the exact force (not force density) as F̂ E , the force from SHVD as F̂ S and the force from LDSM as F̂ L . We 
quantify the error between the models via the discrete ℓ∞ norm. The norm of the errors from SHVD and LDSM, denoted by 
E S and E L , respectively, are given by

‖E S‖∞ = max
i

∥

∥

∥
F̂ S − F̂ E

∥

∥

∥

∞
(90)

and

‖EL‖∞ = max
i

∥

∥

∥
F̂ L − F̂ E

∥

∥

∥

∞
. (91)

The error in force is computed as the maximum over the n evaluation points, where i is the index that runs from 1 to n. 
In all convergence plots, we plot the error vs. 

√
m or 

√
n. Since (dA0)i ≈ 4π/n, the number of points is proportional to the 

square of the length scale. We plot convergence in the length scale by taking the square root of the number of points.
Because the same area weights are used for the calculation of F̂ E and F̂ S , the measured error in Eq. (90) is independent 

of the quadrature weights. Since LDSM uses different area weights, the measured error in Eq. (91) is affected by both the 
quadrature error in F̂ E and the discretization error in the LDSM force calculation. We define F̂ E to be the exact solution if 
the quadrature error (i.e. the distance of the force integral from zero) is negligible relative to the LDSM surface discretization 
error. We only consider surfaces where the quadrature error is O(10−5) or less. In our numerical tests, the LDSM error 
graphed in Figs. 2 and 3(a) is larger than this value so that quadrature error is negligible.

Fig. 2 shows the errors in Eqs. (90) and (91) for the forces on the ellipsoid as a function of the number of evaluation 
points, for n = 529, 2025, 4624, and 8281. We note that for an ellipsoid in Eq. (88), the spherical harmonic interpolant 
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Fig. 2. Errors in surface tension and neo-Hookean forces on an ellipsoid. ‖EL‖, the ℓ∞ error in LDSM forces, is shown for the cases of 529, 2025, 4624, 
and 8281 points along with a power-law fit of the data. Because the spherical harmonic interpolant from Eq. (85) is exact for an ellipsoid, forces computed 
from SHVD are exact and ‖E S‖ = 0.

Fig. 3. Errors in forces for the perturbed ellipsoid (Eq. (89)) for the two models. The discrete ℓ∞ norms of EL and Es given by Eqs. (91) and (90) are 
graphed. In (a), the error ‖EL‖ is plotted against the number of evaluation points n for both surface tension (blue circles) and neo-Hookean (red squares) 
forces. In (b), the error in SHVD ‖E S‖ is plotted against the number of interpolation points m for both surface tension (blue squares) and neo-Hookean 
(red diamonds) forces. We observe spectral convergence in the number of interpolation points m. Forces computed with SHVD with as few as m = 81

interpolation points are several orders of magnitude more accurate than those computed from LDSM with n = 8281 evaluation points. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

with as little as 4 interpolation points gives the same mapping as Eq. (88). Therefore, the forces from SHVD are exact for 
an ellipsoid and are not included in Fig. 2. Consequently, we show in Fig. 2 only the errors in LDSM as a function of the 
number of evaluation points for both surface tension and neo-Hookean forces. A piecewise planar representation of a surface 
converges to a smooth surface with second order accuracy, so we expect at most second order accurate LDSM forces. We 
observe a second order convergence rate in the forces with respect to the length dimension (see power function fit of data 
in Fig. 2). We observe a similar convergence rate for computing surface tension on a sphere with LDSM (data not shown).

Our study of the perturbed ellipsoid shows that forces from SHVD converge to the exact solution with spectral accuracy 
in contrast to LDSM. Fig. 3 shows the errors in surface tension and neo-Hookean forces for LDSM with varying numbers 
of evaluation points n (Fig. 3(a)) and SHVD with varying numbers of interpolation points m (Fig. 3(b)). A convergence rate 
between first and second order is observed for LDSM. In contrast, the force from SHVD converges spectrally as the number 
of interpolation points m increases regardless of the number of evaluation points n [15]. The force estimate from SHVD is 
orders of magnitude smaller than LDSM when m ≥ 81. This stems from the fact that SHVD relies on a continuous surface 
representation, and is therefore able to effectively capture the geometrical information of the surface necessary to accurately 
compute forces.

We comment that the error in forces from SHVD is from both interpolation error and aliasing, a well known phenomenon 
in which coefficients of higher order spherical harmonics are folded into lower order coefficients computed in Eq. (86) [41]. 
Here the analytical expressions for force are often not in the space of spherical harmonics of degree at most N , which makes 
them subject to aliasing error. Previous studies, among them [21,22], have accounted for this via upsampling of points for 
force calculations. We take a different approach by increasing the number of interpolation points until the error becomes 
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Fig. 4. Maximum displacement over time for dynamic simulations of the test objects. The displacement is the maximum displacement from the center of 
mass minus the radius in the reference configuration. Despite the inaccuracy of LDSM in computing the forces, the full IB simulation gives similar results 
to one that uses SHVD for force computations.

close to machine epsilon. Fig. 3(b) shows the error in the force calculation for the perturbed ellipse to be on the order 
10−15 with 225 interpolation points used.

4.2. Dynamic test

We next perform full immersed boundary simulations on the test objects in Eqs. (88) and (89) with parameters a =
1.2, b = c = 1/

√
1.2, B = 0.25, V f ≈ 5.14, and σ = K = A = Gs = 1. Each object relaxes to its equilibrium configuration over 

time (in this case, the unit sphere). The relaxation timescale is dictated by the values of elastic moduli and the viscosity 
of the fluid, which we set to μ = 1 for simplicity. We use 8281 evaluation points (n = 8281) for both objects and 225 
interpolation points in the SHVD model (m = 225). From Fig. 2, this corresponds to an initial error in forces on the order 
of 10−3 for LDSM and 10−15 (machine epsilon) for SHVD. We use a total force that is the sum of surface tension and 
neo-Hookean forces (i.e. F̂ T O T = F̂ NH + F̂ ST ). The Eulerian grid runs from a = −2 to b = 2 in the x, y, and z directions 
with a grid size of η = 32 (32 Eulerian points in each direction). For each object, we track the maximum or minimum 
displacement from the center of mass as a function of time. Fig. 4 shows that, despite the large difference in accuracy 
between LDSM and SHVD force computations, both models give similar results for displacement over time due to the first 
order time update and the discrete delta function in the spreading and interpolation operators.

We study the convergence of each method by examining the state of the ellipsoid in Eq. (88) and Fig. 1(a) at t =
3 seconds. The initial surface configuration is the ellipsoid with a = 1.2, and b = c = 1/

√
1.2. We consider a fixed Eulerian 

grid of size η3 Eulerian points. We then choose a Lagrangian grid with n ≈ 2η2 points. We let �t = 1/(2η) and measure 
the change in distance, denoted dmax , of the rightmost point (the point with largest x coordinate) minus the center of mass 
(i.e. it is the amount the rightmost point has moved in the x direction after 3 seconds after subtracting the center of mass). 
The error is the difference in dmax with respect to a grid for the same method that is 1.5 times as refined. For example, the 
error value for a 32 point LDSM grid is the change in x-displacement of the rightmost point from the center of mass on the 
32 point grid minus the corresponding value on a 48 point grid, both using LDSM.

We consider grid sizes η, of 32, 48, and 64 corresponding to n = 2025, 4624, and 8281 evaluation points. For SHVD, 
we hold the number of interpolation points m constant at 64. Fig. 5 shows the results of the convergence test for the 
different grid sizes. Both methods display at least first order convergence in space and time. This is expected for the IB 
method, which as discussed in [42,43], is limited to first order accuracy in the case of an infinitely thin elastic membrane. 
We comment on this further in Section 6.

In addition to studying the convergence of each method under these circumstances, we also compare the computational 
costs. In a similar procedure to the convergence tests, we track the ratio of SHVD to LDSM execution times (i.e. time for 
SHVD / time for LDSM) for a 15 second ellipsoidal contraction with the same parameters as the convergence study. Table 1

summarizes the results. For m two or more orders of magnitude less than n, the wall clock time of our method is within 
20% of LDSM. Observe that for larger m values, the O(mn) operations in our method’s force computation increase the 
computational time farther beyond that of LDSM. We will see in Sections 5.1 and 5.2 how this behavior impacts the use of 
the model in our applications. For m ≪ n (the scenario under which our method is intended for use), the algorithms have 
comparable execution times.

5. Applications

In this section, we consider two different applications involving cellular dynamics: red blood cells in capillary flow and 
a model of bleb expansion. The former application involves large and smooth deformations of the entire cell surface due 
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Fig. 5. Convergence tests on a dynamic simulation of an ellipsoid for both LDSM and SHVD. The error is measured as the change in displacement of the 
point with largest x coordinate relative to the center of mass, dmax . The error is the difference in dmax with respect to a grid 1.5 times as refined. Lines 
show power law function fits to the data which demonstrate the approximately first order accuracy of both methods.

Table 1

Ratio of computational times for 15 second ellipsoidal contraction.

η n t-ratio for m = 64 t-ratio for m = 225

32 2025 1.15 1.73

48 4624 1.08 1.46

64 8281 0.99 1.30

72 10404 1.00 1.32

to the background flow in a narrow tube. The membrane deformation in the model of cellular blebbing occurs because of 
a discontinuous applied force on a small region of the membrane surface. For both models, we compare simulation results 
from our method to LDSM. The results from the model simulations highlight the versatility of our approach.

5.1. Red blood cells in capillary flow

Red blood cells (RBCs) passing through microcapillaries is a well-studied biophysical problem that is important for un-
derstanding the rheological properties of both large and micro scale blood flow as well as transport via blood flow [44]. 
It has been observed experimentally that RBCs, which are nearly incompressible, deform into parachute-like shapes when 
flowing through capillaries, with the leading, or front, edge protruding under the influence of Poiseuille flow within the cap-
illary [45]. For smaller tube diameters, it has been shown that RBCs align themselves in a single file configuration [45]. Our 
approach is therefore to model a single RBC flowing through a long capillary with SHVD. Because the velocity and length-
scales are small, the Reynolds number for flow in the microcirculation is on the order < 10−2 , and the Stokes equations, 
Eqs. (1)–(2), govern the flow profile. We also simplify the problem by assuming the viscosity of the internal hemoglobin 
solution to be equal to that of the surrounding plasma [44].

5.1.1. Model of the RBC and capillary
The reference configuration of a red blood cell that we use is taken from [46]. Let (xs, ys, zs) = (cosλ cos θ, sinλ cos θ,

sin θ) denote the mapping from (λ, θ) → R3 for the unit sphere. The RBC reference configuration is given by

ZRBC = RRBC

⎛

⎜

⎜

⎝

1

2
xs

(

0.21+ 2
(

y2s + z2s

)

− 1.12
(

y2s + z2s

)2
)

ys

zs

⎞

⎟

⎟

⎠

. (92)

The mean radius of the RBC is RRBC = 3.91 µm [44]. Elastic forces on the RBC come from resistance to stretching, shear, 
and bending. We use the neo-Hookean energy functional in Eq. (68) with Gs = 2.5 ×10−3 dyn/cm = 2.5 pN/µm and A = 50

to model resistance to shear and stretching. As discussed in [12,44], A is a computational parameter that is used to enforce 
the incompressibility of the RBC membrane while ensuring stability at large enough timesteps. [12] reported using A in 
the range from 8 to 400, and we found our value of A = 50 to give area deformations less than 1%. The derivatives of the 
reference configuration required for the neo-Hookean force calculation in Eq. (35) are computed analytically from the ZRBC

mapping. In addition, the area weights required to integrate the force over the RBC reference configuration are given by 
Eq. (51), where ZL = ZRBC . For bending, we use the energy functional in Eq. (79) with a typical value kbend = 1 ×10−12 erg 
= 0.1 pN·µm.
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The capillary is modeled as a thin elastic cylindrical membrane of radius 5 µm that is discretized and tethered in place. 
Letting Z cap and Xcap be the reference and deformed configurations of the capillary, the Lagrangian force on a capillary 
node is given by

F̂ teth(q) = −kteth
(

Xcap(q) − Z cap(q)
)

, (93)

where q refers to the Lagrangian coordinate of the node and kteth = 2.45 × 10−3 dyn/cm = 2.45 pN/µm. As discussed in 
[24], tether force functions such as Eq. (93) are not translation invariant, and are thus not guaranteed to integrate to zero 
in the discrete sense. Because the solution of the Stokes equations, Eqs. (1)–(2), on a periodic domain is non-unique, a 
constant velocity uc(t) can be added to the structure velocities obtained from interpolation at each time step. Referring 
to Section 3.3, the time-stepping procedure is modified so that in the sixth step, the cylinder boundary is updated to an 
intermediate position

X̂
k+1

cap = Xk
cap + �t U k+1. (94)

Then X̂
k+1

cap is used to calculate a constant velocity that is added throughout the entire domain (also to the interpolated 
velocity of the RBC) to ensure that the tether forces sum to zero at the next time step. The constant velocity is given by

uc(t) = 1

Acap�t

ˆ

cap

(

Z cap(q) − X̂
k+1

cap (q)
)

dq, (95)

where Acap is the (lateral) surface area of the capillary. A derivation of Eq. (95) can be found in [24]. The positions of the 

Lagrangian structures (capillary and RBC) are then updated by Xk+1 = X̂
k+1 +uc(t)�t to ensure the tether forces in Eq. (93)

integrate to zero at the next time step.
A background force of 0.08 pN/µm3 = 8.0 × 103 dyn/cm3 is specified inside the capillary to establish a parabolic flow 

profile as in [12]. Given the viscosity of blood plasma as 1.2 cP = 1.2 ×10−3 pN·s/µm2 , the resulting maximum flow velocity 
is 750 µm/s inside the capillary as in [12,45]. We impose a uniform force in the opposite direction outside of the capillary 
to ensure the integral of the background force over the Eulerian grid is zero. We use a 24 µm × 24 µm × 24 µm fluid grid. 
The long axis of the capillary is the x-axis, and the capillary runs from x = −8 to x = 8 µm. We center the cell at (−8, 0, 0)
initially and simulate its deformation until it reaches a steady state shape (around t = 0.05 s = 500�t).

5.1.2. Results
As discussed in Section 2.6.3, there is no standard way to model bending energy in LDSM because the piecewise linear 

triangles have zero curvature. In addition, the bending force model from [12] is not guaranteed to integrate to zero in 
the discrete sense, meaning it cannot be used in a zero Reynolds number regime with periodic boundary conditions. Thus 
in order to fairly compare our model to LDSM, we begin by examining the case of kbend = 0. For all simulations, we use 
n = 8281 evaluation points and vary the number of interpolation points m in our method.

Fig. 6 shows the deformation of the RBC from its biconcave initial shape into the parachute-like shapes observed in 
experimental capillary flow [45] for LDSM (top), and SHVD with m = 625 (middle) and m = 400 (bottom). We refer 
to the shape at t = 0.05 as the steady state shape of the RBC because it does not change significantly after this time 
value. While the steady state shapes are similar, a closer look reveals bumps in the RBCs modeled with LDSM and SHVD 
with m = 625. We take these asymmetric bumps to be non-physical, numerical error since the imposed flow and cylin-
der are symmetric. These bumps are distinct from the larger wavelength, axisymmetric, wrinkles observed in all of our 
simulations that exclude bending rigidity. We note that wrinkles have been observed in previous studies of shear flow 
at low bending rigidities [12,47]. When the number of interpolation points is greater than 625, we observe even more 
bumps on the cell (data not shown), indicating instability due to higher frequency modes in the interpolant. For the re-
mainder of this section, we take m = 400 to obtain smooth surfaces similar to previous computational studies of RBCs 
[12,22].

Fig. 7 shows a comparison of the magnitude of the RBC elastic forces from simulations using LDSM and SHVD at t = 0.05. 
Although the overall accuracy in space and time of both methods is first order (see Section 4.2), the forces are much 
smoother with SHVD. Additionally, the magnitude of the forces is much larger in computations with LDSM than SHVD at 
the back end of the cell when its shape changes from concave to convex (and the mean curvature changes sign). The side 
views of the steady state shape (middle, Fig. 7) show wrinkles that occur in shapes from both simulations when the bending 
forces are excluded.

Surface bumps and wrinkles of the RBC are visible in Fig. 7 when kbend = 0. Fig. 8 shows a head-on (facing the cell) 
view of the steady state cell shapes (at t = 0.05) for different values of bending rigidity. When kbend = 0, the mean cur-
vature H (defined in Eq. (76)) oscillates between positive and negative because of the wrinkling (Fig. 8, kbend = 0). When 
kbend = 0.1 pN·µm, surface wrinkles are significantly reduced, the curvature remains negative on the top face, and a smooth 
parachute shape is obtained. We note this is the same value of kbend used in [12]. The curvature remains negative on the 
top face when kbend = 1.
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Fig. 6. The cell membrane and capillary at several time values using LDSM (top) and SHVD with m = 625 (middle) and m = 400 (bottom) interpolation 
points. All methods used n = 8281 evaluation points.

Fig. 7. Magnitude of the elastic forces on the cell at the front, side, and back views of the cell at t = 0.05 from simulations with LDSM (top) and SHVD with 
m = 400 interpolation points (bottom). n = 8281 evaluations points were used for both simulations.

At steady state, the front of cells with higher bending rigidities more closely resembles a sphere. We quantify this by 
examining the variability in mean curvature on the front edge of the cell as a function of the bending rigidity in Fig. 8. It 
can be seen that as kbend increases from 0 to 1 pN·µm, the front of the cell more closely resembles a sphere with uniform 
curvature, as is expected for large bending rigidities. We note the smoothness of the curvature values in our method, which 
clearly shows the trend towards a more spherical shape for larger bending rigidities.

The bending rigidity is defined as the cell’s resistance to being bent from a spherical shape with uniform curvature. 
Fig. 9 shows a slice of the RBC and capillary through the plane y = 0 at several time points during a simulation. The cell’s 
deformation decreases as the value of bending rigidity increases. In particular, we observe that a cell with no bending 
rigidity initially deforms to become pinched at its center, then flat, and then curved. Meanwhile, the front edge of the 
cell maintains more uniform mean curvature throughout the simulation when kbend = 1 pN·µm than with smaller values 
of kbend .

5.2. Model of cellular blebbing

Blebs are round membrane protrusions that some cells use during migration [48]. Blebbing occurs when a thin layer 
of the cytoskeleton called the cortex delaminates from the cell membrane, where it is normally attached via linker (ERM) 
proteins [49]. Cells that bleb are usually under high cortical tension due to myosin molecular motors pulling actin filaments 
with respect to each other [50], a process referred to as actomyosin contractility. High actomyosin contractility within the 
cortex leads to high intracellular pressure (on the order of 10 Pa). When high intracellular pressure occurs along with a 
localized defect in the cortex or loss of membrane–cortex adhesion proteins, the membrane separates from the cortex, and 
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Fig. 8. Mean curvature of the cell viewed from the front for increasing values of kbend . The cell was simulated with SHVD (m = 400 interpolation and 
n = 8281 evaluation points).

Fig. 9. Cross section of the cell and capillary tube through the plane y = 0 at several time values (t = 0.005, 0.025, and 0.05 from left to right) for when 
kbend = 0 (left), 0.1 (middle), and 1 (right) pN·µm. The cell was simulated with SHVD (m = 400 interpolation and n = 8281 evaluation points).

cytoplasmic flow leads to bleb expansion. Hence, blebbing is a discontinuous deformation of a localized part of the cell in 
contrast to the global deformation of an RBC in a microcapillary.

Several mathematical models of cellular blebbing have been developed to understand the interactions between the 
cytoskeleton, cell membrane, and adhesion proteins. These models typically make simplifying assumptions, such as the 
system being in steady state [50,51], or are limited to two spatial dimensions [52,53]. In this section, we present a three-
dimensional extension of the model from [52] as a first step towards understanding both the dynamics and geometry of 
these cellular protrusions. Our goal here is to present a dynamic 3D model of cellular blebbing where membrane forces are 
computed using both LDSM and SHVD. We compare bleb expansion dynamics and cell shapes generated by these methods. 
We also describe a modification to the existing method from [12,54] for computing mean curvature when using LDSM.

5.2.1. Mathematical model

Our mathematical model consists of the membrane, cortex, membrane–cortex adhesion, and intracellular fluid (see 
Fig. 10). The intracellular fluid represents the cytosol, the liquid part of the cytoplasm. The membrane is modeled as an 
impermeable elastic shell that experiences forces due to surface tension and stretching. The cortex is modeled as a perme-

able elastic structure, and membrane–cortex adhesion is modeled by elastic springs connecting the membrane to the cortex. 
The cytosol is modeled as a viscous incompressible fluid governed by the fluid equations

μ�u − ∇p + f mem
elastic + f

mem/cortex
adh

+ f cortexdrag = 0 (96)

∇ · u = 0,

where the f i ’s denote spread Lagrangian force densities due to membrane elasticity, membrane–cortex adhesion, and cor-
tical drag. The drag force on the cortex is balanced by elastic forces within the cortex and adhesion to the membrane so 
that

F cortex
drag + F cortex

elastic + F
cortex/mem
adh

= 0. (97)

The drag force density on the fluid is related to the cortex drag force density by

f cortexdrag = −SF cortex
drag , (98)

where S denotes the spreading operator from Eq. (3).
Forces due to membrane elasticity are computed by either LDSM or SHVD with surface tension and neo-Hookean energy 

densities. The cortex is modeled by a different approach, similar to the lattice-spring model described in [5]. Specifically, 
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Fig. 10. Bleb model schematic as a slice of the cell through the xz-plane. A bleb is initiated by removing adhesive links in a small region at the top of the 
cell.

the cortex is treated as a collection of elastic springs, where the force at the ith point is computed by

F i dAi =
∑

j

kcortexi j

(

∥

∥

∥
Xcortex

i
− Xcortex

j

∥

∥

∥

dℓi j

)

Xcortex
i

− Xcortex
j

∥

∥

∥
Xcortex

i
− Xcortex

j

∥

∥

∥

, (99)

where dAi is the reference area differential, dℓi j is the reference length of the spring connecting the ith point to the jth 
point on the surface, and j is the index of all points connected to the ith point. Note the area weights are the same as 
those from LDSM in Eq. (67). The spring coefficient connecting the ith point to the jth point is calculated as

kcortexi j = 8ki j

3dℓi j

(

dAi + dA j

2

)

, (100)

as in the lattice-spring model from [5]. This particular model of the cortex was used so that cortical ablation experiments 
could easily be performed by setting kcortexi j = 0 in a localized region. We plan to explore this mechanism of bleb initiation 
in a future publication.

Membrane–cortex adhesion is modeled by elastic springs attaching the membrane to the cortex with a force density 
given by

F
mem/cortex
adh

= k
mem/cortex
adh

(

‖Xmem − Xcortex‖
) Xmem − Xcortex

‖Xmem − Xcortex‖
. (101)

The membrane–cortex adhesion stiffness coefficient kcortex/mem
adh

was chosen so that the velocity of the cortex is zero if no 
bleb is initiated. The adhesion force density on the membrane is the opposite of the corresponding force density on the 
cortex, with the proper scaling to ensure that the two forces balance,

ˆ

�

SF
mem/cortex
adhesion

dx+
ˆ

�

SF
cortex/mem
adhesion

dx = 0. (102)

Given the stiffness coefficient kcortex/mem
adh

, the corresponding stiffness coefficient for the cortex is obtained by kmem/cortex
adh

=
k
cortex/mem
adh

dAcortex
i

/dAmem
i

, where dAi represents the area differential in reference coordinates. For the membrane, these dAi

values are given by Eq. (45) for SHVD and Eq. (67) for LDSM.

Given a configuration of the membrane and cortex, the Lagrangian force densities are computed, and the velocities of 
the fluid and cortex are obtained by solving Eqs. (96) and (97). The positions of the membrane and cortex are then updated 
with their respective velocities,

dXmem

dt
= S∗u = U , (103)

dXcortex

dt
= 1

ξ

(

F cortex
elastic + F

cortex/mem
attach

)

+ U = U cortex, (104)

where ξ is the drag coefficient of the cortex. A bleb is initiated by removing adhesive links between the membrane and 
cortex in a small region given by the equation φ ≤ 2π/25 in spherical coordinates (see Fig. 10). Model parameters values 
are provided in Table 2.

The model is simulated on a box with volume 303 µm3 and �x = �y = �z = 30/32. The membrane and cortex are 
initialized to be spheres centered at the point (15, 15, 15) with 4761 Lagrangian points, corresponding to approximately 
2 Lagrangian points per Eulerian grid cube. For the SHVD model, we compute all solutions with 4761 evaluation points 
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Table 2

Parameters for the blebbing model.

Symbol Quantity Value Source

rmem Cell radius 10 µm [50]

rcortex Cortex radius 9.99 µm [53]

γmem Membrane surface tension 40 pN/µm [50]

κE Membrane bulk modulus 40 pN/µm [53]

μE Membrane shear modulus 40 pN/µm [53]

kcortex Cortical stiffness coefficient (average value) 87 pN/µm2

k
mem/cortex
adh

Membrane/cortex adhesion 3 · 104 pN/µm3

stiffness coefficient

μ Cytosolic viscosity 1 Pa-s [49,50,55]

ξ Cortical drag coefficient 10 pN-s/µm3 [52]

Fig. 11. Slices through the cell membrane by the yz plane when x = 15 at several time values. The black line denotes the membrane position computed by 
LDSM, and the blue dashed line indicates the membrane position computed by SHVD with 1024 interpolation points and 4761 evaluation points.

Fig. 12. The bleb ring is defined by the boundary between the region where adhesive links connect the membrane to the cortex and the region where the 
links are removed, indicated by the gray ring in (a). The membrane shell is graphed in green in (a). Bleb diameter is found by finding the point on the 
bleb ring that is closest to the point (0, 0, 30) and the point directly across from it. A top town view of the cell and bleb ring is shown in (b) with the two 
points that define the bleb’s diameter. The dashed black line indicates the membrane and the solid gray circle indicates the bleb ring. The distance from 
the midpoint of the bleb diameter (indicated by × in the top-down view) to the point with the largest z-coordinate value, as indicated by the blue point 
in (a), minus its initial value defines bleb size.

and vary the number of interpolation points to be 625, 1024, and 4761. The lattice spring model on the cortex results in 
large spurious velocities at the beginning of the simulation. Before initiating a bleb, we allow the forces in the model to 
equilibrate, meaning the velocity on the boundary decreases to approximately 0.01 µm/s. This process corresponds to 0.2 s 
of simulation time. Results are reported in time units after equilibration.

5.2.2. Model results
Pressure is initially uniform inside the cell. When adhesive links between the membrane and cortex are removed, cortical 

tension is no longer transmitted to the membrane locally, resulting in a pressure gradient and bleb expansion. Fig. 11 shows 
cross sections of the cell membrane as a bleb expands using both LSDM and SHVD with 1024 interpolation points. The cross 
sections show that the models have good agreement with each other.

In order to obtain a localized measurement of bleb size, we compute the bleb ring as the one dimensional boundary 
between the region where the membrane is attached to the cortex and the region where the membrane is detached from 
it (see Fig. 12). Bleb diameter is measured as the distance from the point closest to the z-axis to the point farthest away 
from it on the bleb ring. The midpoint of this line is computed, and bleb size is defined to be the vertical distance from 
the midpoint of the bleb diameter line to the point on the bleb with the largest z-coordinate (blue point in Fig. 12(a)) after 
subtracting the initial value. Note that this is a 3D extension of the method described in [53].

Bleb size over time when membrane forces are computed by LDSM and with several different values of interpolation 
points in SHVD is shown in Fig. 13. The data show very similar bleb expansion dynamics and steady state bleb size for 
all simulations. We observe that the bleb size increases as the bleb neck is better resolved with a larger number of 
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Fig. 13. Bleb size over time when the membrane position is computed by LDSM (black line) and by SHVD with various numbers of interpolation points and 
4761 evaluation points.

Fig. 14. Membrane volume over time when SHVD is used for the membrane with 625, 1024, and 4761 interpolation points. Data from the membrane 
modeled with LSDM are shown in black for comparison. The graph on the right is a zoomed in view of the same data from the left.

interpolation points. Once we reach m = n = 4761 (red triangles in Fig. 13), each evaluation is updated explicitly with the 
local fluid velocity. In this case (when m = n), the difference between our method and LDSM is due only to the method of 
computing forces.

Bleb volume over time is shown in Fig. 14, where percentage relative volume difference is defined as (V (t) −
V (0))/V (0) × 100, where V (t) is the volume of the membrane at time t . Results from LDSM and SHVD with 1024 and 
4761 interpolation points show good agreement. Volume actually increases over time with the SHVD model using 625 in-
terpolation points. Because of the sharp transition from a region with membrane–cortex adhesion to one without adhesion, 
a large number of interpolation points is needed to resolve the region near the bleb neck.

Notably, the number of overall interpolation points required to resolve the bleb neck, which is a highly localized region 
of deformation, is higher than the number of points required to resolve the deformed RBC in Section 5.1 because the points 
overall must be evenly spread over the cell to yield an accurate interpolant. Hence more points must be added throughout 
the cell, not just in the localized region, in order to increase resolution of the bleb neck. Unlike our RBC application, adding 
points up to the limit m = n actually stabilizes the steady state membrane shapes. We believe this is because most of the 
membrane remains still while tethered to the cortex. Both of these factors (the lack of motion from a background flow and 
the tether forces on the membrane) prevent higher order modes from distorting the membrane shape.

Membrane mean curvature after bleb expansion (at t = 15 s) is shown in Fig. 15 for the same data from Figs. 13 and 
14. In order to compute curvature for LDSM, we follow the method described in [12,54], where curvature is computed 
on edges and vertices of surface triangles. This method results in curvatures that are always positive. In order to obtain 
signed mean curvature, we post-process the surface to compute its convex hull. Curvature values at points on the convex 
part of the surface are assigned to be negative while the rest of the curvature values (on the concave part of the surface) 
maintain their positive sign. In SHVD with 625 interpolation points, the bleb appears more broad which indicates it is not 
well-resolved. The membrane is effectively smoothed out if not enough interpolation points are used, and volume slightly 
increases. The membrane appears more dimpled in SHVD with 625 interpolation points compared to data from the other 
simulations. This can be partially attributed to the adhesion model, where membrane evaluation points are connected to 
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Fig. 15. Membrane mean curvature after bleb expansion at t = 10 s when the membrane is modeled using SHVD with (a) 625, (b) 1024, and (c) 4761 
interpolation points. Mean curvature from LSDM with 4761 points is shown in (d).

points on the cortex. Since membrane evaluation points are not explicitly updated with the fluid velocity, adhesion forces 
are slightly perturbed when compared to model results from Fig. 15 (c) and (d), where the interpolation and evaluation 
points are updated with the local fluid velocity (although some dimpling is present even in Fig. 15 (c) and (d) due to 
membrane–cortex adhesion). The bleb appears to be well-resolved in SHVD with 1024 interpolation points with a smooth 
membrane. Membrane curvature from LSDM appears discontinuous and noisy when compared to simulation data from 
SHVD. We emphasize that SHVD more accurately computes curvature than LDSM given the ability of the spherical harmonic 
interpolant to capture the membrane shape.

The results from this section show that cell shape and bleb expansion dynamics are qualitatively similar when the 
membrane is modeled by LDSM and SHVD. If accurate geometric information, such as membrane curvature, is desired 
from a simulation, SHVD should be used for computing membrane forces. In [52], the authors used a 2D dynamic model 
to determine the role of cortical drag and cytoplasmic viscosity on bleb expansion dynamics. We find that for obtaining 
dynamic information such as bleb expansion time, LDSM is sufficiently accurate. In the next section, we comment on the 
computational cost associated with SHVD when compared to LDSM.

6. Discussion

We show that by representing surfaces with spherical harmonic interpolants, force densities can be computed more ac-
curately as continuous functions by taking the variational derivative of an energy density functional than by discretizing 
the surface first into piecewise planar elements. Furthermore, geometric information such as curvature is more accurately 
computed with the continuous representation. We presented tests and applications for zero Reynolds number flow, but it 
is straightforward to extend our method to fluid–structure interaction problems where the fluid is governed by the Navier–
Stokes equations. This is an advantage of our method compared to boundary integral methods that employ variational 
methods for computing forces, in that ours can also be used when modeling red blood cells in intermediate Reynolds 
number flows, for example [12].

A limitation of our method, as with all IB methods, is its overall first order accuracy in space because the regularized 
delta function used in the spreading operator does not accurately capture discontinuities in the pressure and derivatives 
of the velocity across the infinitely thin interfaces. Immersed interface methods [56] have been proposed to improve the 
accuracy of the IB method. These “IM methods” depend on quantifying the jump conditions at the interface, which are 
functions of geometric information, Lagrangian forces, and their derivatives [57]. The order of the method depends in part 
on how accurately these two quantities are computed. Because our method is spectrally accurate in both, a future goal of 
ours is to implement it in an IM framework, thereby increasing the overall accuracy of the method.

We also provide a method that ensures the integral of the Lagrangian force density is equal to the integral of the spread 
force density. This allows us to apply our method to models of structures immersed in Stokes flow, a regime that is prevalent 
across most cellular-level applications. We do note that our formulation relies on the structure being a closed surface.
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Our method is applied to models of red blood cells in capillary flow and cellular blebbing. We have intentionally chosen 
two applications with very different dynamics and behavior in order to showcase the versatility of our method and highlight 
its strengths and limitations. In the RBC model, we see a smooth change in the entire surface over time. This allows us to 
resolve the shape with O(100) interpolation points. Lower numbers of interpolation points do not resolve the shape well 
enough, and higher numbers lead to numerical instabilities as higher frequency modes amplify non-physical bumps and 
noise on the cell surface.

Meanwhile, cellular blebbing involves a discontinuous change in a small region of the cell due to a discontinuity in 
the membrane–cortex adhesion force density. In our present formulation, the points must be evenly distributed to build 
a reliable interpolant and a large number of points must be used on the entire cell to accurately resolve the bleb neck. 
Therefore it is necessary to choose m (number of interpolation points) and n (number of evaluation points) to be on the 
same order of magnitude. We found that measuring volume of the membrane over time is an indicator of surface resolution; 
if membrane volume increases during a simulation, the surface is likely under-resolved and more interpolation points are 
needed. We hypothesize that the physical linkage of the membrane to the cortex stabilizes the higher frequency modes in 
the spherical harmonic interpolant, and numerical instabilities from a large number of interpolation points are not observed 
in this model.

The restriction m ≪ n is for computational efficiency; our method is most efficient if the O(mn) cost of computing the 
forces is comparable to the O(n) cost in LDSM. This is the case for the RBC model, where the surface is well-resolved 
with O(100) interpolation points and the computational time of our method is of the same order of magnitude as LDSM 
(approximately 1 minute). However, to simulate the blebbing model, m must be much larger, and the computational time 
to compute the forces increases significantly. A simulation of bleb expansion took approximately 10 hours with SHVD 
compared to approximately 1 hour for LDSM. While our model is versatile enough to be applied across a wide variety of 
applications, this additional cost should be taken into account.

We plan to use these principles to guide our future work. For example, our method would be well-suited for simulating 
a model of cytokinesis, the division of the cytoplasm when one cell divides into two cells [58]. During cytokinesis, the 
entire membrane deforms, and our method allows the force density to be computed at any point on the surface. Models 
of microtubule attachment to the cortex during spindle positioning will benefit from knowing the elastic force exactly at 
the points where the microtubules attach to the cortex. The noisy force data from LDSM could lead to inaccurate results. 
Finally, some models assume that spontaneous membrane curvature initializes furrow ingression during cytokinesis [59]. Our 
framework provides an accurate method for computing curvature in a dynamic 3D model of the early stages of cytokinesis.

Other future work includes extending our framework to include adaptive meshing by adding interpolation points when 
the surface shape undergoes large local deformations and surface features become unresolved. This capability, along with 
finding a more efficient way to compute the force densities (e.g. in parallel), could make our method more suitable for use 
with the blebbing model and allow us to investigate different bleb initiation mechanisms using our method. The formulation 
we have outlined can be applied to other interpolating basis functions, including radial basis functions. Because spherical 
harmonic basis functions were able to provide exact force calculations for very smooth (spherical) shapes, our method was 
computationally advantageous when it was applied to shapes resembling spheres. We anticipate that accuracy for arbitrary 
shapes (including blebbing cells) could be achieved by shifting the basis functions according to the application. We plan to 
investigate these topics in future publications.
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Appendix A. Derivation of force density, F

Here we derive in detail the force density in Eq. (35) from the variational derivative of the energy density functional. We 
make use of dyad expansions of tensors (eie j denotes the ith row and jth column of the given tensor) and the definitions 
of the dot and double dot products (ei · e j = 1 if i = j and 0 otherwise, eie j : ekep = 1 if j = k and i = p and 0 otherwise).

A.1. Dyad expansion of P allows us to recover Eq. (21) from Eq. (23)

We begin with showing the equivalence of Eq. (21) and Eq. (23). In Eq. (21), the variational derivative is given by

δE
δX

= −
3

∑

i=1

2
∑

j=1

1√
detG0

∂(Pi j

√
detG0)

∂q j

. (A.1)
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Considering the product in Eq. (23),

−∇θ ·PT = − 1√
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Eq. (A.4) is the same expression as that derived from the variational derivative definition in Eq. (21),

δE
δX

= −∇θ ·PT. (A.5)

A.2. Chain rule expansion of PT

We here prove Eq. (26),

PT = ∂W

∂(∇θX)T
= ∂W

∂γ
: ∂γ

∂(∇θX)T
= S : ∂γ

∂(∇θX)T
= S · (∇θX)T. (A.6)

We begin with the double dot product 
∂W

∂γ
: ∂γ

∂(∇θX)T
. Recall from Eq. (14) that γ is the Green–Lagrange strain energy 

tensor, given by 
1

2
(G − G0). Because γ is symmetric, the tensor 

∂W

∂γ
= S (the second Piola–Kirchhoff stress tensor) is also 

symmetric, and its dyad expansion is

∂W

∂γ
= S = S11e1e1 + S12e1e2 + S21e2e1 + S22e2e2. (A.7)

Now, consider the fourth order tensor 
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Expanding entrywise,
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Eq. (A.9) allows us to easily compute derivatives with respect to the entries of (∇θX)T . For example,
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and
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The full expansion is
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emepekeℓ. (A.12)

Recall that eie j : emep = 1 if j =m and i = p and is 0 otherwise. This reduces the (k, ℓ) entry of Eq. (A.12) to
(

S : ∂γ

∂(∇θX)T

)

kℓ

=
∑

i, j

Si j

(

∂γ

∂(∇θX)T

)

jikℓ

, (A.13)

or in matrix form,

S : ∂γ

∂(∇θX)T
= (A.14)

⎛
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2
S21
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1
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1
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∂ X3
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+ 1

2
S21

∂ X3

∂λ
+ S22

∂ X3

∂θ

⎞

⎟

⎟

⎟

⎠

.

By the symmetry of S , we have

S : ∂γ

∂(∇θX)T
=

⎛

⎜

⎜
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⎟
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. (A.15)

From the dot product,

S · (∇θX)T = (S11e1e1 + S12e1e2 + S21e2e1 + S22e2e2) ·
(

∂ X1

∂λ
e1e1 + ∂ X2

∂λ
e1e2 + ∂ X3
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(A.16)

=

⎛
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(A.17)

= S : ∂γ

∂(∇θX)T
, (A.18)

so that we recover Eq. (26).

A.3. Chain rule expansion of S

As observed in Eq. (28), the second Piola–Kirchhoff stress tensor S can be computed by observing that C = I2 + 2γG−1
0 , 

where I2 is the rank 2 identity tensor. Applying the chain rule twice yields

S = ∂W

∂γ
= ∂W

∂C : ∂C
∂γ

= 2
∂W

∂C · G−1
0 , (A.19)

and

∂W

∂C = ∂W

∂ I1

∂ I1

∂C + ∂W

∂ I2

∂ I2

∂C . (A.20)
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The rank 2 tensor 
∂ I j

∂C is obtained by taking the derivative of the invariant I j with respect to each element of C . Carrying 
out these calculations,

I1 = trC − 2 = C11 + C22 − 2, (A.21)

∂ I1

∂C11
= 1,

∂ I1

∂C12
= 0,

∂ I1

∂C21
= 0,

∂ I1

∂C22
= 1,

(A.22)

∂ I1

∂C = I2, (A.23)

I2 = detC − 1 = C11C22 − C12C21 − 1, (A.24)

∂ I2

∂C11
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∂ I2

∂C12
= −C21,

∂ I2

∂C21
= −C12,

∂ I2

∂C22
= C11,

(A.25)

∂ I2

∂C = (detC)(C−1)T = (detC)
(

(

GG−1
0

)−1
)T

= (detC)
(

G0G−1
)T = (detC)

(

G−1G0

)

. (A.26)

The last equality follows from the symmetry of G and G0 . At last we have that

S = 2
∂W

∂C · G−1
0 = 2

(

∂W

∂ I1

∂ I1

∂C + ∂W

∂ I2

∂ I2

∂C

)

· G−1
0 (A.27)

= 2

(

∂W

∂ I1
I2 + ∂W

∂ I2
(detC)

(

G−1G0

)

)

· G−1
0 (A.28)

S = 2
∂W

∂ I1
G−1
0 + 2

∂W

∂ I2
(detC)G−1. (A.29)

A.4. The force density

Computing the force density in Eq. (24), we use the chain rule expansions of PT and S:

∇θ · = 1√
detG0

(

∂

∂λ

√

detG0 e1 + ∂

∂θ

√

detG0 e2

)

· , (A.30)

F = ∇θ ·PT = ∇θ ·
(

S · (∇θX)T
)

, (A.31)
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+
(
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.

Thus
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(A.33)
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F = 1√
detG0

(

∂

∂λ

√

detG0

(

S11
∂X

∂λ
+ S12

∂X

∂θ

)

+ ∂

∂θ

√

detG0

(

S21
∂X

∂λ
+ S22

∂X

∂θ

))

. (A.34)

Eq. (A.34) recovers Eq. (35) from the main text.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .05 .045.
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CHAPTER 4

PARALLELIZATION STRATEGIES FOR INTERPOLATION
AND SPREADING

As the computing needs of the scientific community increase, so too must the speed

at which computing resources solve their problems. Unfortunately, power consumption

and temperature control hinder the development of ever-faster processors. Instead, the

trend in computing is to use more, slower processors acting in concert. These processors can

share a memory address space, or the memory can be distributed across multiple processes

or devices, called nodes. Modern supercomputers, for example, are composed of many

nodes, each with their own multicore central processing units (CPUs), and often attached to

general-purpose graphical processing units (GPGPU; GPU for short).

To take advantage of modern computing architectures, with ever-increasing numbers

of processors, it is necessary to develop parallel algorithms for the IB method. McQueen

and Peskin [55] present a domain decomposition scheme to parallelize the interpolation

and spreading operations on the Cray C-90 computer with shared memory and a modest

number of vector processors. Their results illustrate the need for a fast interpolation and

spreading: even parallelized, they spend roughly half of the wall clock time spreading and

interpolating. Fai et al. adapted this domain decomposition scheme for use on a GPU [47].

Patel used a GPU to spread forces by processing all δh values in parallel, one Lagrangian

point at a time [58]. Valero-Lara et al. accelerated their IB-Lattice Boltzmann code by

processing Lagrangian points in parallel, and using atomic operations when necessary [62].

Because none of these approaches concurrently process arbitrary Lagrangian points, it is

easy to find cases for which they perform poorly. An alternative is to distribute work among

several devices, each with its own memory. This idea underpins the popular IBAMR library

(see [48–52]), which also adaptively refines the mesh around the immersed structure. With

proper load-balancing, a serial algorithm processes a smaller portion of work. A cluster of

multicore devices, however, will not be used effectively without a shared memory parallel

algorithm. The cuIBM [54] and PetIBM [46, 56] libraries implement an adaptive IB method

for prescribed motion on single- and multi-GPU architectures, respectively. The authors



52

demonstrate their method on a few two-dimensional test problems. Their implementation

explicitly constructs the spreading and interpolation operators, which are sparse. Effective

parallelization methods for sparse matrix-vector multiplication rely on distributing equal

work among the threads. Multiplication against banded matrices with an approximately

equal number of nonzero entries per row, for example, are easily parallelized as a series

of sparse dot products. The spreading operator has approximately the same number of

nonzero entries per column, but this sparsity pattern does not always lend itself well to

parallelization.

For this dissertation, our primary target is a single NVIDIA® GPU. While some GPUs

now support a shared memory address space between the CPU and GPU, we reserve the

CPU for input/output operations and trivial calculations. We will also defer discussing

distributed memory parallelization to Section 6.2. GPUs have restrictions on their paral-

lelization. They use single instruction, multiple data (SIMD) parallelism, in which each

computational unit, or thread, executes the same instruction on its own data. Concurrency

on the GPU is typically limited by the amount of shared memory, which is accessible to

every thread in a group or “cooperative thread array”, and register memory, which is avail-

able only to a single thread. The alternative is to use global memory, which is available to

every thread, but is generally slow except when accesses are sequential or “coalesced.” In

addition to their typical out-of-order execution model, modern CPUs also support SIMD or

vectorized instructions. The restrictions on the GPU imply that an effective algorithm on

the GPU translates well to other shared memory architectures.

In this chapter, we present a parallelization for interpolation and a series of novel parallel

schemes for spreading. The success of these algorithms relies on dividing these operations

into trivially parallelizable tasks and parallel primitives. For the remainder of the chapter, we

will treat the force densities and fluid velocity as the result of a black-box computation and

focus primarily on the interpolation and spreading operations. Furthermore, we consider

the simplified problem of evaluating the discrete counterparts of

E(X) =
∫

Ω
δ(x− X)e(x)dx and (4.1)

`(x) =
∫

Γ
δ(x− X)L(X)dX, (4.2)

where scalar-valued Eulerian function e : Ω → R is interpolated to Lagrangian point X

and Lagrangian function L : Γ → R is spread to Eulerian point x. Because individual

components of u and f are discretized at separate sets of points, we take the view that

e and E are analogous to a single component of u and Ẋ, respectively, and ` and L to a
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component of f and F, respectively. The algorithms described below are then applied to

each component of u or F individually. We use the notation Ωh, nω, and g as defined in

Section 2.1 for the grid underlying the Eulerian discretization. Likewise, we adopt the

notation Γh to refer to a Lagrangian grid and nγ its cardinality. Although we do not make

the distinction while developing these algorithms, in the context of interpolation, Γh is the

set of surface points corresponding to data sites, and in the context of spreading, it is the set

of surface points corresponding to sample sites.

This chapter is organized into four sections. In Section 4.1, we discuss the serial and

parallel interpolation and spreading algorithms. In Section 4.2, we demonstrate that the

concurrency of the parallel algorithms scales with the number of points, independently of

the Eulerian grid. We confirm the convergence of the method with these new algorithms.

We illustrate the suitability of our algorithms to both GPUs and multicore CPU architectures

with both weak and strong scaling tests. Finally, we summarize our findings in Section 4.3.

4.1 Algorithm design

Before tackling the tasks of interpolation and spreading, we require a few preliminary

definitions. The discrete analog to the Dirac delta function, δh, is the tensor product of scaled,

one-dimensional kernels, δ̂h(x) = h−1δ̂1(h−1x). The kernel δ̂1 is compactly supported. Let

supp ψ denote the support of ψ and define

s[δ̂1] = max
r∈[0, 1)

| supp δ̂1(· − r) ∩Z| − 1 (4.3)

to be the size of the support in terms of unit intervals. We do not change δ̂1 during a

simulation, so having chosen δ̂1, we write s = s[δ̂1] for brevity. For any X ∈ Ω ⊂ Rd
, there

are at most sd
Eulerian points, x ∈ Ωh for which δh(x− X) is nonzero. We call these points

the support points of δh(· − X). We partition Ω into cells based on shared sets of support

points. The points Xi and Xj belong to the same cell if the support points of δh(· − Xi) and

δh(· − Xj) are equal. The cells are equilateral with side length h and contain one point from

Ωh, except, perhaps, for cells near the boundary. We extend those cells by adding ghost

points to Ωh so that every cell contains exactly one point in Ωh or a ghost point. We call this

expanded set Ω̄h. We consider these cells to be the de facto grid cells. Figure 4.1 illustrates

the grid cells and the effect of different choices of δ̂1 has on their location. We also see that

Ω̄h correspond to either grid cell centers or vertices. We will henceforth refer to them simply

as the grid points. We can now identify any X ∈ Ω with a grid point x ∈ Ω̄h if they belong

to the same grid cell, and since x = h(i + g), we identify the cell by the integers i, which are
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(a) (b)

Figure 4.1: A region of a 2-dimensional domain, containing point X, indicated by a black

circle. Light gray lines indicate physical units in increments of h, and X has the same coordi-

nates in each subfigure. Light gray boxes indicate the support of δh(· −X). Subfigure (a) has

s = 4 support points in each dimension, and (b) has s = 3. Horizontal vector components

have staggering g = (0, 0.5) and are marked by right-pointing triangles, whereas upright

triangles mark vertical vector components, which have staggering g = (0.5, 0). Those grid

points within the gray boxes are also support points of X. The horizontally- and vertically-

striped gray boxes denote the de facto grid cell containing X for the horizontal or vertical

component, respectively. The filled triangles mark the point x = h(bXe+ g). The positions

of the grid cells in (a) are typical of all even s, and the positions of the grid cells in (b) are

typical of all odd s.

unique to the cell. We adopt the notation bXe = i for the function that maps the point X to

the vector of integers identifying the grid cell containing X.

We now turn our attention to the evaluation of δh(x− X). We assume x ∈ Ωh and write

δh(x− X) = δh(x− h(bXe+ g) + h(bXe+ g)− X)

≡ δh(hσ − ∆x)

=
d

∏
a=1

h−1δ̂1((σ − h−1∆x) · ea),

(4.4)

where ∆x = X − h(bXe+ g) is the displacement of X from its associated grid point, and

σ = bxe − bXe. We refer to σ as a shift. Shifts that result in a possibly nonzero value of δh are

known a priori based on the kernel δ̂1, and usually range from− bs/2c to b(s− 1)/2c in each

component. We can therefore assign an order to the shifts, σ1, σ2, . . . , σsd . As an example,

Algorithm 4.1 computes σj in lexicographical order given s and d. Our implementation

performs this step at compile time. We need only compute ∆x once to be able to compute

all nonzero values of δh(x− X).

We need one more ingredient to construct S . We let xk be the be the kth
point in Ωh. The
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Algorithm 4.1 Shift construction

1: procedure shift(j, s, d)

2: . require: 1 ≤ j ≤ sd

3: . generate: Shift σj
4: σ ← 0 . d zeros

5: for i = 1, . . . , d do
6: σi ← mod(j− 1, s)− bs/2c
7: j← b(j− 1)/sc+ 1
8: end for
9: return σ

10: end procedure

11: procedure shifts(s, d)

12: . generate: Shifts σ1, . . . , σsd

13: for j = 1, . . . , sd do
14: σj ← shift(j, s, d)
15: end for
16: return σ1, . . . , σsd

17: end procedure

ordering of points dictates how we represent discrete values: we discretize the Eulerian

function e(x) as the vector e, distinct from the basis vector ea, with kth
entry ek = e(xk).

Define the grid indexing function

#(i) =

{
k, bxke = i, xk ∈ Ωh

∅, otherwise.
(4.5)

The value ∅ indicates an Eulerian point outside or on the boundary of Ω, does not have a

corresponding row in S , and therefore does not contribute to spreading or interpolation.

For example, each point in Ω̄h \Ωh is indexed by ∅. We are now ready to construct S . Let

Xj be a Lagrangian point. The jth column of S is zero except for up to sd
values where, for

i = 1, . . . , sd
, if #(

⌊
Xj
⌉
+ σi) = k 6= ∅,

Skj = δh
(
h
(
σi +

⌊
Xj
⌉
+ g

)
− Xj

)
. (4.6)

From a practicality standpoint, it is unnecessary to explicitly construct S . We illustrate this

with the serial spreading algorithm.

4.1.1 Serial spreading

Algorithm 4.2 lists an example serial implementation of spreading in pseudocode. The

overall structure consists of two loops: a loop over the (indices of) points, and a loop over the

(indices of) shifts. From this, we see that for a fixed choice of δ̂1, and therefore s, the amount
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Algorithm 4.2 Serial spreading

1: procedure seq-spread(Γh, Ωh, L)

2: . generate: Approximate values of ` at each point in Ωh
3: σ1, . . . , σsd = shifts(s, d) . Algorithm 4.1

4: for i = 1, . . . , nγ do . Loop over Lagrangian points

5: x← h(bXie+ g) . Xi ∈ Γh, x ∈ Ωh
6: ∆x← x− Xi
7: for j = 1, . . . , sd do . Loop over shifts

8: w← δh(∆x + hσj)
9: k← #(bxe+ σj)

10: if k 6= ∅ then
11: `k ← `k + w · Li
12: end if
13: end for
14: end for
15: return `
16: end procedure

of work is O(nγ), i.e., independent of the Eulerian grid. The spread values are accumulated

into a vector ` (line 11). The target index, k (line 9), is computed using the grid indexing

function, introduced in the previous section. Note that k depends on σj and x, which in turn

depends on Xi, as seen on line 5. This means that k depends on both loop indices. There is

no guarantee that unique pairs of the loop variables i and j will yield unique target indices.

As a result, simply parallelizing one or both of the loops may lead to write contentions.

The property that runtime be independent of the Eulerian grid is desirable, as the number

of Lagrangian points is often much fewer than the number of Eulerian grid points. In other

words, many grid cells will be devoid of Lagrangian points, and unless nearby grid cells

have Lagrangian points, there is no useful work to be done for that grid cell. An algorithm

that depends on the Eulerian grid will invariably involve wasted computational resources.

As we develop our parallel algorithms, we aim to preserve the grid-independence property.

For example, this is achieved straightforwardly for interpolation, as we see in the next

section.

4.1.2 Parallelization of interpolation

While the spreading matrix, S , has approximately sd
nonzero entries per column, the

interpolation matrix, I , has approximately sd
nonzero entries per row, with one row per

Lagrangian point. This property is beneficial for parallelization. The sd
potentially nonzero

values in each row correspond to the shifts that produce a nonzero value of δh. Row i
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interpolates to Lagrangian point Xi. The grid point associated with Xi is at x = h(bXie+ g)

and ∆x = x−Xi. Since the shifts {σj} are known beforehand, we can compute δh(hσj + ∆x)

and accumulate products independently of other Lagrangian points,

Ei =
sd

∑
j=1

#(σj+bxe) 6=∅

δh(hσj + ∆x)e#(σj+bxe),

where #(i) is defined in Equation (4.5). This is done for each Lagrangian point, for a total

work proportional to nγ.

Assigning one thread per Lagrangian point (i.e., one thread per row of I), this calcula-

tion can be performed in parallel, and since the ith
thread writes to Ei, there are no write

contentions. This can be seen on lines 12 and 15 of Algorithm 4.3, where the accumulation

happens in a temporary variable which is ultimately written to E = (Ei). In this case, the

target index depends only on the loop variable i, and we can safely parallelize this loop.

Because the number of products is approximately the same for each row, each thread does

approximately the same amount of work. On architectures that enforce thread synchrony,

such as GPUs, this means that we do not incur a penalty from threads waiting for other

threads to finish.

Since each thread computes the appropriate δh-weights for its own row, it is unnecessary

to construct I explicitly. Except allocating memory for E, all of the work for this algorithm

Algorithm 4.3 Parallel interpolation

1: procedure par-interpolate(Γh, Ωh, e)

2: . generate: Approximate values of E at each point in Γh
3: σ1, . . . , σsd = shifts(s, d) . Algorithm 4.1

4: for i = 1, . . . , nγ parallel do
5: x← h(bXie+ g) . Xi ∈ Γh, x ∈ Ωh
6: ∆x← x− Xi
7: v← 0 . Accumulator

8: for j = 1, . . . , sd do
9: w← δh(∆x + hσj)

10: k← #(bxe+ σj)
11: if k 6= ∅ then
12: v← v + w · ek
13: end if
14: end for
15: Ei ← v
16: end for
17: return E
18: end procedure
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is parallel, so we expect to see near-perfect scaling. Additionally, other than using the

grid spacing h for scaling in various places, the evaluation of δh, and information about

boundaries, there is no dependence on the Eulerian grid. We now show how these properties

can be maintained for the spreading operation.

4.1.3 Parallel spreading

We return now to spreading. Consider a fixed j in Algorithm 4.2 so σj is fixed. If every

Lagrangian point inhabits its own grid cell, the support point for each Lagrangian point

corresponding to σj is unique. In this case, we can spread to those support points without

concern for write contentions. This is unlikely to occur in practice. On the other hand, if

every Lagrangian point were in the same grid cell, values could be accumulated in parallel

before being spread. This too is unlikely to occur in practice. We can instead employ the

segmented reduce algorithm, which, given a list of values and a corresponding list of keys,

will sum (reduce) consecutive values as long as their keys match. The result is a potentially

shorter list of reduced values and a list of nonrepeating keys, though they may not be unique

within the list. Suppose we were able to order the keys and values so that repeated keys are

listed consecutively. The result of reducing this sorted data is a list of unique keys and a

list where all values with the same key are combined. Assign each grid cell a unique index,

and for each Lagrangian point, use the index for the grid cell it inhabits as its key. Then,

segmented reduce accumulates values spread from Lagrangian points in the same grid cell

for the given shift. Now, we have at most one value per grid cell and can write without

contentions.

To ensure that repeated keys are listed consecutively, we use key-value sort, which, given

a list of values and a corresponding list of keys, sorts values according to a partial ordering

imposed on the keys. The result is a sorted list of keys and a permuted list of values, but key-

value pairs remain unchanged. Computing keys and values, sorting by key, and applying

the segmented reduce algorithm once per shift spreads all values. Because the keys are

independent of the shift, sorting once per shift results in the same sorted list of keys each

time. Instead of computing values and then sorting, we can first construct a permutation by

sorting the indices of the Lagrangian points. This need only be done once per spreading

operation. Then, we can use the permutation to compute values in sorted order for each shift.

Now, we apply segmented reduction to the sorted list of keys and the newly constructed list

of values. Finally, we write the reduced values to the output. Computing values, reducing,

and writing for each shift completes the calculation.
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Lastly, we need a suitable way to generate keys. A function κ that generates keys should

be 1-to-1 with grid cells, or to points in Ω̄h. For this reason, it is useful to formulate κ as a

function of Zd
so that κ(bXe) gives the key for Lagrangian point X. The requirement that

κ be injective will, in general, invalidate the grid indexing function as an otherwise good

choice, as it maps each ghost point in Ω̄h to ∅. We can, however, use the key to compute

grid indices: the point in Ωh with key k also has grid index #(κ−1(k)). Because κ is injective,

κ−1(k) is well-defined, and for shift σ, #(κ−1(k) + σ) yields the appropriate target index

for writing to the output vector. Putting these pieces together, we have a complete parallel

spreading algorithm, listed in Algorithm 4.4 and illustrated in Figure 4.2.

Lines 4–8 of Algorithm 4.4 construct the permutation by constructing a list of keys and a

list of the indices of Lagrangian points, 1, 2, . . . , nγ, and sorting the indices according to

Algorithm 4.4 Parallel spreading

1: procedure par-spread(Γh, Ωh, L)

2: . generate: Approximate values of ` at each point in Ωh
3: σ1, . . . , σsd = shifts(s, d) . Algorithm 4.1

4: for i = 1, . . . , nγ parallel do . Loop over Lagrangian points

5: Ki ← κ(bXie) . Sort key

6: Pi ← i . Initial ordering

7: end for
8: sort {Pi} by {Ki} . i→ Pi is a permutation

9: q← count unique {Ki}
10: for j = 1, . . . , sd do . Loop over shifts

11: {K′i} ← {Ki}
12: for i = 1, . . . , nγ parallel do . Loop over Lagrangian points

13: p← Pi
14: x← h(

⌊
Xp
⌉
+ g) . Xp ∈ Γh, x ∈ Ωh

15: ∆x← x− Xi
16: w← δh(∆x + hσj)
17: Vi ← w · Lp
18: end for
19: reduce {Vi} by {K′i} . Segmented reduce

20: for i = 1, . . . , q parallel do . Loop over inhabited grid cells, q ≤ nγ

21: x← h(κ−1(K′i) + g)
22: m← #(bxe+ σj) . bxe ≡ κ−1(K′i)
23: if m 6= ∅ then
24: `m ← `m + Vi
25: end if
26: end for
27: end for
28: return `
29: end procedure
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X1

X5
X3 X2

X4

K 1 6 5 3 5

Compute

keys

P 1 2 3 4 5

K 1 3 5 5 6

Sort

P 1 4 3 5 2

V v1 v4 v3 v5 v2

Compute

values

K′ 1 3 5 6

Reduce

V v1 v4 v3+v5 v2

` . . .

Add

Repeat for

each shift

Figure 4.2: Schematic of Algorithm 4.4 for Lagrangian points X1 through X5 in a small

region of Ω. Grey grid lines indicate the boundaries of grid cells and black-outlined boxes

represent locations in memory. Greyed-out regions are unused memory. The labels K, P, K′,
V, `, are the key, permutation, (reduced) value, reduced key, and output arrays, respectively.

For this illustration, keys are computed sequentially, from left to right and bottom to top.

Grid indices are ordered from left to right and assume that the grid continues horizontally,

indicated by the ellipsis in the output array.
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the keys. The ith
entry in the permuted list of indices gives the index of the ith

Lagrangian

point in sorted order. On line 9, we define q to be the number of unique keys, which is also

the number of reduced values to write. Since the list of sorted keys does not change for

different shifts, we compute it once and reuse the value; see lines 20–26. Values, one per

Lagrangian point, are computed and stored in a list V on lines 12–18. These values are then

inputted to segmented reduce, line 19.

Algorithm 4.4 does not explicitly depend on the Eulerian grid, with some caveats de-

pendent upon implementation details. Our implementation relies on the thrust library to

provide the key-value sort, segmented reduce, and unique counting routines. Sorting is

implemented as radix sort, which has a runtime of O(wnγ/p), where p is the number of

processors/threads, and w is the number of bits required to represent every key. In general,

w ∝ log2 n, for n elements to be sorted, but we use 32-bit integers for keys, so w = 32.

It is reasonable to assume that this is true for most use cases, as there are approximately

nω possible keys, and implementations of BLAS and LAPACK typically use 32-bit integers

for indexing. However, extremely fine grids with more than 232
grid points will require a

larger data type to represent each key uniquely. In that case, w increases with a finer grid.

Segmented reduction has a much more complicated relationship with the Eulerian grid.

Parallelized segmented reduction has a worst-case runtime of O(nγ/p), but the constant of

proportionality depends on the density of points within inhabited grid cells. On the one

hand, if all Lagrangian points inhabit the same grid cell, segmented reduce proceeds as a

regular reduce, which is very fast. On the other hand, if every Lagrangian point inhabits

its own grid cell, there is no work to be done, and any time spent by the algorithm is for

naught. The density of Lagrangian points also affects the value of q but is bounded above

by nγ. For up to 232
grid points, we expect the overall runtime of the spreading algorithm

to be O(nγ/p).

Finally, we remark that Algorithm 4.4 must synchronize threads once per shift. For

choices of δ̂1 where sd
is large, this can hurt performance. This requirement is written as a

parallel loop (line 12) within a serial loop (line 10). To reduce the number of synchronizations,

we must be able to compute and store several values at once. However, attempting to write

multiple values at once may lead to contentions. In the next section, we develop algorithms

that require fewer synchronizations by using more memory to spread several values at once

while also avoiding write contentions.
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4.1.4 Buffered spreading variants

Here we introduce a buffer in which to store incomplete calculations. It can be thought

of as a set of temporary output vectors, which we will combine at the end of the algorithm

to finish the calculation. These vectors have nω entries, so adding two of them requires

as many operations, but is quite easily parallelized, and is provided by any parallel BLAS

implementation. In this regard, these buffered variants depend explicitly on the Eulerian

grid. The only additional requirement is that there is enough memory to hold the buffer.

To develop these variants, we note that the sorted list of keys and the permutation are the

same for all shifts. Since the permutation dictates the order of the values to spread, and the

list of keys decides the behavior of the segmented reduce, these steps are nearly identical for

each shift, save for the effect each shift might have on the values. We can therefore compute

the value of δh for several shifts at once, and use the same machinery to accumulate the

values as if they were vectors. Though we do not implement it, we note that for choices

of δ̂1 that satisfy an even-odd condition [59], cleverly selecting which shifts are processed

together can reduce the total number of calls to δ̂1. Then, to avoid write contentions, each of

the entries of the reduced vectors is written to a separate output vector of the buffer. We

choose sz ≈ 10 values to compute each iteration. Summing the vectors in the buffer yields

the desired result.

Algorithm 4.5 lists the general form of the algorithm as pseudocode, and Algorithm 4.6

gives a minor modification. The difference between these two variants is the lifetime of the

buffer: Algorithm 4.5 does not manage the buffer itself, but Algorithm 4.6 allocates and frees

the buffer memory, limiting the lifetime of the buffer to the duration of the algorithm. The

latter considers the memory allocation as part of the algorithm. The additional overhead from

buffer allocation means that we never expect Algorithm 4.6 to outperform Algorithm 4.5; it

is provided as an alternative for systems where maintaining a large, long-lived buffer may

exhaust memory. We compare these algorithms and Algorithm 4.4 to Algorithm 4.2, and

the efficacy of Algorithm 4.3 below.

4.2 Numerical results

Here we describe two types of test: unstructured Lagrangian points, in which points

are placed randomly in the domain and generate a force independently from the other

Lagrangian points, and structured Lagrangian points, in which the points comprise an

elastic structure and forces are generated based on the configuration of the points as a whole.

For these tests, we use a 16
µ
m× 16

µ
m× 16

µ
m triply periodic domain with an initially
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Algorithm 4.5 Preallocated buffer parallel spreading

1: procedure pa-par-spread(Γh, Ωh, L, `1, . . . , `sz)

2: . require: sz ≥ 1
3: . generate: Approximate values of ` at each point in Ωh
4: σ1, . . . , σsd = shifts(s, d) . Algorithm 4.1

5: for i = 1, . . . , nγ parallel do . Loop over Lagrangian points

6: Ki ← κ(bXie) . Sort key

7: Pi ← i . Initial ordering

8: end for
9: sort {Pi} by {Ki} . i→ Pi is a permutation

10: q← count unique {Ki}
11: for j = 0, . . . ,

⌈
sd/sz

⌉
− 1 do . Loop over shifts

12: {K′i} ← {Ki}
13: for i = 1, . . . , nγ parallel do . Loop over Lagrangian points

14: p← Pi
15: x← h(bXe+ g) . Xp ∈ Γh, x ∈ Ωh
16: ∆x← x− Xi
17: for k = 1, . . . , min(sz, sd − sz · j) do
18: w← δh(∆x + hσsz·j+k)
19: Vik ← w · L(Xp) . V ∈ Rnγ×sz

20: end for
21: end for
22: reduce {Vi·} by {K′i}
23: for i = 1, . . . , q parallel do . Loop over inhabited grid cells, q ≤ nγ

24: x← h(κ−1(K′i) + g)
25: for k = 1, . . . , min(sz, sd − sz · j) do
26: m← #(bxe+ σsz·j+k)
27: if m 6= ∅ then
28: `mk ← `mk + Vik
29: end if
30: end for
31: end for
32: end for
33: return ∑sz

k=1 `k
34: end procedure

Algorithm 4.6 On-the-fly buffer parallel spreading

1: procedure otf-par-spread(Γh, Ωh, L)

2: . require: sz ≥ 1
3: . generate: Approximate values of ` at each point in Ωh
4: for i = 1, . . . , sz do
5: `k ← 0
6: end for
7: return pa-par-spread(Γh, Ωh, L, `1, . . . , `sz) . Algorithm 4.5

8: end procedure . Lifetime of `k ends here
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shear-like flow, u = (0, 0, γ̇(y− 8
µ
m)), with shear rate γ̇. Tests use a shear rate of 1000s

−1

unless otherwise noted. This flow has a sharp transition at the periodic boundary y = 0
µ
m,

so a background force is added to maintain this transition and so that the initial flow is also

the steady flow in the absence of other forces.

Serial and multicore CPU tests were performed on a single node with 48 Intel
®

Xeon
®

CPU E5-2697 v2 2.70GHz processors and 256 GB of RAM running CentOS Linux release

7.7.1908 (x86 64). Parallel CPU implementations use Intel
®

’s OpenMP library, libiomp5 [53].

GPU tests used the same node with an NVIDIA
®

Tesla
®

K80 (2×GK210 GPU with 13

823.5MHz multiprocessors and 12 GB of global memory each). Only one of the GK210

GPUs was used. The CPU code was written in C++17 and the GPU code was written in

C++/CUDA and used version 9.2 CUDA libraries [57]. Both the CPU and GPU codes were

compiled using clang version 7.0.1. All tests are performed in double precision. We begin

with tests using unstructured points, for which both of these architectures were used.

4.2.1 Unstructured Lagrangian points

Consider a set of n Lagrangian points randomly placed in the domain described above.

We imagine the Lagrangian points to be tethered to their initial positions. The fluid solver

is not invoked for these tests. This allows us to perform tests with large n without also

waiting for the fluid solver. Instead, at each timestep, we interpolate the fluid velocity to

each of the Lagrangian points and predict their updated positions. Using these predicted

positions, we compute a Hookean force for each Lagrangian point with spring constant

k = 1× 10−2
dyn/cm. We spread these forces from the predicted positions to the fluid grid,

but do not use them to update the fluid velocity. This ensures that the points do not settle

into a steady position so the spreading and interpolation operations receive new data each

time step. We again interpolate the velocity to the Lagrangian points and update the position

of the Lagrangian points. While the interpolated velocities at the end of the timestep are

the same as those computed at the beginning, this is done by analogy to the full IB solver,

which interpolates fluid velocities twice and spreads forces once per timestep.

In the sections that follow, we use this test to compare the performance of the parallel

algorithms to their serial counterparts and, for the spreading variants, to each other. We

first consider the effects of background grid refinement.
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4.2.1.1 Dependence on background grid

The serial Algorithms 4.2 and 4.3 do not explicitly depend on the size of the fluid grid.

With perhaps the exception of the sorting and reducing steps, Algorithm 4.4 also does

not depend on the size of the Eulerian grid. Algorithms 4.5 and 4.6, on the other hand,

ultimately sum their buffer vectors, which have one entry per grid point. Algorithm 4.6 also

incorporates the allocation of these buffers. Using a few different fluid grids, we investigate

whether Algorithms 4.3 and 4.4 are independent of the grid in practice, and how the grid

dependence affects the runtime of Algorithms 4.5 and 4.6.

Table 4.1 lists timing results for n = 216
Lagrangian points and 16, 32, 64, and 128 grid

points per 16
µ
m. The rows with device listed as 1×CPU correspond to the serial algorithms

and will serve as a reference point for the rest of the section. If the serial algorithms depend

on the fluid grid, they do so only mildly. In fact, under close scrutiny, it seems that these

deviations are due to hardware-level differences in the integer multiplications and additions

used in computing sort keys and grid indices. We can therefore expect each of the algorithms

to exhibit a mild variation in runtime for different grid refinements.

The speedup for these schemes is illustrated in Figure 4.3. Algorithm 4.3 is independent

Table 4.1: Average time per call for interpolating to and spreading from 216
Lagrangian

points from 1000 time steps on different devices and grid configurations. Grid refinement is

the number of grid points per 16
µ
m in each dimension. Times are reported in seconds.

Grid refinement

Device Algorithm 16 32 64 128

1×CPU 4.2 1.33249 1.33621 1.33840 1.37281

4.3 1.29633 1.31373 1.30763 1.35101

16×CPU 4.3 0.09890 0.09928 0.09974 0.10624

4.4 0.23282 0.26431 0.25783 0.26590

4.5 0.12803 0.14213 0.15215 0.20107

4.6 0.12965 0.14242 0.14766 0.21874

1×GPU 4.3 0.01253 0.01317 0.01722 0.01816

4.4 0.03930 0.04020 0.04215 0.04755

4.5 0.01715 0.02049 0.02370 0.03656

4.6 0.01804 0.02198 0.02873 0.07288
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Figure 4.3: Speedup of Algorithm 4.3 (interpolation) and Algorithms 4.4–4.6 (spreading)

compared to their serial counterparts on 216
randomly placed Lagrangian points for different

grid refinements on (a) 16 CPUs and (b) the GPU.

of the fluid grid, as expected. Any grid dependence introduced by the sort and reduce steps

of Algorithm 4.4 is not obvious for the grids presented. On the other hand, the degradation

of speedup for the sweep-fused Algorithms 4.5 and 4.6 is apparent for finer grids. For small

problems with 1283
or fewer grid points, one gets better performance from the sweep-fused

variants, except for Algorithm 4.6 on the GPU. This can be attributed to the slower allocation

of the buffer for a finer grid. For problems where the grid has 2563
or more grid points, we

expect Algorithm 4.4 to be the fastest choice for spreading. Because our fluid solver fits

in GPU memory only for fewer than 1283
grid points, for the remainder of this work we

consider only a grid with a grid refinement of 64 (h = 0.25
µ
m). We can imagine using this

algorithm on a less capable device with more limited memory, so we restrict ourselves to

Algorithm 4.6 for spreading, computing sz = 8 values per sweep, to minimize the lifetime

of the buffer used in spreading while still enjoying the benefit of using the buffer.

4.2.1.2 Strong scaling

It is commonly the case that one wishes to employ parallelization to improve runtimes

for a problem of interest. To illustrate this improvement, we now consider how runtime

varies for the test problem with n = 216
Lagrangian points, a grid refinement of 64 (grid

size h = 0.25
µ
m), and Algorithm 4.6 with different numbers of threads. We use up to 32
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threads on the CPU and 64–4096 threads on the GPU. For a fixed problem, we ideally wish

to see the runtime using 2p threads to be half of that using p threads. In other words, using

twice as many threads yield an ideal speedup of 2.

Figure 4.4 shows the results of these tests. Speedup is measured relative to the serial

interpolation and spreading implementations. The trendlines estimate that increasing

computing resources by a factor of two decreases runtime by a factor of about 1.91 for

CPU and GPU interpolation and by a factor of about 1.85 for CPU spreading. It is not

trivial to limit the number of threads used by thrust for work done on the GPU, so the

key-value sort and segmented reduce use as many threads as thrust decides is prudent.

While the trendline indicates a decrease in runtime by a factor of 1.91 as well, this is merely

an approximation.

Parallel CPU interpolation using a single processor is identical to the serial CPU inter-

polation, so its plot in Figure 4.4(a) passes through (1, 1). The same is not true of parallel

spreading using a single processor compared to serial spreading. Because of the additional

sort step in the parallel spreading algorithm, single-threaded Algorithm 4.4 is about 12%

slower than its serial counterpart. The CPU code also enjoys the benefit of using vector
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Figure 4.4: Strong scaling results for parallel interpolation and Algorithm 4.6 with grid

spacing h = 0.5
µ
m (a grid refinement of 64) for 216

randomly placed Lagrangian points in

a 16
µ
m× 16

µ
m× 16

µ
m triply periodic domain for (a) 1–32 CPU cores, and (b) 64–4096

threads on the GPU. Speedup is measured relative to serial Algorithms 4.3 and 4.2. The

solid black lines show the trendline for ideal speedup. The dashed or dotted lines give the

initial trend for interpolation and spreading, respectively.
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registers for parts of the computation. The GPU requires 64 threads to match the speed of

a single CPU core. Even at 4096 threads, interpolation on the GPU shows no indication

of plateauing. The final data point for that curve shows a speedup of approximately 77×.

Figure 4.3(b), on the other hand, shows that the maximum speedup we can expect for this

problem is approximately 85×, which the trendline in Figure 4.4(b) predicts will occur at

approximately 4480 threads. Thus, we can expect the plateau for interpolation on the GPU

to be very abrupt. This indicates a hardware limitation, the likely culprit being exhaustion

of register memory. The plateauing of the CPU curves is not a limitation of the algorithm

for the CPU. Despite having 48 cores, the test using 32 cores did not utilize them at full

capacity. Using fewer cores, on the other hand, was able to maintain full utilization for the

duration of the test. If not for having a comparatively limited number of CPU cores, we

expect to see the CPU trend continue.

Up to hardware limitations, it seems that the algorithm scales without bound on either

the CPU or the GPU. Overall, trends for the CPU and GPU are very similar, with nearly

perfect scaling. Because of these similarities and the greater capacity for speedup, we will

restrict ourselves to the GPU for the remainder of the chapter, but expect any conclusions to

hold for the CPU as well.

4.2.1.3 Weak scaling

In contrast, with improved computing resources, we may wish to solve bigger problems.

The ideal parallel algorithm solves a problem with p threads in the same amount of time as

it solves a twice bigger problem with 2p threads. Here, we place between 216
and 219

points

randomly in a fixed domain with h = 0.25
µ
m. As we increase the number of points, we

increase the number of threads proportionally, between 128 and 1024.

Table 4.2 lists runtimes for increasing threads and problem size on the GPU. Interpolate

scales nearly perfectly with a difference of 15 ms (
˜
3%) increase between the problem with

128 threads and 216
Lagrangian points and that with 1024 threads and 219

points. Spread,

on the other hand, decreases in time as the problem size increases. This speedup is artificial,

and should not be expected in general. In the n = 216
case, there is 1 Lagrangian point for

every 4 grid cells, on average. When n = 219
, the density increases to 4 for every grid cell.

As a result, it becomes increasingly unlikely to find a cell containing no Lagrangian points.

This means that writing the values to the output vector(s) becomes increasingly coalesced,

which, in turn, reduces the number of writes to global memory and vastly improves the

speed of the write overall. Typical use of the IB method does not have Lagrangian points in
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Table 4.2: Weak scaling results for interpolation and spreading for p threads and n randomly

placed Lagrangian points in a 16
µ
m× 16

µ
m× 16

µ
m triply periodic domain with h =

0.25
µ
m on the GPU. The average time per call is reported in seconds. N is the number of

samples taken.

p n interpolation

N = 20000

spreading

N = 10000

128 216 0.43930 0.47632

256 217 0.44918 0.46503

512 218 0.45072 0.44533

1024 219 0.45442 0.43561

every grid cell, but the recommendation that Lagrangian points on connected structures

be spaced 0.5h–h apart typically yields 1–8 Lagrangian points in each occupied grid cell,

depending on the type of structure. To illustrate this, we consider a more typical use of the

IB method in the upcoming section.

4.2.2 Elastic objects

We are motivated by the desire to simulate the motion of cells immersed in a fluid. Cells

are not randomly generated points, but cohesive structures, kept together by elastic forces

and the near-constant volume enclosed by their membranes. In this section, we replace

the randomly placed points with points sampled on the surface of either a sphere or an

RBC. Each test lists the number of data and sample sites used. Data and sample sites are

generated using the method described by [60]. In this case, we invoke the fluid solver, so

that as the object deforms, the force it imparts on the fluid will affect the fluid velocity. The

sphere and RBC are elastic, obeying Skalak’s Law [61], as described in Section 2.2. These

tests require a time step of ∆t = 0.1
µ
s for stability. With γ̇ = 1000 s

−1
, a Lagrangian point

requires at least 32 timesteps to transit a grid cell, so unlike the tests using randomly placed

points above, there will be considerably more redundant computation. We first validate the

fluid solver with the elastic sphere before performing scaling tests, similar to those above,

with RBCs.

4.2.2.1 Convergence study

To test the convergence of the fluid solver and cell representation, consider an object that

obeys Skalak’s Law and is spherical at rest. Deform the object from its rest configuration by
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stretching it by a factor of 1.1 in the z direction and compressing it by a factor of 1.1 in the y

direction to maintain a fixed volume. For this test, γ̇ is zero, so the fluid velocity is initially

zero, and the object tends toward its rest configuration throughout the simulation. We allow

the object to relax for 16
µ
s and compare errors generated by successive grid refinements

of 16, 32, 64, and 128 points per 16
µ
m. For each grid, we use a fixed set of nd = 625 data

sites, sampled approximately uniformly on the surface of the sphere, and choose ns so that

sample sites are approximately uniform and roughly h/1.1 apart, so that sample sites are

roughly h apart initially. For h = 1
µ
m, ns = 220, and refinement by a factor of 2 increases ns

by a factor of 4, for a maximum number of 14080 sample sites for these tests. A thin interface

that generates a force will cause a jump in the normal stress across the interface, which the

IB method may not recover. Therefore, we anticipate first-order convergence for the fluid

velocity and data site positions.

Tables 4.3 and 4.4 show the convergence of fluid velocity and data sites, respectively.

To compute errors in the fluid velocity, we construct a cubic spline from the velocities on

the finer grid and evaluate the spline at the grid points of the coarser grid. Each of the

interfaces uses the same number of data sites, allowing us to directly compare their Cartesian

coordinates between simulations. We recover approximately first-order convergence for

both fluid velocity and data sites’ Cartesian positions. Having established asymptotic

convergence of our IB solver, we continue by performing scaling tests with RBCs.

4.2.2.2 Strong scaling

We again wish to see how these algorithms can help speed up the runtime of a fixed

problem. Here, we consider tests with a single RBC and with 4 RBCs. To construct the RBCs,

we now use nd = 864 data sites, for an initial data site spacing of approximately 1.6h, and

ns = 8832 sample sites per cell, for an initial sample site spacing of approximately 0.5h. We

Table 4.3: Convergence of the fluid velocity for a deformed sphere returning to its rest

configuration in a 16
µ
m× 16

µ
m× 16

µ
m triply periodic domain at t = 160

µ
s. The finest

grid, with h = 0.125
µ
m uses time step ∆t = 0.025

µ
s.

h (
µ
m) ∆t (

µ
s) ‖uh − u0.5h‖2 order ‖uh − u0.5h‖∞ order

1.00 1.6 2.2274× 10−2 7.4187× 10−2

0.50 0.4 4.3280× 10−4
5.71513 1.9083× 10−3

5.28079

0.25 0.1 1.4684× 10−4
1.55951 1.0847× 10−3

0.81497
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Table 4.4: Convergence of data sites’ Cartesian coordinates for a deformed sphere returning

to its rest configuration in a 16
µ
m× 16

µ
m× 16

µ
m triply periodic domain at t = 16

µ
s. For

each grid, we track 625 data sites on the sphere. The finest grid, with h = 0.125
µ
m used

ns = 14080 sample sites.

h (
µ
m) ns ‖Xh − X0.5h‖2 order ‖Xh − X0.5h‖∞ order

1.00 220 2.9611× 10−3 4.7812× 10−3

0.50 880 7.2997× 10−4
2.02020 1.1687× 10−3

2.03253

0.25 3520 3.5909× 10−4
1.02351 6.0956× 10−4

0.93902

use a time step of ∆t = 0.1
µ
s to simulate the motion of the cells for 1 ms.

Figure 4.5 shows the speedup observed with increasing threads for 1 and 4 RBCs for

64–4096 threads on the GPU. We again see that the initial speedup for interpolation is nearly

linear with increased threads. In Figure 4.5(a), there is a sharp plateau that corresponds to

every data site having its own thread. In other words, there are more threads than there is

work to do since we track only 864 data sites for a single RBC. Figure 4.5(b), on the other

hand, has 3456 data sites, so the trend continues for 512–4096 threads. In this case, we expect

this graph to plateau beyond 4096, when each data site has its own thread. However, we

do not expect the trend to continue with more cells, as the presumed maximum number

of concurrent threads for interpolation is 4480, as discussed in Section 4.2.1.2. Comparing

Figure 4.5(a) to Figure 4.5(b), we see that the speedup in spreading is also dependent on

the amount of work. This indicates that, as with interpolation, the maximum speedup for

spreading is limited by hardware, rather than being a limitation of the algorithm.

The trend lines for these tests indicate that increasing computing resources by a factor of

two decreases runtime by a factor of about 1.87 for these algorithms. Again, this is merely

an approximation as the sort and reduction steps of the spreading algorithm are provided

by thrust, and therefore are not limited to the listed number of threads. The similarity

between the result of the tests with RBCs and with randomly placed points indicates that the

distribution of points does not have a marked impact on the efficacy of the parallelization

for a fixed problem. We now see if the same holds for weak scaling tests.

4.2.2.3 Weak scaling

To see how the algorithms scale given more computing resources, we increase the number

of cells in the domain and the number of threads proportionally. We construct each cell with

nd = 832 data sites and ns = 8832 sample sites, as before. We place between 1 and 8 cells
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Figure 4.5: Speedup of Algorithms 4.3 and 4.6 with increasing numbers of threads compared

to 64 threads on the GPU for (a) 1 and (b) 4 RBCs. Speedup is measured relative to the time

taken for each algorithm using 64 threads on the GPU. Dashed lines indicate trends, and

solid lines indicate ideal scaling.

in the domain, while threads increase from 64 to 512. Using a time step of ∆t = 0.1
µ
s, we

simulate the motion of these cells for 1 ms.

In Section 4.2.1.3, we observe that, as a side effect of increasing point density per grid

cell, runtime for spreading decreases as the number of points and threads increases. Here,

the cells are initially far enough apart as to not have any overlapping support points. As a

result, while individual grid cells may contain several Lagrangian points, average point

density is still low, so we do not expect to see the same reduction in runtime as observed

previously.

Table 4.5 shows the runtimes for increasing number of RBCs and threads. We observe

the near-perfect scaling we saw with random Lagrangian points. For both interpolation and

spreading, we see that the runtimes are nearly constant: the slowest and fastest times differ

by less than 2 ms and 7 ms, for interpolation and spreading, respectively. After an initial

drop in runtime between one RBC with 64 threads and two RBCs and 128 threads, runtimes

even off and begin to increase, in contrast with the results in Section 4.2.1.3.
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Table 4.5: Weak scaling results for interpolation and spreading for an increasing numbers of

RBCs (cells column) and threads. Each RBC has nd = 864 and ns = 8832. The average time

per call is reported in seconds. N is the number of samples taken.

p cells

interpolation

N = 20000

spreading

N = 10000

64 1 0.01079 0.11881

128 2 0.01165 0.11219

256 4 0.01171 0.11214

512 8 0.01199 0.11354

4.3 Summary

We presented Algorithm 4.3 for interpolation in parallel and introduced a novel paral-

lel algorithm, Algorithm 4.4, for spreading forces from time-dependent interfaces in the

immersed boundary method. These algorithms have a runtime that is independent of the

Eulerian grid. This makes the parallelization useful for cases where Lagrangian points

inhabit only a small percentage of the Eulerian grid cells. We also introduced two variants

for spreading which trade dependence on the Eulerian grid, in the form of a few vector

additions and memory allocation, for improved runtimes on small enough grids.

These algorithms exhibit nearly ideal scaling, on both the CPU and GPU, for problems

of fixed size and an increasing number of threads, as well as for problems of increasing size

and number of threads. We observed that on the GPU, larger problem sizes led to higher

speedup plateaus, indicating that larger problems on more capable hardware will achieve

even larger speedups than presented here.

References

[46] P.-Y. Chuang, O. Mesnard, A. Krishnan, and L. A. Barba, PetIBM: toolbox and
applications of the immersed-boundary method on distributed-memory architectures, Journal

of Open Source Software, 3 (2018), p. 558.

[47] T. G. Fai, B. E. Griffith, Y. Mori, and C. S. Peskin, Immersed boundary method for
variable viscosity and variable density problems using fast constant-coefficient linear solvers I:
numerical method and results, SIAM Journal on Scientific Computing, 35 (2013), pp. B1132–

B1161.

[48] B. E. Griffith, An accurate and efficient method for the incompressible navier–stokes equa-
tions using the projection method as a preconditioner, Journal of Computational Physics,

228 (2009), pp. 7565–7595.

[49] B. E. Griffith, Immersed boundary model of aortic heart valve dynamics with physiological



74

driving and loading conditions, International Journal for Numerical Methods in Biomedi-

cal Engineering, 28 (2011), pp. 317–345.

[50] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin, An adaptive,
formally second order accurate version of the immersed boundary method, Journal of Compu-

tational Physics, 223 (2007), pp. 10–49.

[51] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin, Parallel and
adaptive simulation of cardiac fluid dynamics, in Advanced Computational Infrastructures

for Parallel and Distributed Adaptive Applications, M. Parashar and X. Li, eds., John

Wiley & Sons, Inc., Hoboken, NJ, USA, 2010, pp. 105–130.

[52] B. E. Griffith and X. Luo, Hybrid finite difference/finite element immersed boundary
method, International Journal for Numerical Methods in Biomedical Engineering, 33

(2017), p. e2888.

[53] Intel, Intel oneAPI, 2021, https://software.intel.com/content/www/us/en/

develop/tools/oneapi.html.

[54] S. K. Layton, A. Krishnan, and L. A. Barba, cuIBM – a GPU-accelerated immersed
boundary method, arXiv.org, (2011), https://arxiv.org/abs/1109.3524.

[55] D. M. McQueen and C. S. Peskin, Shared-memory parallel vector implementation of the
immersed boundary method for the computation of blood flow in the beating mammalian heart,
The Journal of Supercomputing, 11 (1997), pp. 213–236.

[56] O. Mesnard and L. A. Barba, Reproducible and replicable computational fluid dynamics,

Computing in Science Engineering, 19 (2017), pp. 44–55.

[57] NVIDIA, P. Vingelmann, and F. H. Fitzek, CUDA, 2021, https://developer.

nvidia.com/cuda-toolkit.

[58] S. Patel, aeroCuda: the GPU-optimized immersed solid code, Undergraduate thesis, Har-

vard, Harvard University, June 2012.

[59] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), pp. 479–517.

[60] V. Shankar, R. M. Kirby, and A. L. Fogelson, Robust node generation for meshfree
discretizations on irregular domains and surfaces, SIAM Journal on Scientific Computing,

40 (2018), pp. A2584–A2608.

[61] R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, Strain energy function of red blood
cell membranes, Biophysical Journal, 13 (1973), pp. 245–264.

[62] P. Valero-Lara, F. D. Igual, M. Prieto-Mat́ıas, A. Pinelli, and J. Favier, Accel-
erating fluid–solid simulations (lattice-boltzmann & immersed-boundary) on heterogeneous
architectures, Journal of Computational Science, 10 (2015), pp. 249–261.

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://arxiv.org/abs/1109.3524
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit


CHAPTER 5

WHOLE BLOOD SIMULATIONS

As RBCs move towards the center of a blood vessel, they may encounter platelets on

their way, but the relative size and deformability of the RBC means a platelet is ejected from

the RBC’s path, ultimately relegated to the RBC-free layer along the vessel wall. This is the

margination process; it affects platelets and leukocytes (white blood cells) alike, and is the

focus of many studies [65, 66, 68–70, 72, 75, 76, 78, 80, 85, 86, 89, 90]. Platelets are key players

in vascular maintenance. From their marginated positions, platelets survey the vessel wall

for injury. Injury sites release chemical signals which activate the platelet. This, in turn,

leads the platelet to bind to the injury site and release its own chemical signals to recruit

further platelets, which eventually results in the formation of a thrombus. All of this occurs

in flowing blood, which sweeps these chemical signals downstream. While mechanisms

for platelet activation have been proposed for low and pathologically high shear rates, the

case of physiologically high shear rates is undecided [71]. We assume that platelets have

marginated and focus on this shear regime.

Models of platelet motion over a thrombus indicate that there are stagnation zones

immediately upstream and downstream of the thrombus, where the fluid velocity is very

slow, even when the thrombus protrudes only a few microns from the vessel wall [84, 87].

Platelets that enter these regions spend a disproportionate amount of time there. The

endothelial cell nucleus also protrudes into the vessel approximately 1
µ
m. Moreover, the

endothelial bumps are roughly periodic. If the endothelium creates a stagnation zone,

the trailing zone from one protrusion might lead into the leading zone of the subsequent

protrusion. This may allow for the sequestration of platelets or chemical signals. However,

typical models of platelet-wall interaction model the endothelium as a flat surface [85, 88].

In this chapter, we combine the work from the previous four chapters to validate the

RBF-IB methodology for the simulation of whole blood. We use it to compare the flow of

whole blood across bumpy and flat walls and characterize the behavior and interactions of

platelets. This chapter is divided into 3 parts. In Section 5.1, we validate our methods and

models. In Section 5.2, we present results from whole blood simulations. We summarize
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our results and discuss their implications in Section 5.3.

5.1 Numerical verification

We have taken a few departures from the traditional IB method and RBC models. In

this section, we verify that these changes do not alter the efficacy of the method or expected

behaviors of the RBCs. We use a few different choices for δ̂1 in this section; they are shown

in Figure 5.1.

5.1.1 Convergence study

In this section, we perform a series of tests on a single perturbed RBC undergoing

relaxation. We simplify the RBC model and use only Skalak’s Law. We expect the IB

method to approximate the fluid velocity at first order for thin shells, as it cannot recover the

pressure jump across the interface. We stretch the RBC by a factor of 1.1 in the z direction and

compress it in the x direction to maintain its reference volume. We place the cell in the center

of a 16
µ
m× 16

µ
m× 16

µ
m domain with homogeneous Dirichlet boundary conditions in

the y direction and periodic boundaries elsewhere. The fluid velocity is initially zero. The

cell is then allowed to relax for 180
µ
s.

We discretize the RBC using the Bauer spiral [64],

ϕj = sin−1(−1 + (2i− 1)/N),

θj = mod
(√

Nπϕj + π, 2π
)
− π,

(5.1)

where N is either nd or ns, and mod(a, n) = a− |n| ba/|n|c is the positive modulo function.

The Bauer spiral helpfully avoids the poles, where det(G0(ZS2)) = 0, while maintaining a

reasonable distribution of points on the surface of the RBC. We use the 3-point kernel δ̂1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

r

δ̂ 1
(r
)

Roma

B3
cosine

Figure 5.1: An illustration of the 3-point Roma [82], 4-point B3 B-spline, and 4-point co-

sine [81] kernels used in this chapter.
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derived by Roma et al. [82], shown in Figure 5.1, for spreading and interpolation and the

2-stage RK method described in Section 2.4 to advance the fluid velocity. Fluid grids are

chosen to have 20r grid points per 16
µ
m in each direction for r from 1 to 6. On successive

grids, we compare the fluid velocity at cell centers in a regular grid of 203
cells and surface

positions at 1000 surface points. For convergence of order p, we expect the ratio of successive

errors to satisfy

εr

εr+1
=

∣∣∣∣ ((r + 1)/r)p − 1
((r + 2)/(r + 1))−p − 1

∣∣∣∣ ,

which we solve numerically for p. We use the machinery of Sections 2.3.3 and 3.2.4.2 to

approximate quadrature weights in material coordinates such that

ωj det(G0(ZS2))−1/2 = ωj/ cos(ϕj)

is analogous to dθ dϕ at Lagrangian point Xj. This enables us to compute the errors in X

using discrete versions of the L2 and L∞ norms,

‖X(θ, ϕ)‖2
2 =

∫
S2

X(θ, ϕ) · X(θ, ϕ)dθ dϕ and (5.2)

‖X(θ, ϕ)‖2
∞ = max

(θ, ϕ)
X(θ, ϕ) · X(θ, ϕ), (5.3)

respectively.

Tables 5.1 and 5.2 show L2 and L∞ errors in u and X between successive grids. We observe

first-order convergence, as expected. Satisfied with the convergence of our implementation,

we henceforth continue using the Bauer spiral to discretize RBCs and use the complete RBC

model, which we verify in the next section.

5.1.2 Tumbling and tank-treading

Few RBC models include viscoelastic forces. Fedosov et al. use a particle-based method to

simulate the fluid and cells [67], where particles representing the RBC membrane experience

drag and random forces. Gounley and Peng use the IB machinery to spread membrane

viscosity to the fluid, thereby modifying the fluid stress term [73]. Our intent in adding a

viscoelastic response is to aid in the numerical stability of the discrete RBCs. We wish to

verify that the extended model, with dissipative force, retains the ability to tumble and tank-

tread. To that end, we place a single RBC with nd = 625 and ns = 2500 in the same domain as

the previous section, now discretized to have h = 0.4
µ
m and with moving top and bottom

walls. In the interest of reducing simulation time, we now use the backward-forward Euler

timestepping scheme with a time step of ∆t = 0.1
µ
s. Here, the IB interaction operations
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Table 5.1: Convergence of u for a sequence of grids. The refinement ratio r, defined as

the refinement in h relative to the coarsest grid, determines the simulation parameters:

rh = 0.8
µ
m and r∆t = 180 ns. Errors are computed between grids of refinement factor r

and r + 1. Values of u are sampled at t = 180
µ
s at cell centers on the coarsest grid.

r L2 error order L∞ error order

1 1.74592× 10−3 1.59995× 10−2

2 9.92788× 10−5 6.52038× 10−4

3 3.65264× 10−5
6.85983 3.34322× 10−4

1.06075

4 2.31069× 10−5
2.87612 2.30732× 10−4

1.60689

5 1.65898× 10−5
1.25668 2.28193× 10−4

0.83030

Table 5.2: Convergence of X for a sequence of grids. The refinement ratio r, defined as

the refinement in h relative to the coarsest grid, determines the simulation parameters:

r∆t = 180 ns, nd = 125r2
, and ns = 500r2

. Errors are computed between grids of refinement

factor r and r + 1. Values of X are sampled at t = 180
µ
s at N = 1000 Bauer spiral points.

r L2 error order L∞ error order

1 6.05447× 10−3 2.68249× 10−3

2 1.61678× 10−3 6.86140× 10−4

3 7.69150× 10−4
2.74664 3.30734× 10−4

2.86457

4 4.66203× 10−4
1.89474 1.86139× 10−4

1.84435

5 2.82578× 10−4
1.46574 1.18713× 10−4

1.82742

use the 4-point B-spline, δ̂1(r) = B3(r), which was first considered by Lee [77]. It is similar

in shape to the Roma kernel but has better smoothness properties. It is shown in Figure 5.1.

To recover the tumbling motions, the top wall has a fixed velocity of ub = 400
µ
m/s and

the bottom wall −ub. This generates a shear rate of γ̇ = 50 s
−1

in the absence of cells. For

tank-treading experiments, we use ub = 8 mm/s to generate a shear rate of γ̇ = 1000 s
−1

.

These values are chosen outside the transitional region between tumbling and tank-treading

for the elastic parameters used for the RBC [74]. The velocity field is initially steady for

flow without cells. We rotate the cell 1 radian about the x-axis from a horizontally aligned

orientation and place it at the center of the domain. The RBC exhibits both of these behaviors;

Figure 5.2 shows one period of each.
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(a)

γ̇t = 0 γ̇t = 5 γ̇t = 10 γ̇t = 15 γ̇t = 20

(b)

γ̇t = 19 γ̇t = 26 γ̇t = 33 γ̇t = 40 γ̇t = 47

Figure 5.2: Our model RBC exhibits (a) a tumbling behavior under low shear (γ̇ = 50 s
−1

)

conditions and (b) tank-treading under high shear (γ̇ = 1000 s
−1

) conditions. The black dot

marks a surface point with fixed material coordinates.

5.1.3 Collision tests

With whole blood simulation as the ultimate goal, we must ensure that the method

can effectively capture cell-cell interactions. The RBF-IB method has been applied to flow

around multiple platelets in an aggregate, but those cells are kept apart by a network of

springs [83]. To model the interaction between cells, we devise a series of tests in which

we force two RBCs to collide. The aim is to verify that the cells remain distinct. Using too

few data sites could allow the cells to come too close to one another. The regularization

of δh then causes them to be treated as a single unit. Cells that “fuse” in this manner are

problematic, generally causing the simulation to end when the cells attempt to separate.

We continue to use the same physical domain as the previous two sections, now with

h = 0.2
µ
m, and place two RBCs therein, each with nd = 2500 and ns = 10000. The ratio

ns/nd = 4 is chosen so that sample sites with spacing h means data sites have spacing 2h.

We believe this to suffice in preventing cells from intersecting, but this is not guaranteed if

the points do not maintain appropriate spacing throughout a simulation. We use the 2-stage

RK method with time step ∆t = 50 ns. To interpolate velocities and spread forces, we use

the 4-point cosine δ̂1 [81], shown in Figure 5.1. The cells are placed with cell centers on the

line x = z, y = 8
µ
m. They are initially separated by a gap of 4h = 0.8

µ
m between their

convex hulls, i.e., ignoring the concavities. Inspired by Crowl & Fogelson [66], we add the

fictitious force density

F
fict

= ±0.1 dyn/cm · (e1 + e3)/
√

2,

to each cell, where the sign is chosen so the force points into the gap, to draw the cells
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together. Success in these tests implies that this configuration of data and sample sites, the

spatial resolution, and the time step are acceptable for whole blood simulations.

Initial conditions and configurations after a short time are illustrated in Figure 5.3,

where we view them from above the x = z plane. In each case, the cells move slightly

closer together and then undergo considerable deformation. The data sites are initially

approximately 2h apart from each other. No problems seem to arise from this, and in some

cases the cells eventually attempt to slide past one another. We also deduce that the IB

method with the cosine kernel can resolve interactions at a distance of h to 2h. We consider

cells passing within this threshold to be in contact. Throughout the simulation, the cells

remain distinct, and the simulations end due to extreme forces triggering the stopping

condition [63]

∆t >
1
4

√
hρ

‖ f‖∞
. (5.4)

For the remainder of this chapter, we will only consider this arrangement of data and sample

sites and this grid resolution.

(a) t = 0 ms (b) t = 1.5 ms (c) t = 0 ms (d) t = 1.1 ms

(e) t = 0 ms (f) t = 1.5 ms (g) t = 0 ms (h) t = 1.1 ms

Figure 5.3: Collision tests between two RBCs. A fictitious force is added to the RBCs to draw

them together. (a)–(b) The RBCs are initially aligned with concavities facing one another. By

1.5 ms, the cells take on a hemispherical shape. The concavities in the gap are maintained.

Shortly thereafter, asymmetries in the setup lead to the cells sliding past one other. (c)–(d)

The RBCs are initially aligned with their edges facing one another. By 1.1 ms, the cells take

on a hemispherical shape. The remnants of the concavity can be seen on the left cell in

(d). Shortly thereafter, these cells also slide past one another. (e)–(f) The RBCs are initially

aligned with the edge of one facing a concavity of the other. The cells wrap around each

other by 1.5 ms, taking on a bulbous banana shape. (g)–(h) The RBCs are initially aligned

with their edges facing one another with one of the cells rotated about the axis e1 + e3 by

π/2. By 1.1 ms, the cells wrap around each other, again taking on the bulbous banana shape.
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5.2 Whole blood

In what follows, we consider a 16
µ
m× 12

µ
m× 16

µ
m domain with periodic boundaries

in the x and z directions and with Dirichlet boundary conditions in the y direction. The

fluid velocity is initially zero except at the top boundary, where it moves at 12 mm/s. In the

absence of cells, the flow tends toward steady Couette flow with a shear rate of γ̇ = 1000 s
−1

.

This serves as our model near-wall region of a blood vessel.

For whole blood simulations, we return to the 4-point B-spline, B3, as the IB kernel.

Because we are limited to very small time steps with either timestepping scheme, we use

backward-forward Euler with ∆t = 50 ns to reduce simulation time. We observe qualitative

agreement between these two schemes. We have already settled on an RBC discretization in

the previous section. We use the same spiral method to discretize the platelet, but with 900

data and sample sites. Using the same number of sample sites and data sites aligns more

closely with traditional IB methods. We also find that the Bauer spiral places points more

densely along the edge of the platelet, which is helpful in resolving the large curvatures

there. We parametrize the surface of the endothelium over (θ, ϕ) ∈ [0, 2π)2
with reference

shape

X̂
endo

(θ, ϕ) =

 16
µ
m · (θ/2π)

y(θ, ϕ)
16

µ
m · (ϕ/2π)

 , (5.5)

where y(θ, ϕ) depends on the shape under study. The endothelium is discretized using

16000 points along the toroidal spiral described in Appendix B. We consider two shapes

for the endothelium. The first, y = 1
µ
m, emulates the flat wall typically seen in near-wall

simulations of RBCs or platelets. The other attempts to recreate the elongated endothelial

cell shape typical of exposure to high-shear conditions,

y(θ, ϕ) = 0.75
µ
m + 1

µ
m · cos2(θ − ϕ) sin2(ϕ/2).

The bumps have a prominence of 1
µ
m. The endothelial surface is raised by 0.75

µ
m to avoid

interacting with the domain boundary. The positions of the surface are chosen to maintain

a fixed hematocrit of approximately 34% for both endothelial shapes. The bumps in this

surface are oriented diagonally across the domain, so we design an initialization process

that orients the flow and RBCs in that direction.

As a preliminary validation of the platelet model and to establish baseline platelet

motion, we consider two platelets along a flat wall. They are placed parallel to the wall at

distances of 0.3
µ
m and 0.5

µ
m. The domain does not contain any RBCs. At a distance of
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0.3
µ
m, the platelet is expected to “wobble”, in which the platelet tilts slightly upward and

downward, periodically [79]. On the other hand, the platelet initially 0.5
µ
m from the wall

should tumble end-over-end. We observe wobbling at a frequency of approximately 10 s
−1

and tumbling with a frequency of approximately 30 s
−1

. We also note that the edge of the

tumbling platelet remains pointed towards the wall for only 3–4 ms.

5.2.1 Initialization

We begin by assuming that the platelets have already been marginated by the RBCs.

We think of the domain as having three layers with the endothelium at the bottom, RBCs

on top, and platelets in between. We begin by settling the endothelium and RBCs before

placing platelets.

While the bumps in the endothelium are aligned to flow moving diagonally across the

domain, it is much simpler to initially align RBCs for flow moving in the z direction. In

addition to the endothelium, we place 2 rows of 4 RBCs, each in their reference configuration,

in the domain with its center of mass on the plane y = 6
µ
m and oriented with concavities

facing in the z direction. Because the domain is not wide enough to accommodate two

reference RBCs alongside one another, the cells are staggered by 2
µ
m. These locations are

then randomly translated and rotated while maintaining a distance of at least 2h between

cells.

Before placing any platelets in the domain, we allow the flow to develop with only

the endothelium and RBCs. The initial fluid velocity is zero except for the top boundary,

which has velocity 16 mm/s · (sin αe1 + cos αe3). Initially, α = 0 so that the flow matches

the orientation of the RBCs. Over the course of 7.2 ms, α increases to π/4 to match the

orientation of the endothelium. At this point, the RBCs are not sufficiently mixed. We allow

the initialization to continue until at least 17 ms, which is approximately when the first RBC

overtakes its neighbor. From here, we choose a series of times, sampled from a Poisson

distribution to be approximately 3 ms apart, at which to begin simulations with platelets.

The RBCs for each of the chosen starting configurations are considerably and unpre-

dictably deformed and have left a space of a few microns above the endotheliumin which we

place platelets. To find reasonable starting orientations for the platelets, we randomly choose

points on the endothelium and one on each platelet surface. Each of the simulations in the

upcoming sections contains two platelets, so we choose two points on the endothelium that

are at least 3.9
µ
m, a platelet diameter plus 4h, apart. The resulting platelet are spaced far

enough apart as to not intersect. We compute normal vectors on the surfaces of the endothe-
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lium and platelets at these points. The platelets are oriented so that the normal emanating

from the platelet opposes the normal at the corresponding point on the endothelium. The

platelet is then placed so its chosen surface point is separated from the endothelium point

by a random distance between 0.3
µ
m and 1

µ
m. If the generated orientation does not pass

within 0.4
µ
m of an RBC, the platelet is accepted. Otherwise, we try again with a different

platelet point. This algorithm typically succeeds within 2 attempts.

This initialization process is performed once for each endothelial configuration and

we take the first four initial configurations for each. In the following sections, we present

behaviors found in these simulations. As a point of comparison, we also consider the initial

configurations for the bumpy wall with the RBCs removed from the domain.

5.2.2 Characterization of flow and cell behaviors

In this section, we catalog the differences in the flow between whole blood along a

bumpy and flat wall, and between flow along a bumpy wall with and without RBCs. We

aim to compare the interactions platelets have with RBCs and the endothelium for these

test cases.

Flow profiles are shown in Figure 5.4. The most notable difference among the three flow

profiles is the nearly Couette flow when RBCs are absent. The only distinction between this

and Couette flow is the smoother transition at the wall, due to the bumps. This is also the

distinguishing feature between the profiles corresponding to bumpy and flat walls in the

presence of RBCs. The smooth transition from the bumps results in marginally slower flow

speeds throughout the domain, compared to the flat wall. The transition in the velocity

across the flat wall is comparatively sharp. The inclusion of RBCs causes the bends in the

red and blue curves around y = 3
µ
m and y = 9

µ
m. Platelets inhabit the region between

y = 1 and 3
µ
m. In simulations featuring RBCs, the platelets experience higher shear rates

than those without RBCs due to a reduction in apparent viscosity. This is a consequence

of the Fåhræus effect. The bend near y = 9
µ
m is nonphysical and arises from satisfying

boundary conditions at the top boundary. However, the increased shear rate in the region

between y = 9 and 12
µ
m seems to be useful in deterring RBCs from approaching the upper

boundary. An exclusionary region of just 1–2
µ
m along the top boundary increases the

effective hematocrit to 37–41%. Furthermore, the reduced shear rate in the region containing

RBCs results in slower tank-treading, with one period now lasting approximately 40 ms.

RBCs are effective at preventing the platelets from moving too far from the endothe-

lium. The furthest observed distance from the endothelium any platelet takes is just under
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Figure 5.4: Time- and space-averaged fluid velocity profiles for each of the test cases. The

inclusion of RBCs (red and blue curves) causes the region inhabited by platelets, where y is

approximately between 1 and 4
µ
m, to experience a higher shear rate than it would without

RBCs (yellow curve).

1.5
µ
m. Likewise, RBCs infrequently enter the cell-free layer, with some notable exceptions,

discussed below. We do not observe any platelet wobbling. Instead, platelets transiently

follow the curve of the bumpy walls, tilt down into the valleys between bumps, and tumble.

Nothing suggests that bumps in the surface of the endothelium alone can sequester platelets,

nor do we directly observe stagnation zones.

Bumpy endothelium simulations without RBCs mimic those with a flat wall; platelets

move away from the wall to a point where they are free to tumble. Unsurprisingly, we

observe platelet tumbling for both flat and bumpy walls with RBCs as well. In Stokes-like

flow, a rigid platelet would tumble faster in flow with a higher shear rate. We might therefore

expect the platelet to tumble faster with RBCs. However, RBCs can significantly disturb the

fluid around a platelet, speeding up its motion, slowing it down, or preventing a tumble

altogether.

We observe platelets rolling in the flow direction along their edge. Because the platelet

in this arrangement is aligned vertically, part of the edge stays in near-contact with the

endothelium while also extending into the region inhabited by RBCs. Contact with RBCs is

frequent. These contacts can have a destabilizing effect, but may also prolong the rolling.

Figure 5.5(a)–(d) consists of a series of snapshots illustrating the behavior. The platelet in

this case is flanked by two RBCs, so it does not have the space to topple over until the RBCs

pass a few milliseconds later.

While Figure 5.5 shows this phenomenon on a bumpy wall, it is not limited to that
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(a) t = 46 ms (b) t = 48 ms

(c) t = 50 ms (d) t = 52 ms
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Figure 5.5: An example of a platelet rolling on its edge (“unicycling”). (a)–(d) Snapshots of

a platelet unicycling with RBCs, one translucent, flanking either side. The camera tracks the

opaque platelet. It’s motion is indicated by the endothelium moving from right to left. (e)

The distance between the platelet and the endothelium. The shaded region indicates that

the orientation of the platelet’s short axis is within 45◦ of the vorticity direction. The black

dashed line indicates 2h and is the maximum distance that might be considered contact

with the endothelium.
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endothelial shape. We first observed this motion with a flat wall, and there it lasted over

40 ms. The motion was maintained, in part, by an RBC that rode along the top of the platelet,

partially enveloping the platelet. We designate a platelet rolling on its edge as unicycling.

Figure 5.5(e) illustrates that the platelet spends more time in contact or near-contact with

the endothelium while unicycling compared to the tumbles near t = 16 ms and t = 29 ms.

Though RBCs seem to control the duration of the unicycling, they are not strictly necessary

for unicycling to occur. In tests with a bumpy wall without RBCs, unicycling is initiated

when a platelet rolls sideways, relative to the flow direction, off of a bump. Without RBCs,

the platelet maintains the vertical alignment for a majority of the simulation thereafter.

However, without frequent interaction with RBCs, the platelet in these simulations move

away from the wall. Moreover, while we have not observed it directly, we expect that a

lone platelet traveling over a flat wall would also exhibit unicycling, given the right initial

orientation.

We notice that in simulations with a bumpy endothelium, platelets will collide with the

bumps. This tends to occur while the platelet is tumbling, and the edge of the platelet makes

contact with the endothelium. This interaction is characterized by deformations that flatten

the edge of the platelet and a
˜
5% relative change in the aspect ratio of the platelet. However,

the collision need not occur along the edge of the platelet, nor, indeed, against a bump in the

endothelium. Similar collisions occur in the case of a flat wall, implying that RBCs mediate

this behavior. A clear case of this is illustrated in Figure 5.6(a)–(d). We also note that the few

milliseconds preceding the unicycling in Figure 5.5 correspond to a collision with the wall,

showing that this is yet another trigger for unicycling to occur.

Because the platelet comes into contact with the endothelium, or nearly does so, the

platelet slows along the area of contact. Figure 5.6(e) shows the correlation between relative

change in aspect ratio and reduction in minimum platelet surface velocity. Though the

aspect ratio of the platelet changes somewhat while normally tumbling, changes of this

magnitude seem to always correspond to interactions with the endothelium. Collisions

with the RBC, for example, result primarily in deformation of the RBC and deflection of the

platelet, which is otherwise relatively unperturbed.

5.3 Discussion

We have applied the RBF-IB methodology to the problem of whole blood simulation.

RBCs experience contacts in various configurations. Despite using a different number of

data and sample sites to discretize them, the RBCs remain distinct. We have shown that a
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(a) t = 46.0 ms (b) t = 49.5 ms

(c) t = 53.0 ms (d) t = 56.5 ms
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Figure 5.6: An example of an RBC-mediated collision between a platelet and the endothelium.

(a)–(d) Snapshots of a collision between a platelet and the endothelium. (a) The platelet

attempts to tumble. (b)–(c) An RBC comes into proximity with the platelet, deflects to avoid

the platelet, and pushes the platelet into the endothelium, thereby preventing the platelet

from tumbling. (d) The platelet is free to tumble again. (e) The minimum velocity on the

surface of the platelet. The shaded region indicates that the relative change in aspect ratio

exceeds 4%.
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continuous energy RBF-based model RBC extended with dissipative forces exhibits tumbling

and tank-treading behaviors. We used model RBCs, platelets, and a model endothelium to

simulate the flow of whole blood over a perturbed vessel wall. We considered both flat and

bumpy endothelial shapes and flow with and without RBCs along a bumpy wall.

The most prominent result of the whole blood simulations is that simulating platelets,

but neglecting the influence of RBCs, cannot capture the true nature of platelet motion.

Platelets experience augmented shear rates due to RBCs. RBCs confine platelets to the

cell-free layer. Simulations without RBCs exhibit regular platelet tumbling or wobbling.

In reality, the motion of platelets is more chaotic. Interaction with an RBC would almost

certainly disturb a wobbling motion and have been shown to delay tumbling. On a flat

wall, certain platelet behaviors would only be observed by considering numerous starting

configurations.

The effect of RBCs generally overwhelms the effects of the wall. Figure 5.4 shows that the

flat wall yields slightly faster fluid velocities, but the flow profiles for flat and bumpy walls

are qualitatively the same, except for the immediate vicinity of the wall. The result is a region

of space between the bumps with a velocity gradient. Platelets following the shape of the

bumpy wall crest the bump, dip into the region of lower velocity, and tumble. This feature

is absent from the flat wall, but tumbling is not an extraordinary behavior. In either case, we

observe unicycling, in which the platelet rolls in the flow direction along its edge. Unicycling

can be stabilized by RBCs, when RBCs flank the platelet, or by partially encapsulating the

platelet as it flows overhead. It can also be destabilized by RBC passing on one side. The

endothelial protrusions are also sufficient to orient a platelet in the unicycling, but without

RBCs to confine the platelet near the wall, the platelet does not roll along the wall for long.

However, we find that unicycling seems to be stable. Unicycling also highlights the need for

3-dimensional simulations—it is a behavior that would not be captured by a 2-dimensional

simulation. We also observe platelet-endothelial interactions for both endothelial shapes.

These interactions are typically caused by RBCs driving the platelet into the endothelium.

The collisions are characterized by significant deformation to the platelet and a speed

reduction. From a qualitative standpoint, the endothelial shape alone has minimal impact

on the motion of the platelets, meaning that for modeling a healthy blood vessel, a flat wall

suffices.

We consider an alternative interpretation of the flat wall: a model exposed subendothe-

lium. Near contact with the subendothelium triggers platelet activation. Unicycling keeps

an edge of the platelet near the wall, without hindering mobility. The vertical alignment is
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often maintained much longer than wall contacts from tumbling, and we do not observe

wobbling in the presence of RBCs. We propose unicycling as an effective means by which

platelets survey the vasculature for injury. Of course, the platelet can only distinguish a

healthy vessel from an injury by encountering the necessary chemical signals. Until then, the

platelets unicycle around bumps along the healthy endothelium as well. This also implies

that RBCs indirectly assist in platelet activation for these shear rates.

We also consider an alternative interpretation of the bumpy wall. Because the bumps

are approximately the same size as a platelet, we can consider this to be a rough model of a

subendothelium with a few deposited platelets. Under this interpretation, we view platelet-

wall contact as interactions between an unactivated platelet and the subendothelium, when

contact occurs in a valley, or between an unactivated platelet and an between an unactivated

and activated platelet adhering to the subendothelium, when contact occurs on a bump.

These interactions correlate with a reduction in velocity at the contact zone and the platelet

membrane becomes flattened at the point of contact. We suggest that the decreased velocity

may be sufficient to allow bonds to form between the platelets or between the platelet and

subendothelium. By flattening, the platelet exposes more surface area at the point of contact,

so that the activation signals are more likely to reach the platelet. The observed velocity

reduction seems insufficient for this, but the resolution of our simulations is also unlikely to

allow cells to pass within bonding distance of one another. Overcoming this limitation we

leave as a future direction.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

In this dissertation, we describe a method for using radial basis function (RBF) surface

interpolation to compute surface forces for general constitutive laws. We present advances

in immersed boundary (IB) method parallelization that enable the implementation of RBF-

based geometry for the IB (RBF-IB) method entirely on the GPU. Ultimately, we apply these

techniques to the problem of simulating whole blood. We give background for each of the

cellular components included in our simulations and the biological motivation in Chapter 1.

We continue to Chapter 2 for a view of the standard IB method, starting with the fluid

equations. We give details of the discretization of the incompressible Navier-Stokes equa-

tions and describe the various elastic and viscoelastic energy models used in representing

blood cells and the endothelium. We detail the discretization of the blood cells and the

RBF-based methods for reconstructing the cell surfaces from a point cloud. We use the

discretization to construct discrete linear operators which allow us to recover geometric

data for the cell: tangents, their derivatives, and quadrature weights for the sphere using

RBFs—a preliminary to quadrature weights for the cell. The method allows us to use a

different number of points to recreate the cell than are used to evaluate forces. Finally, we

present the IB method, which we use to couple the cellular and fluid components of blood.

In Chapter 3, we introduce a discretization of cellular surface forces for smoothly re-

constructed surfaces. It uses the analytic force density in terms of geometric quantities on

the surface. Equipped with the ability to approximate the surface geometry terms from

Chapter 2, we describe a method to evaluate the force density. Moreover, we use surface

geometry to construct surface quadrature weights from spherical quadrature weights. With

appropriate quadrature weights, we recover forces from the computed force density. We use

spherical harmonics to compare this method to forces derived from piecewise linear surface

interpolation. The continuous representation gives higher quality forces than its piecewise

counterpart. We apply the discretization to the problems of cell blebbing and a single RBC

passing through a narrow tube in an unsteady Stokes flow context. With sufficiently many
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interpolation points, the continuous representation is on par with traditional IB methods in

preventing leakage through a single cell membrane.

Library routines provide parallelization for the fluid solver and surface geometry op-

erators in Chapter 2. In Chapter 4, we develop algorithms to parallelize the IB interaction

operations. We present a straightforward parallelization of the velocity interpolation op-

erator. To avoid the potential write contentions that have typically prevented effective

parallelization of the spreading operation, we decompose the problem into applications of

the key-value sort and segmented reduce parallel primitives. This makes the algorithms suit-

able for either multicore CPUs or GPUs. Unlike previous attempts at parallelization, these

algorithms are simultaneously independent of the fluid grid and capable of concurrently

processing arbitrary Lagrangian points. We develop two variant algorithms that trade-off

dependence on the fluid grid for increased throughput for small grids. The algorithms

exhibit near-perfect scaling with increasing problem sizes and increasing computational

resources and expect even better performance from more capable hardware. We now have

a complete RBF-IB implementation entirely on the GPU.

Chapter 5 represents the culmination of all of our work: three-dimensional whole blood

simulations. We begin by validating that the red blood cell (RBC) model and RBF-IB work

as intended by establishing convergence, recovering typical RBC behaviors, and verifying

that cells remain distinct when in close contact. For the tests presented, this lends further

credence to the idea that using a different number of points to move an IB structure than is

used to evaluate forces can avoid leakiness, now in the case of multiple interacting cells. We

simulate whole blood flow over a bumpy and flat wall and RBC-depleted blood over a wavy

wall. The simulations involving RBCs are qualitatively the same, but comparison with the

tests without RBCs reveals that platelet motion is only accurately captured by considering

the effects of RBCs. We observe two stand-out behaviors: unicycling, in which a platelet

rolls along the wall on its edge, and RBC-mediated collisions between platelets and the wall.

Unicycling accompanies periods in which the platelet remains near the wall. We propose this

as a mechanism by which the platelet surveys the wall for damage. Collisions, on the other

hand, bring with them a reduction in velocity and platelet deformation along the region

of contact. The reduction in velocity may suffice to allow chemical signals from a budding

aggregate to reach the unactivated platelet. If so, the deformation aids in accelerating the

transmission of chemical signals by exposing more platelet surface area to the wall.
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6.2 Future work

While this dissertation answers some questions, it raises others. This final section

discusses potential numerical, computational, and biological extensions of the presented

work. We consider replacing the global surface reconstructions with local interpolants to

more closely follow typical implementations of the IB method, an adaptation of the parallel

interpolation and spreading IB operations to distributed memory architectures, and an

experiment in modeling endothelial cells.

6.2.1 RBF methods for traditional IB

Implementations of the IB method typically use the same set of Lagrangian points to

perform the spreading and interpolation operations. Operators with this property are

adjoints, which implies that the operations discretely conserve energy [100]. As stated in

Section 2.3, we use a set of data sites for RBC surface interpolation, and a different set of

sample sites from which to spread forces, to reduce the memory footprint of the discrete

differential operators. However, the bending force density (3.81) contains ∇2
s H, which

we compute by first approximating H at data sites and then applying the discrete surface

Laplacian evaluated at sample sites. This requires two sets of discrete operators. Though

we still achieve our goal of reducing memory usage for cell representations, using a single

Lagrangian grid drastically simplifies the cell representation.

There are additional concerns with using a smaller set of data sites. In high shear rate

regimes, RBCs exhibit the tank-treading behavior, even in relative proximity to other RBCs.

In 2 dimensions, this underpins the behavior described as “tank-trading” [97]. Suppose

that the data sites are, say, 3h apart from their nearest neighbors. As neighboring RBCs

tank-tread, their data sites continually move. It appears likely that a data site on one of

the cells will eventually find a gap in the data sites of the other. Even a small gradient in

the fluid velocity between the two cells can lead to one cell encroaching on the other until

the cells become entangled. This manifests as a sharp spike in the surface of one or both

cells, as they attempt to pull themselves apart, unsuccessfully. Nearly all simulations with

neighboring, tank-treading RBCs fail due to this issue. The simulations in Chapter 5 reduce

the data site spacing to 2h and the domain to constrain the motion of the RBCs in an attempt

to combat this issue. We have also mimicked IBFE [100] by tracking sample sites and solving

a least-squares problem to reconstruct the surface at data sites. This leads to unstable linear

operators in the force calculations. RBCs constructed in this manner exhibit unsustainable

wrinkling. Even operators used for stabilization such as hyperviscoscosity [101] have
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spurious, unstable eigenvalues.

Other RBF-based methods exist which use local interpolants but still generate a high-

fidelity reconstruction of the surface. The resulting discrete linear operators are sparse. The

idea is to use the same set of points to construct the local interpolants and evaluate forces.

The sparsity of the linear operators drastically reduces their memory footprint compared to

their global counterparts. The first of these methods is RBF-based finite differences (RBF-

FD), which constructs a piecewise, high-order interpolant. Whereas we have avoided the

singularities in using a global coordinate system on the sphere by discretizing away from

the poles, local RBF-FD interpolants have no such limitation. The other method is the RBF

partition of unity method (RBF-PUM), which stitches together local RBF-FD interpolants into

a global interpolant with minimal additional fill-in of the sparse linear operators. Cursory

attempts at replacing the global interpolants of Section 2.3 by either RBF-FD or RBF-PUM

result in unexplained membrane deformations not exhibited by the global interpolant. With

these deformations come nonphysical forces, which terminate the simulation.

Solving this problem requires understanding the differences between piecewise linear,

global RBF, and piecewise RBF interpolants. Curiously, the high-order global RBF and

low-order piecewise linear interpolants seem to work well for certain types of problems.

Piecewise linear interpolants are extremely tolerant of deformation, in part because they do

not accurately recover force densities. RBF-FD and RBF-PUM may therefore fill the niche of

accurately computing force while effectively preventing overlap between cells.

6.2.2 A distributed memory parallel IB method

The conclusions of this thesis are limited by our ability to simulate whole blood with

sufficient speed and resolution. Part of this is due to the extreme time steps required to main-

tain stability. This, in turn, is likely due to the timestepping method. Backward-forward

Euler, for example, has severe time step restrictions under advection-dominated condi-

tions [91]. Methods with more permissive time step allowances tend to require spreading

forces multiple times in a timestep. Fortunately, this dissertation provides a fast algorithm

for spreading. However, we observe a bottleneck at the Poisson solve required to satisfy

incompressibility, taking up approximately 60% of the wall clock time. For compute-bound

components, one possibility for solving this issue is to distribute the work among several

devices. Libraries such as hypre [99], PETSc [92], and AmgX [104] provide distributed linear

solvers.

This dissertation does not consider how Algorithms 4.3 and 4.4–4.6 will perform on
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distributed systems, though we anticipate they will perform well, as they do not rely on

partitioning the Eulerian or Lagrangian points. Because information about the Eulerian grid

is encoded by the functions κ and #, an optimized distributed-memory algorithm will use a

different κ or # function on each node, to account for Eulerian grid partitioning. Partitioning

the Eulerian grid also reduces the number of keys needed to represent the portion of a grid

assigned to a node. So, while the number of grid cells increases, the number of grid cells

assigned to a single node stays below 232
, and the conditions for linear runtime, as described

in Section 4.1.3, are satisfied. As a side effect, we remain in the regime where the buffered

spreading variants, outperform their bufferless alternative.

Distributing the Lagrangian structures is the final hurdle to overcome. A Lagrangian

structure that spans Eulerian grid partitions must either (a) be copied in its entirety to

both nodes, or (b) divided among the nodes and communicate partial geometric data

across nodes. Both methods require some amount of communication to perform velocity

interpolation. Implementing (a) with parallel spreading and interpolation requires some

simple preprocessing to avoid duplicating work. However, (b) is incompatible with the

global cell interpolants presented here, as no node would have the information required

to compute complete geometric data. This is ameliorated, in part, by RBF-FD methods,

but (a) likely requires less communication, and is currently the method of choice [96, 100].

As simulations become more computationally intensive, distributed algorithms become

increasingly necessary.

6.2.3 Models of endothelial cells

The shape of an endothelial cell is determined primarily by its adhesion to the suben-

dothelium, its nucleus, and exposure to shear stress [95, 102, 103]. They take on a cobblestone

arrangement under low shear conditions and elongate in high shear. Their nuclei are dis-

placed by flow [105]. Caille et al. subjected individual endothelial cells to compression

tests to estimate their mechanical properties [93]. They find that the nucleus is much more

resistant to deformation than the cytosol when treated as Mooney-Rivlin solids, but that the

cytosol behaves as a protective barrier to the nucleus.

We have taken some liberties in modeling the endothelium, following [94] in giving

it a sinusoidal shape. As a preliminary to more realistic models of the endothelium, we

devise a simple exploration of endothelial dynamics with the hope of recovering some

of the observed behaviors. Treat the endothelium as a relatively rigid nucleus embedded

within a deformable cell membrane. Along the bottom of the cell, we tether the cell to a flat
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subendothelium with breakable tethers. A diagram of the setup is shown in Figure 6.1. The

neo-Hookean energy density is a reasonable choice for the cell and nuclear membranes due

to its generality and because we know how it behaves for shear moduli in the range between

that of an RBC [98] and a platelet. There are ostensibly only 5 parameters to consider: the

shear and bending moduli for the cell and nuclear membranes, and the volume of the cell.

With an improved model of the endothelial cell, we move ever closer to realistic blood

simulation.
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APPENDIX A

BOUNDARY ERROR CORRECTION FOR STAGGERED
GRIDS

The marker-and-cell (MAC) grid [106] is a popular method for fluid simulations. Compo-

nents of vector-valued quantities are discretized at the center of the corresponding cell faces

and scalar-valued quantities at the cell center. This staggering is a distinguishing feature

of the MAC grid. Staggering avoids the checkerboard instability that arises from using

collocated grids [107]. However, in domains with nonperiodic boundaries, this means that

some vector components will encounter situations where satisfying boundary conditions

with linear ghost value extrapolation leads to numerical error. This appendix explores these

errors and provides a resolution that maintains compatibility with the conjugate gradients

method.

A.1 A simple case

To illustrate the need for boundary correction, we consider a simplified problem. Because

every linear solve in the fluid solver depends on some form of the discrete Laplacian, we

focus our attention on that operator. Consider the 1-dimensional diffusion problem for

u = u(x, t),

ut = µuxx + f for x ∈ (0, 1), (A.1)

γ0 = α0u + β0ux at x = 0, (A.2)

γ1 = α1u− β1ux at x = 1, (A.3)

where α2
m + β2

m 6= 0 for m = 0, 1. Here, subscripts t and x indicate partial differentiation

with respect to time and space, respectively. We discretize [0, 1] into N cells of length

h = 1/N and let un
i approximate u(xi, n∆t) at xi = h(g + i − 1), where i ranges over

{1, . . . , N}, time t = n∆t, and g ∈ (0, 1] is the one-dimensional grid staggering. Consider

the boundary at x = 0. Let x0 = h(g− 1) be a ghost point to the left of the boundary, and let

un
0 be the extrapolated value of u at the ghost point. Near the boundary, we use the linear
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approximations

u(0, n∆t) ≈ aun
1 + bun

g and ux(0, nk) ≈ a′un
1 + b′un

g . (A.4)

We expect a′ and b′ to be of order O(h−1), and require that these approximations be at least

first order:

a + b = 1, a′ + b′ = 0, and a′hg + b′h(g− 1) = 1. (A.5)

For simplicity, we drop the subscripts from α0, β0, and γ0, and the superscripts indicating

the timestep. Substituting into the boundary condition yields

γ = α(au1 + bu0) + β(a′u1 + b′u0) +O(h). (A.6)

Given a value u1 and boundary data γ, we can extrapolate

u0 ≈ (αb + βb′)−1(γ− (αa + βa′)u1), (A.7)

when αb+ βb′ 6= 0. In the extraordinary case that this does not hold, the boundary condition

is of Robin type, with neither α nor β zero, and value at the ghost point is arbitrary. We

then have four linearly independent conditions for the weights a, b, a′, and b′: the three

conditions in (A.5) and αb + βb′ = 0. Solving for the weights reduces (A.6) to αu1 = γ. We

do not consider this case further.

Assuming αb + βb′ 6= 0, the standard 3-point discrete Laplacian at x1 gives the approxi-

mation

u0 − 2u1 + u2 = (αb + βb′)−1γ−
(

2 + (αb + βb′)−1(αa + βa′)
)

u1 + u2. (A.8)

Replacing approximations with exact values and Taylor expanding about x1 yields

u0 − 2u1 + u2 = (αb + βb′)−1 (α (u− hguxx + 1/2(hg)2uxx
)
+ β(ux − hguxx)

)
−
(

2 + (αb + βb′)−1(αa + βa′)
)

u +
(
u + hux + 1/2h2uxx

)
+O(h3)

= (αb + βb′)−1(α(1− a− b)− β(a′ + b′))u

+ (αb + βb′)−1(β− αhg + (αb + βb′)h)ux

+ (αb + βb′)−1 (1/2α(gh)2 − βhg + 1/2(αb + βb′)h2) uxx +O(h3).

(A.9)

The coefficient of u vanishes according to (A.5). We further require that the coefficient of u′

be zero. That is,

αb + βb′ = −h−1(β− αhg).
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Choosing a = 1− g, b = g, a′ = h−1
, and b′ = −h−1

satisfies these conditions. As a result,

αa + βa′ = h−1(β + αh(1− g)).

Finally, the first possibly nonzero coefficient is that of uxx:

h−2 [u0 − 2u1 + u2] =
[

1/2 + g(β− αhg)−1(β− 1/2hg)
]

uxx +O(h2)

=
[
1− 1/2(β− αhg)−1(β(1− 2g)− αhg(1− g))

]
uxx +O(h2)

:= (1− ε)uxx +O(h2).

(A.10)

Near the boundary, when ε 6= 0, i.e., β(1− 2g)− αhg(1− g) 6= 0, these approximations

yield a 0th
-order approximation to the Laplacian. Cases where ε 6= 0 arise naturally from

using staggered grids in a domain with at least one nonperiodic dimension. In fact, for fixed

α and β, only g = g∗(2β/αh) results in ε = 0, where

g∗(r) =

1/2
(

1 + r +
√

1 + r2
)

, r ≤ 0

1/2
(

1 + r−
√

1 + r2
)

, r > 0.

For Neumann boundaries, ε = 0 when g = 0.5; for Dirichlet boundaries, when g = 1. The

case for the opposing boundary is very similar: simply substitute the correct boundary

condition coefficients and data, −h for h, and when g 6= 1, 1− g for g. We will use ε0 and ε1,

when necessary, to distinguish the error factor when approximating the Laplacian at the

x = 0 and x = 1 boundaries, respectively.

Suppose that in approximating the solution to (A.1)–(A.3), we employ the Crank-Nicol-

son IMEX timestepping scheme. The discrete equations are

un+1
i − un

i
∆t

=
µ

2

(
un+1

i−1 − 2un+1
i + un+1

i+1

h2 +
un

i−1 − 2un
i + un

i+1

h2

)
+ f n+1/2

i , (A.11)

where superscripts denote the time step and subscripts the space step. With λ = µ∆t, we

rewrite this in matrix form as

(I − 1/2λ∇2
h)u

n+1 = (I + 1/2λ∇2
h)u

n + λBhγn+1/2 + ∆t f n+1/2, (A.12)

where Bh modifies equations near the boundary with boundary data, according to (A.8). As

we have shown, this introduces an error near the boundary. This error will propagate into

the center of the domain at a rate dependent upon µ. Figure A.1 illustrates this phenomenon.

The convergence test in Table A.1 shows that these errors vanish at second order for Dirichlet

boundary conditions. While Dirichlet boundary errors vanish at second order, the method

converges to the wrong steady state. It is clear from Figure A.1(b) that despite the first-

order convergence shown in Table A.2, Neumann boundary errors will only grow as the

simulation progresses.



102

(a)

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

t

x

0 0.2 0.4 0.6 0.8 1 1.2

·10−5

(b)

0 0.1 0.2 0.3 0.4 0.5
t

0 1 2 3 4 5

·10−3

Figure A.1: Propagation of errors near the boundary in approximating the solution of

ut = uxx + 1 on [0, 1] without correction at the boundary. Initially, u is analytically steady:

u(x, 0) = x(1− x)/2. We expect no change in u over time. (a) u satisfies homogeneous

Dirichlet boundary conditions. The domain is discretized using h = 0.01, with points xi =
h(i− 0.5) for i = 1, . . . , 100. (b) u satisfies the Neumann boundary conditions ux(0, t) =
−ux(1, t) = 1/2. The domain is discretized using h = 0.01, with points xi = hi for i =
1, . . . , 99.

Table A.1: Convergence test for Crank-Nicolson timestepping without boundary correction

for the test problem ut = uxx + 1 with initial steady conditions u(x, 0) = x(1− x)/2 and

homogeneous Dirichlet boundary conditions.

N ∆t (ms) ‖u− u0‖2 order ‖u− u0‖∞ order

25 4 142.438496 194.026473

50 2 35.639706 1.99878 49.254058 1.977949

100 1 8.911804 1.99969 12.406781 1.989114

200 0.5 2.228068 1.99992 3.113348 1.994590

A.2 One-dimensional correction

To improve the approximations near the boundary, we replace the corresponding rows

of (A.12) with those obtained by discretizing the scaled equation

(1− ε)ut = µ(1− ε)uxx + (1− ε) f . (A.13)

The solution should be identical to that of the original equation as long as ε 6= 1, but the

Laplacian constructed above need not be modified to approximate (1− ε)uxx. We simply
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Table A.2: Convergence test for Crank-Nicolson timestepping without boundary correction

for the test problem ut = uxx + 1 with initial steady conditions u(x, 0) = x(1− x)/2 and

Neumann boundary conditions ux(0, t) = −ux(1, t) = 1/2.

N ∆t (ms) ‖u− u0‖2 order ‖u− u0‖∞ order

25 4 4308.714364 6950.600999

50 2 2141.879730 1.00838 3559.181576 0.965592

100 1 1067.893238 1.00411 1801.330925 0.982482

200 0.5 533.192720 1.00204 906.192341 0.991174

multiply the remaining terms by 1− ε. Define the modified identity matrix

Ĩ =


1− ε0

1
.
.
.

1
1− ε1

 . (A.14)

Rescaling equations for values near the boundary, equation (A.12) becomes

( Ĩ − 1/2λ∇2
h)u

n+1 = ( Ĩ + 1/2λ∇2
h)u

n + λBγn+1/2 + ∆t Ĩ f n+1/2. (A.15)

This improves the error near the boundary to second-order at the cost of one more diagonal

matrix-vector multiplication.

Alternatively, one could approximate the Laplacian near the boundary using a quadratic

interpolant. It would always give a second-order approximation but would break the

symmetry of the discrete Laplacian. Linear interpolation maintains symmetry, and the

coefficients obtained near the boundary are exactly those of the quadratic interpolant, scaled

by 1− ε. The correction recovers the solutions to the problems illustrated in Figure A.1 to

machine precision. By modifying only the identity matrix, the discrete Helmholtz operator,

Ĩ − 1/2λ∇2
h, maintains its symmetry, and ε < 1 is sufficient to maintain positive-definiteness.

Many types of boundary conditions satisfy ε < 1, most notably all boundary conditions of

Dirichlet or Neumann type. We can therefore continue to use conjugate gradients for the

linear solves.

A.3 Higher-dimensional correction

We now consider a higher-dimensional Laplacian. Construction, and therefore cor-

rection, proceeds recursively, by analog to the continuous Laplacian. For example, the
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three-dimensional Laplacian is the sum of the two-dimensional Laplacian in x and y and

the second-derivative operator with respect to z. The discrete analog of adding operators is

the tensor sum, e.g.,

Ly ⊕ Lx = Iy � Lx + Ly � Ix,

where Lx and Ly are square, one-dimensional discrete second-derivative operators with

respect to x and y, respectively; Ix and Iy are identity operators the same size as Lx and Ly,

respectively; and � is the Kronecker tensor product. The Kronecker tensor product takes

two square matrices, A = (aij) ∈ Rn×n
and B ∈ Rm×m

, and produces the mn×mn block

matrix

A� B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

.

.

.

.

.

.

.
.
.

.

.

.

an1B an2B . . . annB

 .

If A and B are also symmetric, so is A� B. The two-dimensional discrete identity operator

is also constructed via tensor product: Iy � Ix. The k-dimensional discrete Laplacian and

identity operators are computed recursively via

L[k] = I[1] � L[k−1] + L[1] � I[k−1] = L[1] ⊕ L[k−1],

I[k] = I[1] � I[k−1],
(A.16)

where the superscript indicates the dimensionality of the operators.

Consider a two-dimensional diffusion problem on the domain Ω = [0, 1]2,

ut = µ

(
∂2

∂x2 +
∂2

∂y2

)
u + f in Ω, (A.17)

γ = Bu on ∂Ω, (A.18)

where B is a boundary operator. We imagine the case where either one of the second deriva-

tives composing the Laplacian requires correction at the boundary. Without loss of generality,

we will assume they both do. We scale Equation (A.17) as we did in Equation (A.13):

(1− εx)ut = µ

(
∂2

∂x2 + (1− εx)
∂2

∂y2

)
u + (1− εx) f (A.19)

near an x boundary,

(1− εy)ut = µ

(
(1− εy)

∂2

∂x2 +
∂2

∂y2

)
u + (1− εy) f (A.20)

near a y boundary, and

(1− εxy)ut = µ

(
(1− εy)

∂2

∂x2 + (1− εx)
∂2

∂y2

)
u + (1− εxy) f (A.21)
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near x and y boundaries, where εx and εy correspond to the error in the discrete second x

and y derivatives, respectively, and 1− εxy = (1− εx)(1− εy). Let the subscripts x and y

denote the 1-dimensional operator for the x and y dimension, respectively, of the modified

identity, Ĩ, second derivative, L, and boundary operator B. We write the discretization of

Equations (A.19)–(A.21) with Crank-Nicolson timestepping succinctly as

( Ĩy � Ĩx)
un+1 − un

∆t
=

µ

2
( Ĩy � Lx + Ly � Ĩx)(un+1 + un) + ( Ĩy � Ĩx) f n+1/2, (A.22)

Letting Ĩ = Ĩy � Ĩx, ∇2
h = Ĩy � Lx + Ly � Ĩx, and Bh = Ĩy � Bx + By � Ĩx, we can express

Equation (A.22) identically to its one-dimensional analog, Equation (A.15). For boundaries

that do not require correction, Ĩ ≡ I, and the recursion (A.16) can be used to construct even

higher-dimensional operators by replacing identity operators with their boundary-corrected

counterparts. The system is symmetric positive-definite if every ε > 0, and can be solved

via conjugate gradients.
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APPENDIX B

DISCRETE GEOMETRY OF A FLAT TORUS

While our choice of force density for the endothelium does not require surface recon-

struction or quadrature weights, the methods described in Section 2.3 are equally applicable.

The periodicity of Ω makes the endothelium a topological torus. The 4-dimensional torus,

T, with parametrization

χ(θ, ϕ) =


cos θ
sin θ
cos ϕ
cos ϕ

 ,

for (θ, ϕ) ∈ [0, 2π)2
, is orientation agnostic. Using distances between points on T to

construct RBFs allow for the interpolation of any toroidal surface. The parametrized metric

is given by

‖χ(θj, ϕj)− χ(θi, ϕi)‖ =
√

2− cos(θj − θi)− cos(ϕj − ϕi)

=
√

2− χ(θj, ϕj) · χ(θi, ϕi).
(B.1)

T is therefore homogeneous, and this parametrization can be used to compute quadrature

weights. It has surface area 4π2
and Jacobian

√
det(G0(ZT)) = 1 (see Section 3.2.4.2). It

is, however, trivial to choose a set of points on T that generate equal quadrature weights

without the need to solve a system like (2.22). Any regular grid with correct spacing across

the periodic boundaries suffices, but we generate a set of N points, whether used for

interpolation or not, with the spiral

ϕi = 2π(i− 1)/N,

θi = mod
(⌈√

N
⌉

ϕi, 2π
)

.

However, care needs to be taken in applying the constructed discrete operators to a “flat”

torus, such as the endothelium. If, for example, L is the discrete analogue of L evaluated at

sample site (θs, ϕs) and the interpolated function ψ(θ, ϕ) decomposes into

ψ(θ, ϕ) = ψ̄(θ, ϕ) + periodic part,
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where ψ̄ is known, aperiodic, and independent of time, then

Lψ(θs, ϕs) ≈ Lψ̄(θs, ϕs) + L
(

ψd − ψ̄d
)

:= Lψd + ε,

where ψd
and ψ̄d

are vectors formed by evaluating ψ and ψ̄, respectively, at each point in

Θd
. Computing ε for each sample site can be done simultaneously, resulting in the vector ε.

A correction like ε may be needed for each linear operator.
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