Complements and local singularities in birational geometry

Jihao Liu

University of Utah

Stanford, Feb 26th, 2021

Structure of the talk

In this tall, I will introduce the-complements theory, a technical yet influential theory in birational geometry introduced by V.V. Shokurov.

Structure of the talk

In this talk, I will introduce the complements theory, a technical yet influential theory in birational geometry introduced by V.V. Shokurov.

- I will start talking about the intuition of complements from the study of linear systems in birational geometry.

Structure of the talk

In this talk, I will introduce the complements theory, a technical yet influential theory in birational geometry introduced by V.V. Shokurov.

- I will start talking about the intuition of complements from the study of linear systems in birational geometry.
- Then, I will introduce the complements theory and talk about my joint work with J. Han and V.V. Shokurov on a complement conjecture of Shokurov.

Structure of the talk

In this talk, I will introduce the complements theory, a technical yet influential theory in birational geometry introduced by V.V. Shokurov.

- I will start talking about the intuition of complements from the study of linear systems in birational geometry.
- Then, I will introduce the complements theory and talk about my joint work with J. Han and V.V. Shokurov on a complement conjecture of Shokurov.
- After that, I will briefly talk about the applications of the complements theory, especially its applications towards the study on local singularities in birational geometry. I will also talk about an interesting application in the opposite direction.

Structure of the talk

In this talk, I will introduce the complements theory, a technical yet influential theory in birational geometry introduced by V.V. Shokurov.

- I will start talking about the intuition of complements from the study of linear systems in birational geometry.
- Then, I will introduce the complements theory and talk about my joint work with J. Han and V.V. Shokurov on a complement conjecture of Shokurov.
- After that, I will briefly talk about the applications of the complements theory, especially its applications towards the study on local singularities in birational geometry. I will also talk about an interesting application in the opposite direction.
- In the end, I talk about some open problems.

Structure of the talk

In this talk, I will introduce the complements theory, a technical yet influential theory in birational geometry introduced by V.V. Shokurov.

- I will start talking about the intuition of complements from the study of linear systems in birational geometry.
- Then, I will introduce the complements theory and talk about my joint work with J. Han and V.V. Shokurov on a complement conjecture of Shokurov.
- After that, I will briefly talk about the applications of the complements theory, especially its applications towards the study on local singularities in birational geometry. I will also talk about an interesting application in the opposite direction.
- In the end, I talk about some open problems.
- Without further notice, we work over an algebraically closed field k of characteristic zero, e.g., the field of complex numbers \mathbb{C}.

Linear systems

Linear systems

- Let X be a normal projective variety and D an effective divisor (i.e. $\kappa(D) \geq 0$) on X satisfying "nice" properties (e.g. ample, big, nef).

Linear systems

- Let X be a normal projective variety and D an effective divisor (i.e. $\kappa(D) \geq 0$) on X satisfying "nice" properties (e.g. ample, big, nef).

Question

What can we say about the geometry of X and D ?

Linear systems

- Let X be a normal projective variety and D an effective divisor (i.e. $\kappa(D) \geq 0$) on X satisfying "nice" properties (e.g. ample, big, nef).

Question

What can we say about the geometry of X and D ?

Question (Non-vanishing)

For which positive integers $n,|n D|$ is non-empty?

Linear systems

- Let X be a normal projective variety and D an effective divisor (i.e. $\kappa(D) \geq 0$) on X satisfying "nice" properties (e.g. ample, big, nef).

Question

What can we say about the geometry of X and D ?

Question (Non-vanishing)

For which positive integers $n,|n D|$ is non-empty?

Question (Non-vanishing, strengthened)

For which positive integers n can we pick a "distinguished representative" $G \in|n D|$?

Linear systems

- Let X be a normal projective variety and D an effective divisor (i.e. $\kappa(D) \geq 0$) on X satisfying "nice" properties (e.g. ample, big, nef).

Question

What can we say about the geometry of X and D ?

Question (Non-vanishing)

For which positive integers $n,|n D|$ is non-empty?

Question (Non-vanishing, strengthened)

For which positive integers n can we pick a "distinguished representative" $G \in|n D|$?

Question (Effective litaka fibration)

For which positive integers m, the map defined by $|m D|$ is birational to the litaka fibration of D ? e.g. if D is big, when $|m D|$ defines a birtaional map?

Singularities in birational geometry

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.
- $\operatorname{tmld}(X, B):=1-c$ is called the total minimal log discrepancy of (X, B).

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.
- $\operatorname{tmld}(X, B):=1-c$ is called the total minimal log discrepancy of (X, B).
- Pick $\epsilon \geq 0$. (X, B) is called

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.
- $\operatorname{tmld}(X, B):=1-c$ is called the total minimal log discrepancy of (X, B).
- Pick $\epsilon \geq 0$. (X, B) is called
- ϵ-lc: if $\operatorname{tmld}(X, B) \geq \epsilon$, that is, coefficients of B_{Y} are $\leq 1-\epsilon$.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.
- $\operatorname{tmld}(X, B):=1-c$ is called the total minimal log discrepancy of (X, B).
- Pick $\epsilon \geq 0$. (X, B) is called
- ϵ-lc: if $\operatorname{tmld}(X, B) \geq \epsilon$, that is, coefficients of B_{Y} are $\leq 1-\epsilon$.
- ϵ-klt: if $\operatorname{tmld}(X, B)>\epsilon$, that is, coefficients of B_{Y} are $<1-\epsilon$.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.
- $\operatorname{tmld}(X, B):=1-c$ is called the total minimal log discrepancy of (X, B).
- Pick $\epsilon \geq 0$. (X, B) is called
- ϵ-lc: if $\operatorname{tmld}(X, B) \geq \epsilon$, that is, coefficients of B_{Y} are $\leq 1-\epsilon$.
- ϵ-klt: if $\operatorname{tmld}(X, B)>\epsilon$, that is, coefficients of B_{Y} are $<1-\epsilon$.
- Ic: if $\operatorname{tmld}(X, B) \geq 0$, that is, coefficients of B_{Y} are ≤ 1.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.
- $\operatorname{tmld}(X, B):=1-c$ is called the total minimal log discrepancy of (X, B).
- Pick $\epsilon \geq 0$. (X, B) is called
- ϵ-lc: if $\operatorname{tmld}(X, B) \geq \epsilon$, that is, coefficients of B_{Y} are $\leq 1-\epsilon$.
- ϵ-klt: if $\operatorname{tmld}(X, B)>\epsilon$, that is, coefficients of B_{Y} are $<1-\epsilon$.
- Ic: if $\operatorname{tmld}(X, B) \geq 0$, that is, coefficients of B_{Y} are ≤ 1.
- klt: if $\operatorname{tmld}(X, B)>0$, that is, coefficients of B_{Y} are <1.

Singularities in birational geometry

- We expect that when the singularities of X is "mild" and D is associated to the canonical divisor K_{X} of X, the questions above have satisfactory answers and reflects the geometric structure of X.
- A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R}-divisor $B \geq 0$ on X such that $K_{X}+B$ is \mathbb{R}-Cartier.
- \mathbb{R}-divisor: a formal \mathbb{R}-linear sum of Weil divisors.
- Let $f: Y \rightarrow X$ be a log resolution of a pair (X, B) and write $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Let c be the maximal coefficient of B_{Y}.
- $\operatorname{tmld}(X, B):=1-c$ is called the total minimal log discrepancy of (X, B).
- Pick $\epsilon \geq 0$. (X, B) is called
- ϵ-lc: if $\operatorname{tmld}(X, B) \geq \epsilon$, that is, coefficients of B_{Y} are $\leq 1-\epsilon$.
- ϵ-klt: if $\operatorname{tmld}(X, B)>\epsilon$, that is, coefficients of B_{Y} are $<1-\epsilon$.
- Ic: if $\operatorname{tmld}(X, B) \geq 0$, that is, coefficients of B_{Y} are ≤ 1.
- klt: if $\operatorname{tmld}(X, B)>0$, that is, coefficients of B_{Y} are <1.
- X is called ϵ-lc if $(X, 0)$ is ϵ-lc, etc.

Examples

Examples

Example

Let X be a smooth variety. Then X is 1-lc.

Examples

Example

Let X be a smooth variety. Then X is 1 -lc.

Example

Let X be a smooth variety and B a simple normal crossing divisor. Then (X, B) is lc but not klt.

Examples

Example

Let X be a smooth variety. Then X is 1 -lc.

Example

Let X be a smooth variety and B a simple normal crossing divisor. Then (X, B) is lc but not klt.

Example

Let X be a cone over an elliptic curve. Then X is lc but not klt.

Examples

Example

Let X be a smooth variety. Then X is 1-lc.

Example

Let X be a smooth variety and B a simple normal crossing divisor. Then (X, B) is lc but not klt.

Example

Let X be a cone over an elliptic curve. Then X is lc but not klt.

Example

Let X be a cone over a rational curve of degree n. Then $\operatorname{tmld}(X)=\frac{2}{n}, X$ is $\frac{2}{n}$-lc but not $\frac{2}{n}$-klt.

Settings

Settings

- Let (X, B) be a pair with klt , lc , or ϵ-lc singularities.

Settings

- Let (X, B) be a pair with klt , lc , or ϵ-lc singularities.
- The asymptotic linear systems associated with $K_{X}+B$ are expected to behave nicely.

Settings

- Let (X, B) be a pair with klt , lc , or ϵ-lc singularities.
- The asymptotic linear systems associated with $K_{X}+B$ are expected to behave nicely.
- There are three cases:

Settings

- Let (X, B) be a pair with klt , lc , or ϵ-lc singularities.
- The asymptotic linear systems associated with $K_{X}+B$ are expected to behave nicely.
- There are three cases:
(1) When $K_{X}+B$ is "very positive", i.e. when $K_{X}+B$ is big.

Settings

- Let (X, B) be a pair with klt , lc , or ϵ-lc singularities.
- The asymptotic linear systems associated with $K_{X}+B$ are expected to behave nicely.
- There are three cases:
(1) When $K_{X}+B$ is "very positive", i.e. when $K_{X}+B$ is big.
(2) When $K_{X}+B$ is "positive", i.e. when $K_{X}+B$ has effective divisor class but not big.

Settings

- Let (X, B) be a pair with klt , lc , or ϵ-lc singularities.
- The asymptotic linear systems associated with $K_{X}+B$ are expected to behave nicely.
- There are three cases:
(1) When $K_{X}+B$ is "very positive", i.e. when $K_{X}+B$ is big.
(2) When $K_{X}+B$ is "positive", i.e. when $K_{X}+B$ has effective divisor class but not big.
(3) When $K_{X}+B$ is "negative", i.e. when $-\left(K_{X}+B\right)$ has effective divisor class.

Settings

- Let (X, B) be a pair with klt , lc , or ϵ-lc singularities.
- The asymptotic linear systems associated with $K_{X}+B$ are expected to behave nicely.
- There are three cases:
(1) When $K_{X}+B$ is "very positive", i.e. when $K_{X}+B$ is big.
(2) When $K_{X}+B$ is "positive", i.e. when $K_{X}+B$ has effective divisor class but not big.
(3) When $K_{X}+B$ is "negative", i.e. when $-\left(K_{X}+B\right)$ has effective divisor class.
- As a starting point, we want to look into the case when $B=0$.

The case when X is of general type

- We have a satisfactory answer for the questions before when X is smooth and K_{X} is big:

The case when X is of general type

- We have a satisfactory answer for the questions before when X is smooth and K_{X} is big:

Theorem (Hacon-Mc ${ }^{c}$ Kernan 06, Takayama 06, Tsuji)

Let X be a smooth projective variety of dimension d such that K_{X} is big. Then there exists a positive integer $m_{1}=m_{1}(d)$ such that $\left|m_{1} K_{X}\right|$ defines a birational map.

The case when X is of general type

- In fact, this result can be generalized to lc pairs:

The case when X is of general type

- In fact, this result can be generalized to lc pairs:

Theorem (Hacon-M ${ }^{c}$ Kernan-Xu 14)

Let (X, B) be a projective lc pair of dimension d such that $K_{X}+B$ is big and the coefficients of B belong to a DCC set Γ. Then there exists a positive integer $m_{2}=m_{2}(d, \Gamma)$ such that $\left|m_{2}\left(K_{X}+B\right)\right|$ defines a birational map.

- DCC: every descending chain stabilizes, e.g. $\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}^{+}\right\}$is a DCC set, but $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}^{+}\right\}$is not.
- $\left|m_{2}\left(K_{X}+B\right)\right|:=\left|\left\lfloor m_{2}\left(K_{X}+B\right)\right\rfloor\right|$.

The case when X is positive

- We also have a sub-satisfactory answer when X is smooth, $\kappa(X) \geq 0$, but K_{X} is not big.

The case when X is positive

- We also have a sub-satisfactory answer when X is smooth, $\kappa(X) \geq 0$, but K_{X} is not big.

Theorem (Birkar-Zhang 16)

Let X be a smooth projective variety such that $\kappa(X) \geq 0$. Let $W \rightarrow Z$ be an litaka fibration of K_{X} from a resolution of X and F a very general fiber of $W \rightarrow Z$. Then there exists a positive integer m depending only on

- $\operatorname{dim} X$, the dimension of X,
- β_{F}, the middle Betti number of the canonical cover of F, and
- b_{F}, the non-vanishing order of K_{F}.
such that $\left|m K_{X}\right|$ is birational to the litaka fibration of K_{X}.

The case when X is positive

- We also have a sub-satisfactory answer when X is smooth, $\kappa(X) \geq 0$, but K_{X} is not big.

Theorem (Birkar-Zhang 16)

Let X be a smooth projective variety such that $\kappa(X) \geq 0$. Let $W \rightarrow Z$ be an litaka fibration of K_{X} from a resolution of X and F a very general fiber of $W \rightarrow Z$. Then there exists a positive integer m depending only on

- $\operatorname{dim} X$, the dimension of X,
- β_{F}, the middle Betti number of the canonical cover of F, and
- b_{F}, the non-vanishing order of K_{F}.
such that $\left|m K_{X}\right|$ is birational to the litaka fibration of K_{X}.
- The theorem can also be generalized to the class of Ic pairs, but for technical complexity reasons, it has never been written down.

The case when X is positive

Question

Can we bound β_{F} and b_{F} ?

The case when X is positive

Question

Can we bound β_{F} and b_{F} ?

- The boundedness of β_{F} and b_{F} is well-known when $\operatorname{dim} F \leq 2$.

The case when X is positive

Question

Can we bound β_{F} and b_{F} ?

- The boundedness of β_{F} and b_{F} is well-known when $\operatorname{dim} F \leq 2$.
- In dimension ≥ 3, the boundedness of β_{F} is a difficult question and seems to be out of reach for current birational geometry.

The case when X is positive

Question

Can we bound β_{F} and b_{F} ?

- The boundedness of β_{F} and b_{F} is well-known when $\operatorname{dim} F \leq 2$.
- In dimension ≥ 3, the boundedness of β_{F} is a difficult question and seems to be out of reach for current birational geometry.
- The boundedness of b_{F} is a more reasonable question. If we assume the termination of flips, it can be transformed to the following question:

The case when X is positive

Question

Can we bound β_{F} and b_{F} ?

- The boundedness of β_{F} and b_{F} is well-known when $\operatorname{dim} F \leq 2$.
- In dimension ≥ 3, the boundedness of β_{F} is a difficult question and seems to be out of reach for current birational geometry.
- The boundedness of b_{F} is a more reasonable question. If we assume the termination of flips, it can be transformed to the following question:

Question (Non-vanishing for Calabi-Yau varieties)

Let F be a klt Calabi-Yau variety (i.e. $K_{F} \sim_{\mathbb{Q}} 0$) of dimension $\leq d$. Does there exist a positive integer I depending only on d such that $I K_{F} \sim 0$?

The case when X is positive

Question

Can we bound β_{F} and b_{F} ?

- The boundedness of β_{F} and b_{F} is well-known when $\operatorname{dim} F \leq 2$.
- In dimension ≥ 3, the boundedness of β_{F} is a difficult question and seems to be out of reach for current birational geometry.
- The boundedness of b_{F} is a more reasonable question. If we assume the termination of flips, it can be transformed to the following question:

Question (Non-vanishing for Calabi-Yau varieties)

Let F be a klt Calabi-Yau variety (i.e. $K_{F} \sim_{\mathbb{Q}} 0$) of dimension $\leq d$. Does there exist a positive integer I depending only on d such that $I K_{F} \sim 0$?

- We will pick this question up later.

The case when X is negative

The case when X is negative

- When K_{X} is not effective, to study the geometry of X, we want to look into the linear systems $\left|-m K_{X}\right|$ instead of $\left|m K_{X}\right|$ for positive integers m.

The case when X is negative

- When K_{X} is not effective, to study the geometry of X, we want to look into the linear systems $\left|-m K_{X}\right|$ instead of $\left|m K_{X}\right|$ for positive integers m.
- We want to assume that $\left|-m K_{X}\right|$ is non-empty for some positive integer m.

The case when X is negative

- When K_{X} is not effective, to study the geometry of X, we want to look into the linear systems $\left|-m K_{X}\right|$ instead of $\left|m K_{X}\right|$ for positive integers m.
- We want to assume that $\left|-m K_{X}\right|$ is non-empty for some positive integer m.
- For this kind of varieties, the following types are of special interests:

The case when X is negative

- When K_{X} is not effective, to study the geometry of X, we want to look into the linear systems $\left|-m K_{X}\right|$ instead of $\left|m K_{X}\right|$ for positive integers m.
- We want to assume that $\left|-m K_{X}\right|$ is non-empty for some positive integer m.
- For this kind of varieties, the following types are of special interests:
(1) When (X, B) is an Ic \log Calabi-Yau (i.e. $K_{X}+B \equiv 0$) pair for some boundary \mathbb{R}-divisor B.

The case when X is negative

- When K_{X} is not effective, to study the geometry of X, we want to look into the linear systems $\left|-m K_{X}\right|$ instead of $\left|m K_{X}\right|$ for positive integers m.
- We want to assume that $\left|-m K_{X}\right|$ is non-empty for some positive integer m.
- For this kind of varieties, the following types are of special interests:
(1) When (X, B) is an Ic log Calabi-Yau (i.e. $K_{X}+B \equiv 0$) pair for some boundary \mathbb{R}-divisor B.
(2) When X is of Fano type, i.e. (X, B) is klt and $-\left(K_{X}+B\right)$ is ample for some boundary \mathbb{R}-divisor B.

The case when X is negative

- When K_{X} is not effective, to study the geometry of X, we want to look into the linear systems $\left|-m K_{X}\right|$ instead of $\left|m K_{X}\right|$ for positive integers m.
- We want to assume that $\left|-m K_{X}\right|$ is non-empty for some positive integer m.
- For this kind of varieties, the following types are of special interests:
(1) When (X, B) is an Ic log Calabi-Yau (i.e. $K_{X}+B \equiv 0$) pair for some boundary \mathbb{R}-divisor B.
(2) When X is of Fano type, i.e. (X, B) is klt and $-\left(K_{X}+B\right)$ is ample for some boundary \mathbb{R}-divisor B.
(3) When X is (weak) Fano, i.e. X is klt and $-K_{X}$ is ample (big and nef).

Failure for effective birationality

Failure for effective birationality

- We want to prove similar effective birationality results as before for klt varieties. Unfortunately, we have the following counter-example even for surfaces:

Failure for effective birationality

- We want to prove similar effective birationality results as before for klt varieties. Unfortunately, we have the following counter-example even for surfaces:

Example

Let $X_{n+1} \subset \mathbb{P}(1,1,1, n)$ be a general hypersurface of degree $n+1$. Then X_{n+1} is klt Fano, but $\left|-m K_{n+1}\right|$ does not define a birational map whenever $m<\frac{n}{2}$.

Failure for effective birationality

- We want to prove similar effective birationality results as before for klt varieties. Unfortunately, we have the following counter-example even for surfaces:

Example

Let $X_{n+1} \subset \mathbb{P}(1,1,1, n)$ be a general hypersurface of degree $n+1$. Then X_{n+1} is klt Fano, but $\left|-m K_{n+1}\right|$ does not define a birational map whenever $m<\frac{n}{2}$.

- If we add the ϵ-lc assumption, we do have effective birationality:

Failure for effective birationality

- We want to prove similar effective birationality results as before for klt varieties. Unfortunately, we have the following counter-example even for surfaces:

Example

Let $X_{n+1} \subset \mathbb{P}(1,1,1, n)$ be a general hypersurface of degree $n+1$. Then X_{n+1} is klt Fano, but $\left|-m K_{n+1}\right|$ does not define a birational map whenever $m<\frac{n}{2}$.

- If we add the ϵ-lc assumption, we do have effective birationality:

Theorem (Birkar 19)

Let d be a positive integer and ϵ a positive real number. Then there exists $m=m(d, \epsilon)$, such that for any ϵ-lc Fano type variety X of dimension d, $\left|-m K_{X}\right|$ defines a birational map.

Failure for effective birationality

Failure for effective birationality

- Although Birkar's result is strong, it is later covered by his proof of the Borisov-Alexeev-Borisov (BAB) conjecture:

Failure for effective birationality

- Although Birkar's result is strong, it is later covered by his proof of the Borisov-Alexeev-Borisov (BAB) conjecture:

Theorem (BAB, Birkar 20)

Let d be a positive integer and ϵ a positive real number. Then any ϵ-lc Fano type variety of dimension d belongs to a bounded family.

Failure for effective birationality

- Although Birkar's result is strong, it is later covered by his proof of the Borisov-Alexeev-Borisov (BAB) conjecture:

Theorem (BAB, Birkar 20)

Let d be a positive integer and ϵ a positive real number. Then any ϵ-lc Fano type variety of dimension d belongs to a bounded family.

- We also have the following counter-example for pairs:

Failure for effective birationality

- Although Birkar's result is strong, it is later covered by his proof of the Borisov-Alexeev-Borisov (BAB) conjecture:

Theorem (BAB, Birkar 20)

Let d be a positive integer and ϵ a positive real number. Then any ϵ-lc Fano type variety of dimension d belongs to a bounded family.

- We also have the following counter-example for pairs:

Example (Han-L 20)

There exist $\frac{3}{10}$-lc projective surface pairs $\left(X, B_{n}\right)$ such that $-\left(K_{X}+B_{n}\right)$ is ample, B_{n} has DCC coefficients, but $\left.\|-m\left(K_{X}+B_{n}\right)\right\rfloor \mid$ and $-\left\lfloor m\left(K_{X}+B_{n}\right)\right\rfloor \mid$ do not define birational maps for any $m<n$.

Non-vanishing and complements

Question

For a klt Fano variety X, without the ϵ-lc assumption, can we still find a "distinguished element" $G \in\left|-m K_{X}\right|$ satisfying certain good properties?

Non-vanishing and complements

Question

For a klt Fano variety X, without the ϵ-lc assumption, can we still find a "distinguished element" $G \in\left|-m K_{X}\right|$ satisfying certain good properties?

Theorem (Birkar 19)

Let d be a positive integer. Then there exists a positive integer $n=n(d)$, such that for any klt variety X of Fano type, there exists $G \in\left|-n K_{X}\right|$ such that $\left(X, \frac{1}{n} G\right)$ is Ic. In particular, $\left|-n K_{X}\right|$ is non-empty.

Non-vanishing and complements

Question

For a klt Fano variety X, without the ϵ-lc assumption, can we still find a "distinguished element" $G \in\left|-m K_{X}\right|$ satisfying certain good properties?

Theorem (Birkar 19)

Let d be a positive integer. Then there exists a positive integer $n=n(d)$, such that for any klt variety X of Fano type, there exists $G \in\left|-n K_{X}\right|$ such that $\left(X, \frac{1}{n} G\right)$ is Ic. In particular, $\left|-n K_{X}\right|$ is non-empty.

- $\left(X, \frac{1}{n} G\right)$ is called an n-complement of $(X, 0)$.

Non-vanishing and complements

Question

For a klt Fano variety X, without the ϵ-lc assumption, can we still find a "distinguished element" $G \in\left|-m K_{X}\right|$ satisfying certain good properties?

Theorem (Birkar 19)

Let d be a positive integer. Then there exists a positive integer $n=n(d)$, such that for any klt variety X of Fano type, there exists $G \in\left|-n K_{X}\right|$ such that $\left(X, \frac{1}{n} G\right)$ is Ic. In particular, $\left|-n K_{X}\right|$ is non-empty.

- $\left(X, \frac{1}{n} G\right)$ is called an n-complement of $(X, 0)$.
- What can we say when we start with a pair (X, B) rather than a variety X ?

Complements

Definition (Complements)

Let n be a positive integer and (X, B) a pair. An n-complement of (X, B) is a pair $\left(X, B^{+}\right)$, such that
(1) $\left(X, B^{+}\right)$is lc,
(2) $n\left(K_{X}+B^{+}\right) \sim 0$, and
(3) $n B^{+} \geq n\lfloor B\rfloor+\lfloor(n+1)\{B\}\rfloor$.

Complements

Definition (Complements)

Let n be a positive integer and (X, B) a pair. An n-complement of (X, B) is a pair $\left(X, B^{+}\right)$, such that
(1) $\left(X, B^{+}\right)$is lc,
(2) $n\left(K_{X}+B^{+}\right) \sim 0$, and
(3) $n B^{+} \geq n\lfloor B\rfloor+\lfloor(n+1)\{B\}\rfloor$.

- For the condition (2), we require linear equivalence, not \mathbb{Q}-linear equivalence or \mathbb{R}-linear equivalence.

Complements

Definition (Complements)

Let n be a positive integer and (X, B) a pair. An n-complement of (X, B) is a pair $\left(X, B^{+}\right)$, such that
(1) $\left(X, B^{+}\right)$is lc,
(2) $n\left(K_{X}+B^{+}\right) \sim 0$, and
(3) $n B^{+} \geq n\lfloor B\rfloor+\lfloor(n+1)\{B\}\rfloor$.

- For the condition (2), we require linear equivalence, not \mathbb{Q}-linear equivalence or \mathbb{R}-linear equivalence.
- The purpose for condition (3) is to guarantee that $\left|-\left\lfloor n\left(K_{X}+B\right)\right\rfloor\right|$ is non-empty once an n-complement exists.

Shokurov's complement conjecture

Conjecture (Shokurov 00)

Assume that
(1) (X, B) be an lc pair of dimension d of Fano type,
(2) the coefficients of B belong to a DCC set Γ, and
(3) $-\left(K_{X}+B\right)$ is nef.

Then there exists an n-complement $\left(X, B^{+}\right)$of (X, B) for some n which belongs to a finite set.

Shokurov's complement conjecture

Conjecture (Shokurov 00)

Assume that
(1) (X, B) be an lc pair of dimension d of Fano type,
(2) the coefficients of B belong to a DCC set Γ, and
(3) $-\left(K_{X}+B\right)$ is nef.

Then there exists an n-complement $\left(X, B^{+}\right)$of (X, B) for some n which belongs to a finite set.

Theorem (Han-L-Shokurov 19)

Shokurov's conjecture holds. Moreover, we may choose a uniform n.

Shokurov's complement conjecture

Conjecture (Shokurov 00)

Assume that
(1) (X, B) be an lc pair of dimension d of Fano type,
(2) the coefficients of B belong to a DCC set Γ, and
(3) $-\left(K_{X}+B\right)$ is nef.

Then there exists an n-complement $\left(X, B^{+}\right)$of (X, B) for some n which belongs to a finite set.

Theorem (Han-L-Shokurov 19)

Shokurov's conjecture holds. Moreover, we may choose a uniform n.

- In particular, there exists a uniform n, depending only on d and Γ, such that $\left|-\left\lfloor n\left(K_{X}+B\right)\right\rfloor\right|$ is not empty.

Shokurov's complement conjecture

Conjecture (Shokurov 00)

Assume that
(1) (X, B) be an lc pair of dimension d of Fano type,
(2) the coefficients of B belong to a DCC set Γ, and
(3) $-\left(K_{X}+B\right)$ is nef.

Then there exists an n-complement $\left(X, B^{+}\right)$of (X, B) for some n which belongs to a finite set.

Theorem (Han-L-Shokurov 19)

Shokurov's conjecture holds. Moreover, we may choose a uniform n.

- In particular, there exists a uniform n, depending only on d and Γ, such that $\left|-\left\lfloor n\left(K_{X}+B\right)\right\rfloor\right|$ is not empty.
- This theorem can be strengthened to the relative case.

Remarks

Theorem (Han-L-Shokurov 19)

Let $X \rightarrow Z$ be a contraction. Assume that
(1) (X, B) be an lc pair of dimension d,
(2) the coefficients of B belong to a DCC set Γ,
(3) (X, B) is of Fano type over Z, and
(9) $-\left(K_{X}+B\right)$ is nef over Z.

Then for any point $z \in Z$, there exists an n-complement of (X, B) over a neighborhood of z for some uniform $n=n(d, \Gamma)$.

Remarks

Theorem (Han-L-Shokurov 19)

Let $X \rightarrow Z$ be a contraction. Assume that
(1) (X, B) be an Ic pair of dimension d,
(2) the coefficients of B belong to a DCC set Γ,
(3) (X, B) is of Fano type over Z, and
(1) $-\left(K_{X}+B\right)$ is nef over Z.

Then for any point $z \in Z$, there exists an n-complement of (X, B) over a neighborhood of z for some uniform $n=n(d, \Gamma)$.

- The theorem above was shown when
- $\operatorname{dim} X \leq 2$ and the coefficients of B belong to the standard set ([Shokurov 00]),
- $\operatorname{dim} X=3$ and the coefficients of B belong to a finite rational set ([Prokhorov-Shokurov 09]), and
- when the coefficients of B belong to a finite rational set ([Birkar 19]).

Applications of the complement theorem

Although seemingly technical, our theorem on complements is expected to have many applications.

Applications of the complement theorem

Although seemingly technical, our theorem on complements is expected to have many applications.

- A special case of our theorem, i.e., Birkar's theorem on boundedness of complements for pairs with finite rational coefficients, already has applications in many areas:

Applications of the complement theorem

Although seemingly technical, our theorem on complements is expected to have many applications.

- A special case of our theorem, i.e., Birkar's theorem on boundedness of complements for pairs with finite rational coefficients, already has applications in many areas:
(1) The BBAB theorem (i.e., the boundedness of Fano varieties, BAB conjecture) ([Birkar 16], [Birkar 19]).

Applications of the complement theorem

Although seemingly technical, our theorem on complements is expected to have many applications.

- A special case of our theorem, i.e., Birkar's theorem on boundedness of complements for pairs with finite rational coefficients, already has applications in many areas:
(1) The BBAB theorem (i.e., the boundedness of Fano varieties, BAB conjecture) ([Birkar 16], [Birkar 19]).
(2) K-stability theory, e.g. Yau-Tian-Donaldson conjecture ([Y.Liu-Xu-Zhuang 21]), Jonsson-Mustață conjecture, openness of K-semistability, Chi Li's conjecture on minimizers of the normalized volumes ([Blum-Y.Liu-Xu 19], [Xu 20]).

Applications of the complement theorem

Although seemingly technical, our theorem on complements is expected to have many applications.

- A special case of our theorem, i.e., Birkar's theorem on boundedness of complements for pairs with finite rational coefficients, already has applications in many areas:
(1) The BBAB theorem (i.e., the boundedness of Fano varieties, BAB conjecture) ([Birkar 16], [Birkar 19]).
(2) K-stability theory, e.g. Yau-Tian-Donaldson conjecture ([Y.Liu-Xu-Zhuang 21]), Jonsson-Mustață conjecture, openness of K-semistability, Chi Li's conjecture on minimizers of the normalized volumes ([Blum-Y.Liu-Xu 19], [Xu 20]).
(3) Demailly-Kollár's openness conjecture ($\left[\begin{array}{ll}\mathrm{Xu} 20]\end{array}\right)$

Applications of the complement theorem

Although seemingly technical, our theorem on complements is expected to have many applications.

- A special case of our theorem, i.e., Birkar's theorem on boundedness of complements for pairs with finite rational coefficients, already has applications in many areas:
(1) The BBAB theorem (i.e., the boundedness of Fano varieties, BAB conjecture) ([Birkar 16], [Birkar 19]).
(2) K-stability theory, e.g. Yau-Tian-Donaldson conjecture ([Y.Liu-Xu-Zhuang 21]), Jonsson-Mustață conjecture, openness of K-semistability, Chi Li's conjecture on minimizers of the normalized volumes ([Blum-Y.Liu-Xu 19], [Xu 20]).
(3) Demailly-Kollár's openness conjecture ($\left[\begin{array}{ll}\mathrm{X} & 20] \text {) }) ~\left(\left[\begin{array}{ll}\text { (}\end{array}\right)\right.\end{array}\right.$
(9) Log Calabi-Yau fibrations ([Birkar 18]).

Applications of the complement theorem

Although seemingly technical, our theorem on complements is expected to have many applications.

- A special case of our theorem, i.e., Birkar's theorem on boundedness of complements for pairs with finite rational coefficients, already has applications in many areas:
(1) The BBAB theorem (i.e., the boundedness of Fano varieties, BAB conjecture) ([Birkar 16], [Birkar 19]).
(2) K-stability theory, e.g. Yau-Tian-Donaldson conjecture ([Y.Liu-Xu-Zhuang 21]), Jonsson-Mustață conjecture, openness of K-semistability, Chi Li's conjecture on minimizers of the normalized volumes ([Blum-Y.Liu-Xu 19], [Xu 20]).
(3) Demailly-Kollár's openness conjecture ($\left[\begin{array}{ll}\mathrm{Xu} 20] \text {) }) ~([B])\end{array}\right.$
(9) Log Calabi-Yau fibrations ([Birkar 18]).
- In the rest of the talk, I will talk about the application of our theorem on complements to the study of local singularities questions. In this case, Birkar's result is not strong enough, while our result remains useful.

Minimal log discrepancies

Minimal log discrepancies

- Given an Ic pair (X, B) and a log resolution $f: Y \rightarrow X$ such that $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Recall that $\operatorname{tmld}(X, B)$ is 1 minus the maximal coefficient of B_{Y}.

Minimal log discrepancies

- Given an Ic pair (X, B) and a log resolution $f: Y \rightarrow X$ such that $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Recall that $\operatorname{tmld}(X, B)$ is 1 minus the maximal coefficient of B_{Y}.
- Now given an lc germ $(X \ni x, B)$ and a sufficiently high log resolution $f: Y \rightarrow X \ni x$ such that $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. We let

$$
\operatorname{mld}(X \ni x, B):=\min \left\{1-\operatorname{mult}_{E} B_{Y} \mid f(E)=x\right\}
$$

be the minimal log discrepancy of $(X \ni x, B)$.

Minimal log discrepancies

- Given an Ic pair (X, B) and a log resolution $f: Y \rightarrow X$ such that $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. Recall that $\operatorname{tmld}(X, B)$ is 1 minus the maximal coefficient of B_{Y}.
- Now given an lc germ $(X \ni x, B)$ and a sufficiently high log resolution $f: Y \rightarrow X \ni x$ such that $K_{Y}+B_{Y}=f^{*}\left(K_{X}+B\right)$. We let

$$
\operatorname{mld}(X \ni x, B):=\min \left\{1-\operatorname{mult}_{E} B_{Y} \mid f(E)=x\right\}
$$

be the minimal log discrepancy of $(X \ni x, B)$.

Conjecture (ACC conjecture for mlds, Shokurov 88)

Let $(X \ni x, B)$ be an lc germ of fixed dimension such that the coefficients of B belong to a DCC set Γ. Then $\operatorname{mld}(X \ni x, B)$ belongs to an $A C C$ set.

- ACC: every increasing chain stabilizes, e.g. $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}^{+}\right\}$is an ACC set, but $\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}^{+}\right\}$is not.

Minimal log discrepancies

Minimal log discrepancies

- The key reason why the ACC conjecture for mlds is important is that, it has a tight connection with the conjecture on termination of flips, the core conjecture of the minimal model program.

Minimal log discrepancies

- The key reason why the ACC conjecture for mlds is important is that, it has a tight connection with the conjecture on termination of flips, the core conjecture of the minimal model program.

Theorem ([Shokurov 04])

The ACC conjecture for mids and the lower-semicontinuity conjecture for mlds imply the termination of flips.

Minimal log discrepancies

- The key reason why the ACC conjecture for mlds is important is that, it has a tight connection with the conjecture on termination of flips, the core conjecture of the minimal model program.

Theorem ([Shokurov 04])

The ACC conjecture for mlds and the lower-semicontinuity conjecture for mlds imply the termination of flips.

Conjecture (Lower-semicontinuity conjecture for mlds)

Let (X, B) be an lc pair. Then the function $x \rightarrow \operatorname{mld}(X \ni x, B)$ is a lower-semicontinuous function.

Minimal log discrepancies

- The key reason why the ACC conjecture for mlds is important is that, it has a tight connection with the conjecture on termination of flips, the core conjecture of the minimal model program.

Theorem ([Shokurov 04])

The ACC conjecture for mlds and the lower-semicontinuity conjecture for mlds imply the termination of flips.

Conjecture (Lower-semicontinuity conjecture for mlds)

Let (X, B) be an lc pair. Then the function $x \rightarrow \operatorname{mld}(X \ni x, B)$ is a lower-semicontinuous function.

- Only very few cases for the ACC conjecture is known: we know the surfaces case ([Alexeev 93, Shokurov 94]), the toric case ([Borisov 97, Ambro 06]), and few special cases in: dimension 3, quotient singularities, fixed germs.

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Theorem ([Han-L-Shokurov 19])

Assume that $(X \ni x, B)$ is an exceptional singularity of fixed dimension and the coefficients of B belong to a DCC set Γ. Then $m l d(X \ni x, B)$ belongs to an ACC set.

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Theorem ([Han-L-Shokurov 19])

Assume that $(X \ni x, B)$ is an exceptional singularity of fixed dimension and the coefficients of B belong to a DCC set Γ. Then $m l d(X \ni x, B)$ belongs to an ACC set.

- This is the first result on non-toric varieties regarding the ACC conjecture for mlds for arbitrary DCC coefficients in all dimensions.

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Theorem ([Han-L-Shokurov 19])

Assume that $(X \ni x, B)$ is an exceptional singularity of fixed dimension and the coefficients of B belong to a DCC set Γ. Then mld $(X \ni x, B)$ belongs to an ACC set.

- This is the first result on non-toric varieties regarding the ACC conjecture for milds for arbitrary DCC coefficients in all dimensions.

Example

When $B=0$ and $X \ni x$ is a surface germ, exceptional (resp. weakly exceptional) singularities correspond to the E (resp. D) type singularities in the ADE classifications, while A type singularities are toroidal.

Application of the complement theorem to mlds

- By our theorem on complements, we have the following results:

Theorem ([Han-L-Shokurov 19])

Assume that $(X \ni x, B)$ is an exceptional singularity of fixed dimension and the coefficients of B belong to a DCC set Γ. Then $m l d(X \ni x, B)$ belongs to an ACC set.

- This is the first result on non-toric varieties regarding the ACC conjecture for mlds for arbitrary DCC coefficients in all dimensions.

Example

When $B=0$ and $X \ni x$ is a surface germ, exceptional (resp. weakly exceptional) singularities correspond to the E (resp. D) type singularities in the ADE classifications, while A type singularities are-toroidal.

- To prove the ACC conjecture for mlds in full generality, we expect to combine our method and the toric method together.

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Theorem ([L 18])

The ACC conjecture for mlds is equivalent to the ACC conjecture for ϵ-/lc thresholds for non-canonical singularities.

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Theorem ([L 18])

The ACC conjecture for mlds is equivalent to the ACC conjecture for ϵ-/c thresholds for non-canonical singularities.

- ϵ-lc threshold: for any germ $(X \ni x, B)$ and \mathbb{R}-Cartier divisor $D \geq 0$, we define the ϵ-lc threshold

$$
\epsilon \operatorname{lct}(X \ni x, B ; D):=\sup \{t \geq 0 \mid \operatorname{mld}(X \ni x, B+t D) \geq \epsilon\}
$$

Application of the complement theorem to mids

- By our theorem on complements, we have the following results:

Theorem ([L 18])

The ACC conjecture for mids is equivalent to the ACC conjecture for ϵ-/lc thresholds for non-canonical singularities.

- ϵ-lc threshold: for any germ $(X \ni x, B)$ and \mathbb{R}-Cartier divisor $D \geq 0$, we define the ϵ-Ic threshold

$$
\epsilon \operatorname{lct}(X \ni x, B ; D):=\sup \{t \geq 0 \mid \operatorname{mld}(X \ni x, B+t D) \geq \epsilon\}
$$

- It is conjectured that if $\operatorname{dim} X$ is fixed and the coefficients of B, D are DCC, then ϵ-lc threshold satisfies the ACC. When $\epsilon=0$, this is the famous ACC for Ic thresholds by Hacon, M${ }^{c}$ Kernan and Xu .

Application of the complement theorem to mlds

- By our theorem on complements, we have the following results:

Theorem ([L 18])

The ACC conjecture for mids is equivalent to the ACC conjecture for ϵ-/lc thresholds for non-canonical singularities.

- ϵ-lc threshold: for any germ $(X \ni x, B)$ and \mathbb{R}-Cartier divisor $D \geq 0$, we define the ϵ-Ic threshold

$$
\epsilon \operatorname{lct}(X \ni x, B ; D):=\sup \{t \geq 0 \mid \operatorname{mld}(X \ni x, B+t D) \geq \epsilon\}
$$

- It is conjectured that if $\operatorname{dim} X$ is fixed and the coefficients of B, D are DCC, then ϵ-lc threshold satisfies the ACC. When $\epsilon=0$, this is the famous ACC for Ic thresholds by Hacon, M${ }^{c}$ Kernan and Xu.
- The ACC conjecture for mlds was usually considered harder than the ACC for ϵ-lc thresholds, yet the theory of complements tells us that they are likely to be equivalently difficult.

Key idea for application

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.
- X is of Fano type over itself. Then an n-complement $\left(X \ni x, B^{+}\right)$of B satisfies the following properties:

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.
- X is of Fano type over itself. Then an n-complement $\left(X \ni x, B^{+}\right)$of B satisfies the following properties:
(1) $n\left(K_{X}+B^{+}\right)$is Cartier near x, and

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.
- X is of Fano type over itself. Then an n-complement $\left(X \ni x, B^{+}\right)$of B satisfies the following properties:
(1) $n\left(K_{X}+B^{+}\right)$is Cartier near x, and
(2) $\left(X \ni x, B^{+}\right)$is Ic.

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.
- X is of Fano type over itself. Then an n-complement $\left(X \ni x, B^{+}\right)$of B satisfies the following properties:
(1) $n\left(K_{X}+B^{+}\right)$is Cartier near x, and
(2) $\left(X \ni x, B^{+}\right)$is lc.
- $n\left(K_{X}+B^{+}\right)$is Cartier implies that

$$
n\left(K_{Y}+B_{Y}^{+}\right):=n f^{*}\left(K_{X}+B^{+}\right)
$$

is an integral divisor over a neighborhood of x for any birational morphism f.

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.
- X is of Fano type over itself. Then an n-complement $\left(X \ni x, B^{+}\right)$of B satisfies the following properties:
(1) $n\left(K_{X}+B^{+}\right)$is Cartier near x, and
(2) $\left(X \ni x, B^{+}\right)$is lc.
- $n\left(K_{X}+B^{+}\right)$is Cartier implies that

$$
n\left(K_{Y}+B_{Y}^{+}\right):=n f^{*}\left(K_{X}+B^{+}\right)
$$

is an integral divisor over a neighborhood of x for any birational morphism f.

- This gives a very strict control on the coefficients of B_{Y}^{+}.

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.
- X is of Fano type over itself. Then an n-complement $\left(X \ni x, B^{+}\right)$of B satisfies the following properties:
(1) $n\left(K_{X}+B^{+}\right)$is Cartier near x, and
(2) $\left(X \ni x, B^{+}\right)$is lc.
- $n\left(K_{X}+B^{+}\right)$is Cartier implies that

$$
n\left(K_{Y}+B_{Y}^{+}\right):=n f^{*}\left(K_{X}+B^{+}\right)
$$

is an integral divisor over a neighborhood of x for any birational morphism f.

- This gives a very strict control on the coefficients of B_{Y}^{+}.
- We can study the behavior of B by using the auxiliary divisor B_{Y}^{+}.

Key idea for application

- Let $(X \ni x, B)$ be a klt germ of fixed dimension.
- X is of Fano type over itself. Then an n-complement $\left(X \ni x, B^{+}\right)$of B satisfies the following properties:
(1) $n\left(K_{X}+B^{+}\right)$is Cartier near x, and
(2) $\left(X \ni x, B^{+}\right)$is lc.
- $n\left(K_{X}+B^{+}\right)$is Cartier implies that

$$
n\left(K_{Y}+B_{Y}^{+}\right):=n f^{*}\left(K_{X}+B^{+}\right)
$$

is an integral divisor over a neighborhood of x for any birational morphism f.

- This gives a very strict control on the coefficients of B_{Y}^{+}.
- We can study the behavior of B by using the auxiliary divisor B_{Y}^{+}.
- $\left(X, B^{+}\right)$is lc , so $\left(Y, B_{Y}^{+}\right)$is lc , hence B_{Y}^{+}has many good properties.

Other applications of the complement theorem

For audience with potential interest, we gather a list of other known applications of our theorem on complements. We remark that these results depend on the complements theorem for arbitrary DCC coefficients (rather than finite rational coefficient).
(1) The ACC for mlds for exceptional singularities and singularities admitting an ϵ-plt blow-up ([Han-L-Shokurov 19]).
(2) The ACC for complete regularity thresholds ([Han-L-Shokurov 19]).
(3) The study on normalized volumes ([Han-Y.Liu-Qi 20]).
(9) The study on the effective adjunction conjecture on Ic-trivial fibrations ([Li 20]).
(6) The study on generalized minimal log discrepancies ([Chen-Gongyo-Nakamura 20](preprint to appear)).
(0) Some boundedness results on Fano varieties ([Chen 20]).

Application of the mlds to the theory of complements

Application of the mlds to the theory of complements

- Finally, we talk about the following interesting opposite application from the ACC conjecture for mlds to the theory of complements. Recall the question we mentioned earlier in this talk:

Application of the mlds to the theory of complements

- Finally, we talk about the following interesting opposite application from the ACC conjecture for mlds to the theory of complements. Recall the question we mentioned earlier in this talk:

Question (Non-vanishing for Calabi-Yau varieties)

Let F be a klt Calabi-Yau variety (i.e. $K_{F} \sim_{\mathbb{Q}} 0$) of dimension $\leq d$. Does there exist a positive integer I depending only on d such that $I K_{F} \sim 0$?

Application of the mlds to the theory of complements

- Finally, we talk about the following interesting opposite application from the ACC conjecture for mlds to the theory of complements. Recall the question we mentioned earlier in this talk:

Question (Non-vanishing for Calabi-Yau varieties)

Let F be a klt Calabi-Yau variety (i.e. $K_{F} \sim_{\mathbb{Q}} 0$) of dimension $\leq d$. Does there exist a positive integer I depending only on d such that $I K_{F} \sim 0$?

Theorem (Jiang 19)

Application of the mlds to the theory of complements

- Finally, we talk about the following interesting opposite application from the ACC conjecture for mlds to the theory of complements. Recall the question we mentioned earlier in this talk:

Question (Non-vanishing for Calabi-Yau varieties)

Let F be a klt Calabi-Yau variety (i.e. $K_{F} \sim_{\mathbb{Q}} 0$) of dimension $\leq d$. Does there exist a positive integer I depending only on d such that $I K_{F} \sim 0$?

Theorem (Jiang 19)

(1) There exists a real number δ, such that for any non-canonical \mathbb{Q}-Gorenstein threefold $X, \operatorname{mld}(X) \leq 1-\delta\left(\delta=\frac{1}{13}\right.$ by [L-Xiao 19]).

Application of the mlds to the theory of complements

- Finally, we talk about the following interesting opposite application from the ACC conjecture for mlds to the theory of complements. Recall the question we mentioned earlier in this talk:

Question (Non-vanishing for Calabi-Yau varieties)

Let F be a klt Calabi-Yau variety (i.e. $K_{F} \sim_{\mathbb{Q}} 0$) of dimension $\leq d$. Does there exist a positive integer I depending only on d such that $I K_{F} \sim 0$?

Theorem (Jiang 19)

(1) There exists a real number δ, such that for any non-canonical \mathbb{Q}-Gorenstein threefold $X, \operatorname{mld}(X) \leq 1-\delta\left(\delta=\frac{1}{13}\right.$ by [L-Xiao 19]).
(2) This result implies the following: there exists a uniform positive integer I, such that for any klt Calabi-Yau threefold F, IK $K_{F} \sim 0$.

Application of the mlds to the theory of complements

Application of the mlds to the theory of complements

- "I $K_{F} \sim 0$ " can be rephrased as " $(F, 0)$ is an I-complement of itself". In this case, F is not of Fano type but the boundedness of complements still holds.

Application of the mlds to the theory of complements

- "I $K_{F} \sim 0$ " can be rephrased as " $(F, 0)$ is an I-complement of itself". In this case, F is not of Fano type but the boundedness of complements still holds.
- We may ask if the boundedness of complements holds for pair admitting Ic Calabi-Yau structures (not necessarily of Fano type).

Application of the mlds to the theory of complements

- "I $K_{F} \sim 0$ " can be rephrased as " $(F, 0)$ is an I-complement of itself". In this case, F is not of Fano type but the boundedness of complements still holds.
- We may ask if the boundedness of complements holds for pair admitting Ic Calabi-Yau structures (not necessarily of Fano type).
- By applying Jiang's result, we have the following:

Theorem (Han-L-Shokurov 19)

Let (X, B) be a threefold pair with DCC coefficients such that $(X, B+G)$ is Ic log Calabi-Yau for some $G \geq 0$. Then (X, B) has an n-complement for some uniform positive integer n.

Application of the mlds to the theory of complements

- "I $K_{F} \sim 0$ " can be rephrased as " $(F, 0)$ is an I-complement of itself". In this case, F is not of Fano type but the boundedness of complements still holds.
- We may ask if the boundedness of complements holds for pair admitting Ic Calabi-Yau structures (not necessarily of Fano type).
- By applying Jiang's result, we have the following:

Theorem (Han-L-Shokurov 19)

Let (X, B) be a threefold pair with DCC coefficients such that $(X, B+G)$ is Ic log Calabi-Yau for some $G \geq 0$. Then (X, B) has an n-complement for some uniform positive integer n.

- Regrettably, the boundedness of complements in dimension ≥ 4 is still widely open.

Open questions on the theory of complements

- In the end, we briefly introduce several problems in the theory of complements that remain open.

Open questions on the theory of complements

- In the end, we briefly introduce several problems in the theory of complements that remain open.

Conjecture (Boundedness of complements for non-Fano type varieties)

Let (X, B) be a pair of dimension d with DCC coefficients such that $(X, B+G)$ is lc log Calabi-Yau for some $G \geq 0$. Then (X, B) has an n-complement for some uniform positive integer n.

Open questions on the theory of complements

- In the end, we briefly introduce several problems in the theory of complements that remain open.

Conjecture (Boundedness of complements for non-Fano type varieties)

Let (X, B) be a pair of dimension d with DCC coefficients such that $(X, B+G)$ is lc log Calabi-Yau for some $G \geq 0$. Then (X, B) has an n-complement for some uniform positive integer n.

- This is the question we mentioned above, which is only known in dimension ≤ 3.

Open questions on the theory of complements

- In the end, we briefly introduce several problems in the theory of complements that remain open.

Conjecture (Boundedness of complements for non-Fano type varieties)

Let (X, B) be a pair of dimension d with DCC coefficients such that $(X, B+G)$ is lc log Calabi-Yau for some $G \geq 0$. Then (X, B) has an n-complement for some uniform positive integer n.

- This is the question we mentioned above, which is only known in dimension ≤ 3.
- As a corollary, this conjecture implies the boundedness of indices for K_{X}, where X is an Ic Calabi-Yau variety of fixed dimension.

Open questions on the theory of complements

Open questions on the theory of complements

Conjecture (Boundedness of ϵ-lc complements)

Let d be a positive integer, ϵ a positive real number, and 「 a DCC set.
Then there exist an integer n and a positive real number ϵ^{\prime} depending only on d, ϵ and Γ satisfying the following. Assume that
(1) (X, B) is an ϵ-lc pair of dimension d,
(2) the coefficients of B belong to Γ,
(3) X is of Fano type over Z, and
(1) $-\left(K_{X}+B\right)$ is nef over Z.

Then for any point $z \in Z$, there exists an n-complement $\left(X, B^{+}\right)$of (X, B) such that $\left(X, B^{+}\right)$is $\epsilon^{\prime}-/ c$.

Open questions on the theory of complements

Conjecture (Boundedness of ϵ-Ic complements)

Let d be a positive integer, ϵ a positive real number, and Γ a DCC set.
Then there exist an integer n and a positive real number ϵ^{\prime} depending only on d, ϵ and Γ satisfying the following. Assume that
(1) (X, B) is an ϵ-lc pair of dimension d,
(2) the coefficients of B belong to Γ,
(3) X is of Fano type over Z, and
(1) $-\left(K_{X}+B\right)$ is nef over Z.

Then for any point $z \in Z$, there exists an n-complement $\left(X, B^{+}\right)$of (X, B) such that $\left(X, B^{+}\right)$is ϵ^{\prime}-/c.

- This question is known only for surfaces and curves and when $\operatorname{dim} Z=0$ (by $B A B$). When $0<\operatorname{dim} Z<\operatorname{dim} X$, this question is related to the M^{C} Kernan-Shokurov conjecture. When $\operatorname{dim} Z=\operatorname{dim} X$, this question is related to the ACC for ϵ-lc thresholds.

Thank you!

Key ideas in the proof of the complements theorem

- To prove our theorem on complements, one of the key observation is the existence of various uniform rational polytopes.
- We show the existence of uniform \mathbb{R}-complementary rational polytopes (in particular, it implies the existence of uniform Ic rational polytopes), uniform anti-pseudo-effective rational polytopes, etc.
- Unlike Shokurov's style rational polytopes (e.g. nefness of $K_{X}+B$ when B varies in Supp B), our uniform rational polytopes only depend on the dimension and the coefficients of B, and do not depend on X.
- As the existence of rational polytope style results have many applications, (e.g. Shokurov's polytope in the proof of [Birkar-Cascini-Hacon-M${ }^{c}$ Kernan 10]), we also expect the uniform rational polytopes to be useful.

