Burnside’s Orbit Counting Lemma

Drew Johnson

November 17, 2013
Motivating Example

How many ways is there to fill a tic-tac-toe board with 5 “X”s and 4 “O”s? For example:

\[
\begin{array}{ccc}
X & O & X \\
X & O & O \\
X & X & O \\
\end{array}
\]

Answer:
\[
\binom{9}{4} = 9 \cdot 8 \cdot 7 \cdot 6 / 4! = 126
\]
Motivating Example

How many ways is there to fill a tic-tac-toe board with 5 “X”s and 4 “O”s? For example:

\[
\begin{array}{ccc}
X & O & X \\
X & O & O \\
X & X & O \\
\end{array}
\]

Answer: \(\binom{9}{4} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4!} = 126 \)
Motivating Example

But we may want to compute the answer up to symmetry, i.e. we wish to consider

\[
\begin{array}{c|c|c}
X & O & X \\
X & O & O \\
X & X & O \\
\end{array}
\]

to be the same as

\[
\begin{array}{c|c|c}
X & O & X \\
O & O & X \\
O & X & X \\ \end{array}
\]
Group actions

Definition

A group of symmetries acting on a set S is a collection G of bijections from S to itself satisfying

1. $id : S \to S$ is in G
2. If $g \in G$ then $g^{-1} \in G$.
3. If $g, h \in G$, then $g \circ h \in G$.
A group of symmetries acting on a set S is a collection G of bijections from S to itself satisfying

1. $id: S \to S$ is in G
2. If $g \in G$ then $g^{-1} \in G$.
3. If $g, h \in G$, then $g \circ h \in G$.

The fixed points of a group element $g \in G$ are

$$\text{Fix}(g) = \{s \in S : g(s) = s\}$$
Group actions

Definition
A group of symmetries acting on a set S is a collection G of bijections from S to itself satisfying

1. $\text{id} : S \to S$ is in G
2. If $g \in G$ then $g^{-1} \in G$.
3. If $g, h \in G$, then $g \circ h \in G$.

Definition
The fixed points of a group element $g \in G$ are

$$\text{Fix}(g) = \{s \in S : g(s) = s\}$$

Definition
The orbit of an element $s \in S$ is

$$G_s := \{g(s) : g \in G\} \subset S$$
Back to our example

Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:
Back to our example

Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
Back to our example

Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
- A quarter turn.
Back to our example

Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
- A quarter turn.
- A half turn.
Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
- A quarter turn.
- A half turn.
- A three quarters turn.

Back to our example
Back to our example

Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
- A quarter turn.
- A half turn.
- A three quarters turn.
- A horizontal reflection.
Back to our example

Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
- A quarter turn.
- A half turn.
- A three quarters turn.
- A horizontal reflection.
- A vertical reflection.
Back to our example

Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
- A quarter turn.
- A half turn.
- A three quarters turn.
- A horizontal reflection.
- A vertical reflection.
- Two diagonal reflections.
Let S be the set of all 126 possible filled tic-tac-toe boards. Let G be the set with 8 elements:

- The identity
- A quarter turn.
- A half turn.
- A three quarters turn.
- A horizontal reflection.
- A vertical reflection.
- Two diagonal reflections.

One can check that this is a group action.
Example of an orbit

The boards

X | O | X
---+---+---
O | O | X
O | X | X

O | O | X
---+---+---
X | O | O
X | X | X
X | X | O
X | O | O
X | O | O
X | O | X
X | X | X
O | O | X
O | O | X
O | X | X
X | O | X
X | O | O
But not all orbits are the same size:

\[
\begin{array}{c|c|c}
X & O & X \\
\hline
O & X & O \\
\hline
X & O & X \\
\end{array}
\]
But not all orbits are the same size:

\[
\begin{array}{ccc}
X & O & X \\
O & X & O \\
X & O & X \\
\end{array}
\]

This orbit has only one element.
The Main Result

Our question can be rephrased as “How many orbits are there?”
Our question can be rephrased as “How many orbits are there?” The answer is given by

Theorem (Burnside’s Lemma)

The number of orbits is equal to the average number of fixed points of elements of G, i.e.

$$
\text{# of orbits} = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|
$$
Let’s count fixed points

- Everything is fixed by the identity: 126.
Let’s count fixed points

- Everything is fixed by the identity: 126.
- For a quarter rotation, (and a three quarter rotation), we must have

\[
\begin{array}{ccc}
A & B & A \\
B & C & B \\
A & B & A \\
\end{array}
\]

\text{Since there are an odd number of Xs, we must have C=X.}

Then we have two choices: either A = X and B = O or vise versa.
Let’s count fixed points

- Everything is fixed by the identity: 126.
- For a quarter rotation, (and a three quarter rotation), we must have

\[
\begin{array}{|c|c|c|}
\hline
A & B & A \\
\hline
B & C & B \\
\hline
A & B & A \\
\hline
\end{array}
\]

AAAABBBBBC: since there are an odd number of Xs, we must have C=X.
Then we have two choices: either A = X and B = O or vise versa.
Let’s count fixed points

- Everything is fixed by the identity: 126.
- For a quarter rotation, (and a three quarter rotation), we must have

 \[
 \begin{array}{ccc}
 A & B & A \\
 B & C & B \\
 A & B & A \\
 \end{array}
 \]

 AAAABBBBC: since there are an odd number of Xs, we must have C=X.
 Then we have two choices: either A = X and B = O or vise versa.

 \[
 \begin{array}{ccc}
 X & O & X \\
 O & X & O \\
 X & O & X \\
 \end{array}
 \quad \quad \quad
 \begin{array}{ccc}
 O & X & O \\
 X & X & X \\
 O & X & O \\
 \end{array}
 \]
AABBCCDDE, so we must pick $E=X$ and two of $A, B, C, \text{or } D$ to be X, so $\binom{4}{2} = 6$ choices.
Vertical (or horizontal) reflections

\[
\begin{array}{ccc}
A & D & A \\
B & E & B \\
C & F & C \\
\end{array}
\]

AABBCCCDEF, so we can either:

- Pick X to be one of D,E,F and two of A,B,C: \(3 \times 3 = 9\) choices
- Pick D,E,F to all be X, and then one of A,B,C to be X: 3 choices.

So we have 12 fixed points.
Finally, diagonal reflections

For the diagonal reflections, we have

\begin{array}{c|c|c}
A & B & D \\
\hline
C & E & B \\
F & C & A \\
\end{array}

AABBCDEF, so it is again 12.
Finally, diagonal reflections

For the diagonal reflections, we have

\[
\begin{array}{ccc}
A & B & D \\
C & E & B \\
F & C & A
\end{array}
\]

AABBCDEF, so it is again 12.
Now we can compute

\[
\frac{1}{8} (126 + 2 \cdot 2 + 6 + 4 \cdot 12) = 23
\]
Problem

Suppose you have two indistinguishable coins with indistinguishable sides. You have \(k \) colors of paint and can paint each side of a coin a single color. How many different things can you do? (Answer will be a function of \(k \).)
Coins

Problem

Suppose you have two indistinguishable coins with indistinguishable sides. You have k colors of paint and can paint each side of a coin a single color. How many different things can you do? (Answer will be a function of k.)

S is the set with k^4 elements consisting of all pairs of painted coins if you remember left/right/top/bottom.
There are $2^3 = 8$ symmetries— you can swap the coins, and flip each one.
Coins

- id – fixes k^4.
- 2 ways to flip one – fixes k^3 (flipped coin must be the same color on both sides).
- swap the left and right – fixes k^2 (tops and the bottoms must be the same color).
- swap and then flip both – fixes k^2 (tops and the bottoms must be the same color).
- flip both – fixes k^2 (each coin must be all one color).
- 2 ways to swap and then flip one – fixes k (all sides must be the same color).

Hence the number is $k^4 + 2k^3 + 3k^2 + 2k^8$.

(Exercise: Prove that the polynomial above takes integer values on integers.)
Coins

- id – fixes k^4.
- 2 ways to flip one – fixes k^3 (flipped coin must be the same color on both sides).
- swap the left and right – fixes k^2 (tops and the bottoms must be the same color).
- swap and then flip both – fixes k^2 (tops and the bottoms must be the same color).
- flip both – fixes k^2 (each coin must be all one color).
- 2 ways to swap and then flip one – fixes k (all sides must be the same color).

Hence the number is

$$\frac{k^4 + 2k^3 + 3k^2 + 2k}{8}.$$
Coins

- id – fixes k^4.
- 2 ways to flip one – fixes k^3 (flipped coin must be the same color on both sides).
- swap the left and right – fixes k^2 (tops and the bottoms must be the same color).
- swap and then flip both – fixes k^2 (tops and the bottoms must be the same color).
- flip both – fixes k^2 (each coin must be all one color).
- 2 ways to swap and then flip one – fixes k (all sides must be the same color).

Hence the number is

$$k^4 + 2k^3 + 3k^2 + 2k$$

$$8$$

(Exercise: Prove that the polynomial above takes integer values on integers.)
Some values

\[N(k) = \frac{k^4 + 2k^3 + 3k^2 + 2k}{8} \]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(N(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>231</td>
</tr>
<tr>
<td>7</td>
<td>406</td>
</tr>
<tr>
<td>8</td>
<td>666</td>
</tr>
<tr>
<td>9</td>
<td>1035</td>
</tr>
<tr>
<td>10</td>
<td>1540</td>
</tr>
<tr>
<td>11</td>
<td>2211</td>
</tr>
<tr>
<td>12</td>
<td>3081</td>
</tr>
<tr>
<td>100</td>
<td>12753775</td>
</tr>
</tbody>
</table>
Some values

\[N(k) = \frac{k^4 + 2k^3 + 3k^2 + 2k}{8} \]

\begin{tabular}{|c|c|}
 \hline
 \(k \) & \(N(k) \) \\
 \hline
 1 & 1 \\
 2 & 6 \\
 3 & 21 \\
 4 & 55 \\
 5 & 120 \\
 6 & 231 \\
 7 & 406 \\
 8 & 666 \\
 9 & 1035 \\
 10 & 1540 \\
 11 & 2211 \\
 12 & 3081 \\
 100 & 12753775 \\
 \hline
\end{tabular}

At 2 seconds per side, this brings the total to 4.8 years, or just slightly over 100 years.
Problem

You have 5 spoons: three differently colored spoons and two indistinguishable lizard spoons. You have three differently colored bowls. Put one spoon in each bowl, and leave 2 out. The two left-out spoons are unordered. How many ways can you do this?
Solution 1

Let S be the set of 120 possible orderings of five distinct spoons. Let ℓ be the function that swaps the two lizard spoons, and n be the function that swaps the two spoons that are not in a bowl. Then our group is $G = \{\text{id}, \ell, n, \ell \circ n\}$.

- id fixes all 120.
- ℓ fixes nothing.
- n fixes nothing.
- $\ell \circ n$ fixes the arrangements with both lizard spoons outside. There are $3! = 6$ ways to arrange the other spoons, and the lizard spoons could be in either order, for a total of $6 \times 2 = 12$.

Hence the number of orbits is $\frac{1}{4}(120 + 12) = 132/4 = 33.$
Solution 2

Let S be the set of possible orderings of 5 spoons with the two lizard spoons indistinguishable. Then we only need the group $G = \{\text{id}, n\}$, where again n switches the two spoons that are not in bowls.

How big is S? First, choose where to put the lizard spoons: there are $\binom{5}{2} = 10$ choices. Then put the other three in some order—there are 6 choices. Hence $|S| = 60$.

- id fixes all 60.
- n fixes the arrangements with both lizard spoons out. There are 6 of these.

Hence the number of orbits is $\frac{1}{2}(60 + 6) = 33$.
Solution 3 (no Burnside’s)

- Case 1: Lizard spoons both out: 6
- Case 2: One lizard spoon in, one out: 3 choices for the in lizard spoon, 3 choices for the colored spoon to go out, 2 choices to order the colored spoons that go in. So $3 \times 3 \times 2 = 18$.
- Case 3: Two lizard spoons in: 3 choices for a colored spoon to go in a bowl and 3 choices for which bowl to put it in. So $3 \times 3 = 9$.
- Total: 33
A different example

How many possible six sided dice can you make? (consider two dice the same if one can be rotated to match the other)
Solution 1

Start with a blank dice.

- Put 1 on some side. There are no choices here.
- Put some number opposite of 1. There are 5 choices here.
- Put the smallest remaining number somewhere. There are no choices here.
- But now the dice has an orientation. So placing the last 3 numbers has $3 \cdot 2 \cdot 1 = 6$ choices.

So the answer is 30.
Free actions

Definition

A group of symmetries G acts freely if no element $g \in G$ has a fixed point (except the identity).

In this case, every orbit has size equal to the size of G, and the number of orbits is $|S|/|G|$.
Solution 2

There are 24 symmetries of the cube: put some face of the cube on top (6 choices), then choose one of 4 rotations of that face).
Solution 2

There are 24 symmetries of the cube: put some face of the cube on top (6 choices), then choose one of 4 rotations of that face).

These symmetries act freely on the set of numbered dice with orientation. There are $6! = 720$ of these, so the number of orbits is $720/24 = 30$.

Other examples

- Painting the sides of cubes, tetrahedrons, icosohedrons, etc.

- Counting the number of matrices with entries in a finite set, up to permutations of rows and columns.

- Counting the number of distinct ways to put stickers on a Rubik's cube.

- Counting the number of "distinct" peg jumping game set ups.
Other examples

- Painting the sides of cubes, tetrahedrons, icosohedrons, etc.
- Painting the sides of collections of these (these symmetry groups are called wreath products).
Other examples

- Painting the sides of cubes, tetrahedrons, icosahedrons, etc.
- Painting the sides of collections of these (these symmetry groups are called wreath products).
- Count the number of matrices with entries in a finite set, up to permutations of rows and columns.
Other examples

- Painting the sides of cubes, tetrahedrons, icosohedrons, etc.
- Painting the sides of collections of these (these symmetry groups are called wreath products).
- Count the number of matrices with entries in a finite set, up to permutations of rows and columns.
- Count the number of distinct ways to put stickers on a Rubic’s cube.
Other examples

- Painting the sides of cubes, tetrahedrons, icosohedrons, etc.
- Painting the sides of collections of these (these symmetry groups are called wreath products).
- Count the number of matrices with entries in a finite set, up to permutations of rows and columns.
- Count the number of distinct ways to put stickers on a Rubik’s cube.
- Count the number of “distinct” peg jumping game set ups.