next up previous
Next: Bibliography

Some Data on Torsion Subgroups of Elliptic Curves

Javier Fernandez


Department of Mathematics
University of Utah
Salt Lake City
UT 84112

jfernand@math.utah.edu

A well known theorem of B. Mazur [1] states that the only possible groups that appear as torsion subgroups of elliptic curves over $ \ensuremath{\mathbb{Q}}$ are of the form

$\displaystyle \ensuremath{\mathbb{Z}}_d$    for $\displaystyle d=1,2,3,4,5,6,7,8,9,10,12$    

where $ \ensuremath{\mathbb{Z}}_d = \ensuremath{\mathbb{Z}}/(d\ensuremath{\mathbb{Z}})$ or

$\displaystyle \ensuremath{\mathbb{Z}}_2 \times \ensuremath{\mathbb{Z}}_2$    for $\displaystyle d=2,4,6,8.$    

Table 1 shows, for each possible group, an elliptic curve that realizes the group, as well as a set of generators. All curves come from [2], Exercise 2.12.

Table 2 shows the frequency of each group over different regions of the space of elliptic curves. Two realizations of the elliptic curves are used. The usual Weierstrass form

$\displaystyle y^2=x^3+a x^2 +b x+c,$ (1)

and the reduced minimal model form:

$\displaystyle y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$   , with $\displaystyle a_1, a_3\in\{0,1\},\, a_2\in \{-1,0,1\}.$ (2)


\begin{sidewaystable}
% latex2html id marker 33%%\begin{table}[htbp]
\cente...
...\hline
\end{tabular} \caption{Torsion Groups}
%%\end{table}\end{sidewaystable} 1 2


Table 2: Torsion group frequencies
group frequency
  W I3 W II4 M I5 M II6
$ \ensuremath{\mathbb{Z}}_1$ $ 0.9817$ $ 0.9907113$ $ 0.9968541$ $ NC$
$ \ensuremath{\mathbb{Z}}_2$ $ 0.0177$ $ 0.0090987$ $ 0.0030424$ $ NC$
$ \ensuremath{\mathbb{Z}}_3$ $ 0.00018$ $ 6.177\, 10^{-5}$ $ 5.819\, 10^{-5}$ $ NC$
$ \ensuremath{\mathbb{Z}}_4$ $ 8.8\, 10^{-5}$ $ 2.551\, 10^{-5}$ $ 1.248\, 10^{-5}$ $ NC$
$ \ensuremath{\mathbb{Z}}_5$ $ 3.8\, 10^{-6}$ $ 8.594\, 10^{-7}$ $ 1.378\, 10^{-6}$ $ NC$
$ \ensuremath{\mathbb{Z}}_6$ $ 5.0\, 10^{-7}$ $ 5.625\, 10^{-6}$ $ 2.730\, 10^{-6}$ $ NC$
$ \ensuremath{\mathbb{Z}}_7$ $ 5.0\, 10^{-7}$ $ 1.406\, 10^{-7}$ $ 1.560\, 10^{-7}$ $ NC$
$ \ensuremath{\mathbb{Z}}_8$ $ 6.2\, 10^{-7}$ $ 2.188\, 10^{-7}$ $ 1.820\, 10^{-7}$ $ NC$
$ \ensuremath{\mathbb{Z}}_9$ 0 0 $ 5.201\, 10^{-8}$ $ 2.08\, 10^{-9}$
$ \ensuremath{\mathbb{Z}}_{10}$ 0 0 $ 7.801\, 10^{-8}$ $ 5.21\, 10^{-9}$
$ \ensuremath{\mathbb{Z}}_{12}$ 0 0 $ 2.600\, 10^{-8}$ $ 1.04\, 10^{-9}$
$ \ensuremath{\mathbb{Z}}_2\times \ensuremath{\mathbb{Z}}_2$ $ 0.00029$ $ 9.363\, 10^{-5}$ $ 2.741\,
10^{-5}$ $ NC$
$ \ensuremath{\mathbb{Z}}_4\times \ensuremath{\mathbb{Z}}_2$ $ 8.5\, 10^{-6}$ $ 2.078\, 10^{-6}$ $ 7.021\,
10^{-7}$ $ NC$
$ \ensuremath{\mathbb{Z}}_6\times \ensuremath{\mathbb{Z}}_2$ 0 $ 1.094\, 10^{-7}$ $ 5.201\, 10^{-8}$ $ 4.17\, 10^{-9}$
$ \ensuremath{\mathbb{Z}}_8\times \ensuremath{\mathbb{Z}}_2$ 0 0 0 $ 1.04\, 10^{-9}$





next up previous
Next: Bibliography
Javier Fernandez 2003-07-07