Chapter 1
1. Vectors
 - Vector operations
 - Lengths, inequalities
 - Dot products
 - Angles
2. Linear combinations
 - Definition
 - Matrix times vector

Chapter 2
1. Vectors & Linear Equations
 - Linear equations, vector equations
 - Solving linear systems with elimination
2. Matrix Operations
 - + and scalar
 - Properties & non-properties of matrix mult.
 - Computing matrix mult. different ways
 - Elimination steps by matrix mult.
3. Inverse Matrices
 - Computing
 - When it exists
 - Properties
4. Transposes & Permutations
 - And symmetric matrices
Chapter 3

7. Vector spaces
 - definition & subspaces
 - examples & non-examples

2. Solving linear systems
 - computing nullspace
 - computing special solutions
 - particular solutions
 - echelon & reduced echelon forms
 - solution sets & rank

3. Linear independence, spanning, basis
 - definitions
 - when a set of vectors in \mathbb{R}^n is ______
 - bases for nullspace & columnspace
 - dimension
 - dimensions of subspaces
Chapter 4
1. Orthogonality
 - orthogonal vectors
 - orthogonal spaces/complements
 - orthonormal bases
 - \[\text{C}(A) \perp \text{N}(A) \iff \text{C}(A) \perp \text{N}(A^T) \]
2. Projections
 - what are projection & error
 - \[A^T A \mathbf{x} = A^T \mathbf{y} \] projecting onto subspace
 - least-squares solutions
 - projection matrices
3. Orthogonal bases
 - Gram-Schmidt process
 - orthogonal matrices \(Q^T = Q^{-1} \)
 - orthogonal matrices & angles/lengths

Chapter 5
1. Properties of the Determinant
 - \(\det I = 1 \), pull out, switch \(\pm \) sign, add/subtract rows, multiply/divide, transpose
 - \(\det \) stays same under \(R_i \rightarrow R_i + k R_j \) elimination step
 - product of pivots of triangular matrix
 - computing by elimination etc.
 - determinant & invertibility
2. Determinant, geometrically
 - volume of parallelopiped
 - orientation
3. Cofactor expansions - cofactors
 - using cofactor expansion to compute lets
 - when is cofactor exp. convenient?

4. Cramer's Rule / Inverses
 - Cramer's rule for solving equations
 - formula for inverse matrix

Chapter 6
1. Eigenvalues & Eigenvectors
 - definitions
 - geometric interpretation
 - eigenvalues & invertibility
 - characteristic polynomial
 - computing eigenvectors & eigenvalues.
 - eigenvalues & det

2. Diagonalization
 - pieces of $A = S \Lambda S^{-1}$
 - computing
 - powers of a matrix & limits

3. Symmetric Matrices

 - Spectral Theorem: real eigenvals & orth. nor. basis of eigenv.
 - factorization $A = Q \Lambda Q^{T}$
 - positive definiteness / semidefiniteness
 - testing for positive definiteness
 - principal square roots

4. Singular Value Decomposition
 - low rank approximation
chapter 7

1. Linear transformations
 - definition
 - examples
 - relationship between matrices & linear transformations
 - the matrix of a linear transformation

2. Change of basis
 - change of basis matrices
 - similar matrices / change of basis for transformations
 - diagonalization as a change of basis