<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>4</td>
<td>13.8%</td>
</tr>
<tr>
<td>Sophomore</td>
<td>4</td>
<td>13.8%</td>
</tr>
<tr>
<td>Junior</td>
<td>8</td>
<td>27.6%</td>
</tr>
<tr>
<td>Senior</td>
<td>13</td>
<td>44.8%</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>100%</td>
</tr>
</tbody>
</table>

The distribution of grade levels for our class
A pie chart illustrating the distribution on the last slide
Example of a bar chart
<table>
<thead>
<tr>
<th>State</th>
<th>Minutes</th>
<th>State</th>
<th>Minutes</th>
<th>State</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>23.6</td>
<td>Kentucky</td>
<td>22.4</td>
<td>North Dakota</td>
<td>15.5</td>
</tr>
<tr>
<td>Alaska</td>
<td>17.7</td>
<td>Louisiana</td>
<td>25.1</td>
<td>Ohio</td>
<td>22.1</td>
</tr>
<tr>
<td>Arizona</td>
<td>25</td>
<td>Maine</td>
<td>22.3</td>
<td>Oklahoma</td>
<td>20</td>
</tr>
<tr>
<td>Arkansas</td>
<td>20.7</td>
<td>Maryland</td>
<td>30.6</td>
<td>Oregon</td>
<td>21.8</td>
</tr>
<tr>
<td>California</td>
<td>26.8</td>
<td>Massachusetts</td>
<td>26.6</td>
<td>Pennsylvania</td>
<td>25</td>
</tr>
<tr>
<td>Colorado</td>
<td>23.9</td>
<td>Michigan</td>
<td>23.4</td>
<td>Rhode Island</td>
<td>22.3</td>
</tr>
<tr>
<td>Connecticut</td>
<td>24.1</td>
<td>Minnesota</td>
<td>22</td>
<td>South Carolina</td>
<td>22.9</td>
</tr>
<tr>
<td>Delaware</td>
<td>23.6</td>
<td>Mississippi</td>
<td>24</td>
<td>South Dakota</td>
<td>15.9</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>29.2</td>
<td>Missouri</td>
<td>22.9</td>
<td>Tennessee</td>
<td>23.5</td>
</tr>
<tr>
<td>Florida</td>
<td>25.9</td>
<td>Montana</td>
<td>17.6</td>
<td>Texas</td>
<td>24.6</td>
</tr>
<tr>
<td>Georgia</td>
<td>27.3</td>
<td>Nebraska</td>
<td>17.7</td>
<td>Utah</td>
<td>20.8</td>
</tr>
<tr>
<td>Hawaii</td>
<td>25.5</td>
<td>Nevada</td>
<td>24.2</td>
<td>Vermont</td>
<td>21.2</td>
</tr>
<tr>
<td>Idaho</td>
<td>20.1</td>
<td>New Hampshire</td>
<td>24.6</td>
<td>Virginia</td>
<td>26.9</td>
</tr>
<tr>
<td>Illinois</td>
<td>27.9</td>
<td>New Jersey</td>
<td>29.1</td>
<td>Washington</td>
<td>25.2</td>
</tr>
<tr>
<td>Indiana</td>
<td>22.3</td>
<td>New Mexico</td>
<td>20.9</td>
<td>West Virginia</td>
<td>25.6</td>
</tr>
<tr>
<td>Iowa</td>
<td>18.2</td>
<td>New York</td>
<td>30.9</td>
<td>Wisconsin</td>
<td>20.8</td>
</tr>
<tr>
<td>Kansas</td>
<td>18.5</td>
<td>North Carolina</td>
<td>23.4</td>
<td>Wyoming</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Distribution of average commuting times in the states
Histogram representing the distribution of commuting times.
Histogram representing the distribution of commuting times.
Histogram representing the distribution of commuting times
Histogram representing the distribution of commuting times
Histogram representing the distribution of commuting times.
Histogram representing the distribution of commuting times
A bimodal distribution (% of H.S. seniors taking SAT by state)
A symmetric distribution (commuting times)
A skewed-left distribution (of test scores)
A skewed-right distribution (of household incomes)
Compare center and spread for these distributions of test scores.
An example of a time graph (average tuition rates)