Equation ${ } \begin{aligned} & \\ & \\ & \\ & \text { Ideal Gas Law }\end{aligned}$	Equation
	Van der Waals Equation
Thermodynamics	Thermodynamics
Definition	Definition
Coefficient of Volume Expansion β	Isothermal Compressibility κ
Thermodynamics	Thermodynamics
Equation	Definition
Volume Differential $d V$	Exact Differential
Thermodynamics	Thermodynamics
Law	Definition
First Law of Thermodynamics	Enthalpy
Thermodynamics	Thermodynamics
Definition ${ }^{\text {Heat Capacity }}$	Equation
	Thermodynamic Potentials
Thermodynamics	Thermodynamics

$\left(P+\frac{a}{v^{2}}\right)(v-b)=R T$	$P v=n R T$
$\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$	$\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$
The following two properties are equivalent ways of determining exactness: 1. Mixed second order partial derivatives are equal e.g.: $\frac{\partial^{2} V}{\partial P \partial T}=\frac{\partial^{2} V}{\partial T \partial P}$ 2. Integral is independent of path $\int_{V_{1}}^{V_{2}} d V=V_{1}-V_{2} \quad \oint d V=0$ A quantity whose differential is not exact is not a thermodynamic property.	$d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P$
$H=U+P V$	$\begin{aligned} & \Delta U=Q-W \\ & d U=d^{\prime} Q-d^{\prime} W \end{aligned}$ (Where the primes denote inexact differentials)
$$	$\begin{gathered} C=\lim _{\Delta T \rightarrow 0} \frac{Q}{\Delta T}=\frac{d^{\prime} Q}{d T} \\ Q=C\left(T_{2}-T_{1}\right)=n c\left(T_{2}-T_{1}\right) \end{gathered}$

