Copyright & License	Definition
Copyright © 2006 Jason Underdown Some rights reserved.	choose notation
Probability	Probability
Theorem	DEFINITION
binomial theorem	n distinct items divided into r distinct groups
Probability	Probability
Axioms	Proposition
axioms of probability	probability of the complement
Probability	Probability
Proposition	DEFINITION
probability of the union of two events	conditional probability
Probability	Probability
Theorem	Тнеопем
$the\ multiplication\ rule$	Bayes' formula
Probability	Probability

 $n\ choose\ k$ is a brief way of saying how many ways can you choose k objects from a set of n objects, when the order of selection is not relevant.

$$\binom{n}{k} = \frac{n!}{(n-k)! \ k!}$$

Obviously, this implies 0 < k < n.

These flashcards and the accompanying IATEX source code are licensed under a Creative Commons Attribution—NonCommercial—ShareAlike 2.5 License. For more information, see creative commons.org. You can contact the author at:

jasonu [remove-this] at physics dot utah dot edu

Suppose you want to divide n distinct items in to r distinct groups each with size n_1, n_2, \ldots, n_r , how do you count the possible outcomes?

If $n_1 + n_2 + \ldots + n_r = n$, then the number of possible divisions can be counted by the following formula:

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! \ n_2! \dots n_r!}$$

 $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

If E^c denotes the complement of event E, then

$$P(E^c) = 1 - P(E)$$

- 1. $0 \le P(E) \le 1$
- 2. P(S) = 1
- 3. For any sequence of mutually exclusive events E_1, E_2, \dots

(i.e. events where $E_i E_j = \emptyset$ when $i \neq j$)

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

If P(F) > 0, then

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$\begin{array}{lcl} P(E) & = & P(EF) + P(EF^c) \\ & = & P(E \mid F)P(F) + P(E \mid F^c)P(F^c) \\ & = & P(E \mid F)P(F) + P(E \mid F^c)[1 - P(F)] \end{array}$$

$$P(E_1 E_2 E_3 \dots E_n) =$$

$$P(E_1) P(E_2 \mid E_1) P(E_3 \mid E_2 E_1) \dots P(E_n \mid E_1 \dots E_{n-1})$$

DEFINITION	DEFINITION
$in dependent\ events$	probability mass function of a discrete random variable
Probability	Probability
DEFINITION	THEOREM
cumulative distribution function F	properties of the cumulative distribution function
Probability	Probability
Definition	Proposition
expected value (discrete case)	expected value of a function of X (discrete case)
Probability	Probability
Corollary	Definition/Theorem
linearity of expectation	variance
Probability	Probability
DEFINITION	DEFINITION
probability mass function of a Bernoulli random variable	probability mass function of a binomial random variable
Probability	Probability

For a discrete random variable X, we define the *probability mass function* p(a) of X by

$$p(a) = P\{X = a\}$$

Probability mass functions are often written as a table.

Two events E and F are said to be *independent* iff

$$P(EF) = P(E)P(F)$$

Otherwise they are said to be dependent.

The cumulative distribution function satisfies the following properties:

- 1. F is a nondecreasing function
- 2. $\lim_{a\to\infty} F(a) = 1$
- 3. $\lim_{a \to -\infty} F(a) = 0$

The cumulative distribution function (F) is defined to be

$$F(a) = \sum_{all \ x \le a} p(x)$$

The cumulative distribution function F(a) denotes the probability that the random variable X has a value less than or equal to a.

If X is a discrete random variable that takes on the values denoted by x_i (i = 1 ... n) with respective probabilities $p(x_i)$, then for any real-valued function f

$$E[f(X)] = \sum_{i=1}^{n} f(x_i)p(x)$$

 $E[X] = \sum_{x:p(x)>0} xp(x)$

If X is a random variable with mean μ , then we define the *variance* of X to be

$$var(X) = E[(X - \mu)^2]$$

= $E[X^2] - (E[X])^2$
= $E[X^2] - \mu^2$

The first line is the actual definition, but the second and third equations are often more useful and can be shown to be equivalent by some algebraic manipulation. If α and β are constants, then

$$E[\alpha X + \beta] = \alpha E[X] + \beta$$

Suppose n independent Bernoulli trials are performed. If the probability of success is p and the probability of failure is 1-p, then X is said to be a binomial random variable with parameters (n, p).

The probability mass function is given by:

$$p(i) = \binom{n}{i} p^i (1-p)^{n-i}$$

where i = 0, 1, ..., n

If an experiment can be classified as either success or failure, and if we denote success by X=1 and failure by X=0 then, X is a $Bernoulli\ random\ variable$ with probability mass function:

$$\begin{array}{lclcl} p(0) & = & P\{X=0\} & = & 1-p \\ p(1) & = & P\{X=1\} & = & p \end{array}$$

where p is the probability of success and $0 \le p \le 1$.

Theorem	DEFINITION
properties of binomial random variables	probability mass function of a Poisson random variable
Probability	Probability
Theorem	DEFINITION
properties of Poisson random variables	probability mass function of a geometric random variable
Probability	Probability
Theorem	DEFINITION
properties of geometric random variables	probability mass function of a negative binomial random variable
Probability	Probability
THEOREM	DEFINITION
properties of negative binomial random variables	probability density function of a continuous random variable
Probability	Probability
Definition	Theorem
probability density function of a uniform random variable	properties of uniform random variables
Probability	Probability

A random variable X that takes on one of the values $0,1,\ldots$, is said to be a *Poisson random variable* with parameter λ if for some $\lambda>0$

$$p(i) = P\{X = i\} = \frac{\lambda^i}{i!}e^{-\lambda}$$

where i = 0, 1, 2, ...

If X is a binomial random variable with parameters n and p, then

$$E[X] = np$$
$$var(X) = np(1-p)$$

Suppose independent Bernoulli trials, are repeated until success occurs. If we let X equal the number of trials required to achieve success, then X is a $geometric \ random \ variable$ with probability mass function:

$$p(n) = P\{X = n\} = (1 - p)^{n-1}p$$

where $n = 1, 2, \ldots$

If X is a Poisson random variable with parameter λ , then

$$E[X] = \lambda$$
$$var(X) = \lambda$$

Suppose that independent Bernoulli trials (with probability of succes p) are performed until r successes occur. If we let X equal the number of trials required, then X is a negative binomial random variable with probability mass function:

$$p(n) = P\{X = n\} = \binom{n-1}{r-1} p^r (1-p)^{n-r}$$

where $n = r, r + 1, \dots$

If X is a geometric random variable with parameter p, then

$$E[X] = \frac{1}{p}$$
$$var(X) = \frac{1-p}{p^2}$$

We define X to be a *continuous* random variable if there exists a function f, such that for any set B of real numbers

$$P\{X \in B\} = \int_{B} f(x)dx$$

The function f is called the *probability density function* of the random variable X.

If X is a negative binomial random variable with parameters (p, r), then

$$E[X] = \frac{r}{p}$$
$$var(X) = \frac{r(1-p)}{p^2}$$

If X is a uniform random variable with parameters (α, β) , then

$$E[X] = \frac{\alpha + \beta}{2}$$
$$var(X) = \frac{(\beta - \alpha)^2}{12}$$

If X is a *uniform* random variable on the interval (α, β) , then its probability density function is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha < x < \beta \\ 0 & \text{otherwise} \end{cases}$$