Copyright \& License Copyright (c) 2007 Jason Underdown Some rights reserved. Electrodynamics	Definition gradient Electrodynamics
Definition the vector operator ∇ Electrodynamics	Definition divergence Electrodynamics
Definition curl Electrodynamics	Definition 5 species of second derivatives Electrodynamics
Theorem curl-less or irrotational fields Electrodynamics	Theorem divergence-less or solenoidal fields Electrodynamics
Theorem gradient theorem Electrodynamics	Theorem Green's theorem Electrodynamics

The gradient ∇T points in the direction of maximum increase of the function T.

$$
\nabla T \equiv \hat{\mathbf{x}} \frac{\partial T}{\partial x}+\hat{\mathbf{y}} \frac{\partial T}{\partial y}+\hat{\mathbf{z}} \frac{\partial T}{\partial z}
$$

The magnitude $|\nabla T|$ is the slope along this direction.

$$
\begin{aligned}
\nabla \cdot \mathbf{v} & =\left(\hat{\mathbf{x}} \frac{\partial}{\partial x}+\hat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z}\right) \cdot\left(v_{x} \hat{\mathbf{x}}+v_{y} \hat{\mathbf{y}}+v_{z} \hat{\mathbf{z}}\right) \\
& =\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}
\end{aligned}
$$

The divergence is a measure of how much the vector function \mathbf{v} spreads out from the point in question.

By applying ∇ twice we can construct five species of second derivatives.

1. divergence of a gradient $\nabla \cdot(\nabla T)=\nabla^{2}$ (Laplacian)
2. curl of a gradient $\nabla \times(\nabla T)=0$ (always)
3. gradient of a divergence $\nabla(\nabla \cdot \mathbf{v})$ (seldom occurs)
4. divergence of a curl $\nabla \cdot(\nabla \times \mathbf{v})=0$ (always)
5. curl of a curl $\nabla \times(\nabla \times \mathbf{v})=\nabla(\nabla \cdot \mathbf{v})-\nabla^{2} \mathbf{v}$
By applying ∇ twice we can construct five species of second
derivatives.
6. divergence of a gradient $\nabla \cdot(\nabla T)=\nabla^{2}$ (Laplacian)
7. curl of a gradient $\nabla \times(\nabla T)=0$ (always)
8. gradient of a divergence $\nabla(\nabla \cdot \mathbf{v})$ (seldom occurs)
9. divergence of a curl $\nabla \cdot(\nabla \times \mathbf{v})=0$ (always)
10. curl of a curl $\nabla \times(\nabla \times \mathbf{v})=\nabla(\nabla \cdot \mathbf{v})-\nabla^{2} \mathbf{v}$

These flashcards and the accompanying $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. For more information, see creativecommons.org. You can contact the author at:
jasonu [remove-this] at physics dot utah dot edu

$$
\nabla \equiv \hat{\mathbf{x}} \frac{\partial}{\partial x}+\hat{\mathbf{y}} \frac{\partial}{\partial y}+\hat{\mathbf{z}} \frac{\partial}{\partial z}
$$

For a given vector field \mathbf{F} the following statements are equivalent, i.e. each implies the others.

1. $\nabla \cdot \mathbf{F}=0$ everywhere
2. $\int \mathbf{F} \cdot d \mathbf{a}$ is independent of surface

$$
\nabla \times \mathbf{v}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right|
$$

The curl is a measure of how much the vector field "curls around" the point in question.
3. $\oint \mathbf{F} \cdot d \mathbf{a}=0$ over any closed surface
4. $\mathbf{F}=\nabla \times \mathbf{A}$ for some vector potential \mathbf{A}

For a given vector field \mathbf{F} the following statements are equivalent, i.e. each implies the others.

1. $\nabla \times \mathbf{F}=0$ everywhere
2. $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d \mathbf{l}$ is path independent
3. $\oint \mathbf{F} \cdot d \mathbf{l}=0$ on any closed loop
4. $\mathbf{F}=-\nabla V$ for some scalar potential V

$$
\int(\nabla \cdot \mathbf{A}) d V=\oint \mathbf{A} \cdot d \mathbf{a}
$$

$$
\int_{\mathbf{a}}^{\mathbf{b}}(\nabla f) \cdot d \mathbf{l}=f(\mathbf{b})-f(\mathbf{a})
$$

THEOREM		
Stokes' theorem		
ELECTRODYNAMICS		

1			

