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Preface

The study of polynomial equations dates back to ancient times. Every math
student learns to factor polynomials as a tool for solving such equations. We
also learn the quadratic formula, the Rational Roots Theorem, polynomial
long division, and sometimes a few other algorithms. Armed with these
tools, one is able to solve a good number of polynomial equations. However,
the question naturally arises as to whether these tools, supplemented with
the taking of roots ( n

√
), suffice to solve all polynomial equations?

Before we proceed however, let’s be careful about what we mean by,
“solving” an equation. Numerical techniques for approximating the real
roots of an equation have existed since ancient times, and the modern
Newton-Raphson method of root finding is extremely fast and easy to imple-
ment in computer code. For nearly all applications, approximate solutions
suffice. The question of “solving” or “solvability” boils down to whether or
not we can express the roots or solutions of an equation via the ordinary
algebraic operations of +,−,×,÷ and by taking roots,

√
, 3
√
, 4
√
, 5
√

, . . . .

For example, the solutions to the equation x2 = 2 are x = ±
√

2. Notice
that these two roots are just convenient ways of writing irrational numbers,
i.e. numbers with infinite decimal expansions. If you wish to place these
numbers on the real number line you will still have to employ the square
root algorithm to approximate the value of

√
2.

If numerical root finding techniques of solving equations suffice, then
what is the point of asking whether the solutions of a general equation can
be written via the four arithmetic operations and the taking of roots? From
a purely practical perspective there is no reason. But mathematics is not
just about practicality, curiosity is also an important driver of mathematical
thought.
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iv Preface

Curiosity mixed with a desire for prestige led Italian mathematicians to
find formulas similar to the quadratic formula for solving cubic and quartic
polynomials in the sixteenth century. Naturally, mathematician’s believed
that with more work similar formulas could be found for solving quintic
equations and beyond. It wasn’t until 1824 when a young Norwegian math-
ematician by the name of Niels Henrik Abel proved definitively that quintic
polynomial equations do not have a general solution method.

At that time, some mathematicians were beginning to doubt whether
a formula for quintic equations would ever be found, but most assumed it
would eventually happen thus Abel’s proof was quite a shock.

Interestingly, it was an even younger, French mathematician by the name
of Evariste Galois who discovered around 1830 that there is no general for-
mula for any polynomial equation of degree five or higher. More importantly,
Galois discovered a criterion for deciding a polynomial equation’s solvability.

To be clear, there are certainly polynomial equations of degree five and
higher whose solutions can be written using just the normal algebraic op-
erations of +,−,×,÷ and the taking of roots. For example x5 = 3 has the
single repeated root 5

√
3 . What Galois showed is that there is no formula

or algorithm which will allow you to generate an algebraic expression for
the roots of an arbitrary equation. In the degree two case, the quadratic
formula tells us that the roots of the arbitrary equation ax2 + bx + c = 0
are:

x =
−b±

√
b2 − 4ac

2a
.

But when the degree of the equation is five or higher one cannot find a
formula that works for every equation.

Galois effectively finished what was commonly called “equation theory”,
but the closing of this one door led to the opening of two new doors. Galois’
criterion uses an algebraic object known as a group. His usage of groups
led to what is now called “abstract algebra”. Basically this is the study
of groups and other related objects such as rings, fields, vector spaces and
modules. The other door he opened was to finding applications of Galois
Theory to questions other than the solvability of polynomial equations. It
turns out there are several domains of math to which Galois Theory applies.
Most notable is perhaps the study of differential equations started by Sophus
Lie in the late nineteenth century and continuing to this day.

The purpose of this book is to trace the historical development of equa-
tion theory from ancient times up through Galois’ amazing discovery. You
might think of these notes as an historical study of Algebra. The topics are
chronologically introduced with the exception of groups and fields. Since
it is a bit much to digest Galois Theory without a thorough understand-
ing of groups and fields, we begin with them in the hope that will afford
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a pedagogically superior experience to the student. Also, groups are intro-
duced from a geometric perspective (via Dihedral groups) rather than just
the permutation perspective to reinforce their connection to symmetry. It
seems a shame to not exploit the visual intuitiveness of how a group acts on
a regular polygon.

It should be noted that most expositions of Galois Theory follow Artin’s
approach which relies heavily on Linear Algebra. This book instead teaches
old fashioned Galois Theory without any need for the vector space notions
which were not known at the time Galois wrote his memoir.





Chapter 1

Symmetries

In this chapter we ask the question, “What structure is absolutely necessary
to solve simple equations?” By simple, we mean an equation in one unknown
and which uses only one operator, for example, 2 + x = 6. This will lead us
to the definition of a group. The group concept is one of the fundamental
building blocks of algebra. The reason for examining this at the beginning
of our story is to point out the amazing progress mankind has made along
the path of abstraction. As Derbyshire states [3]:

The very first act of mathematical abstraction occurred several
millennia ago when human beings discovered numbers, taking the
imaginative leap from observed instances of (for example) “three–
ness”—three fingers, three cows, three siblings, three stars—to
three, a mental object that could be contemplated by itself, with-
out reference to any particular instance of three–ness.

The second such act, the rise to a second level of abstrac-
tion, was the adoption, in the decades around 1600 CE, of lit-
eral symbolism—that is, the use of letter symbols to represent
arbitrary or unknown numbers: data (things given) or quaesita
(things sought). “Universal arithmetic,” Sir Isaac Newton called
it. The long stumbling journey to this point had been motivated
mainly by the desire to solve equations, to determine the unknown
quantity in some mathematical situation.

Adopting literal symbolism was a major advance in the development of
algebra. It fundamentally changed how math was done. Before the adop-
tion of literal symbolism math problems were often posed geometrically and
solved via geometric reasoning. With the advent of symbolism, we eventu-
ally learned a strict set of rules for how to manipulate these symbols, i.e.

1



2 1. Symmetries

how to solve for “x”. And geometric reasoning was mostly replaced by this
succinct set of abstract rules. However, it should be noted that each abstract
rule of symbol manipulation has a geometric analog.

This new abstract way of solving mathematically posable questions was
a double edged sword. On one hand it opened mathematicians’ minds to
the possibilities of further abstraction which led to entirely new techniques
and mathematics. On the other hand, the economy of teaching only the
abstract symbol manipulations to students mostly devoid of their geometric
roots was just too tempting to math educators. While a small number of
students take to the abstract “game” of algebra like a fish to water, most
do not. In the opinion of the author it is pedagogical suicide to attempt to
teach the abstract rules of algebra without their geometric context. However
this seems to have become the norm in most math curricula in the United
States.

Most people, including many math majors, are often unfamiliar with
the next act or step in this progression of abstraction wherein the object
of interest became the relationships between the symbols rather than some
unknown quantity for which the symbol was merely a placeholder. As Der-
byshire puts it:

During the 19th century though, these letter symbols began to de-
tach themselves from the realm of numbers. Strange new mathe-
matical objects were discovered: groups, matrices, manifolds, and
many others. Mathematics began to soar up to new levels of ab-
straction. That process was a natural development of the use of
literal symbolism, once that symbolism had been thoroughly in-
ternalized by everyone. It is therefore not unreasonable to regard
it as a continuation of the history of algebra.

1.1. Symmetries of the Equilateral Triangle

If literal symbolism is the mind of algebra, then symmetry is its heart.
Everyone is familiar with symmetry. The human body exhibits a bi–lateral
symmetry. It is common in art, architecture and even nature, but it is not
often associated with math by most people.

Here we wish to show that regular polygons, that is polygons with equal
length sides and equal angles, give rise naturally to a certain algebraic struc-
ture called a group. First, let’s be more specific about what we mean by
symmetry.

Definition 1.1. A symmetry is any transformation (function) that can be
applied to a mathematical object which leaves the object in an equivalent
state.
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In this definition, we are using a relaxed meaning for the word “equiv-
alent”. Here, equivalent does not mean “exactly the same”, but rather just
indistinguishable.

For example we can rotate an equilateral triangle on an axis through
its center by 120◦ or 2π/3 radians and the triangle will look as though it
was unchanged, or equivalent. In fact we can rotate an equilateral triangle
by any integer multiple of 2π/3 radians and it will look unchanged. Now
obviously, a physical triangle made of paper or wood say, will have small
distinguishing marks or defects that would allow us to determine whether
or not it has been rotated, but we are only concerned with mathematical,
equilateral triangles. That is, perfect or ideal triangles. These can only be
imagined, but that is fine because we can still “manipulate” them in our
minds.

Our first goal is to figure out how many symmetries
the triangle possesses. To aid us, it is wise to temporar-
ily add distinguishing marks to the triangle. Imagine an
equilateral triangle with each vertex numbered from 1 to
3, both front and back so that the numbering on the front
side corresponds to the numbering on the back side. Also
imagine that this triangle is free to be lifted, flipped and
manipulated in any way you wish. You might want to actually create a sim-
ple cardboard or paper triangle to help you visualize the various symmetry
transformations. A symmetry transformation will be any series of rotations
and flips that leave the triangle as it was before the transformation with
the exception that the vertices may be in different positions, and thus the
numbering may be different. So for example, any rotation that results in the
triangle pointing downwards or in any direction other than up is disallowed.

Counting all of the various ways of rotating and flipping the triangle
seems difficult. Perhaps the simplest way to determine the number of sym-
metries is to fix a starting state and then count the possible number of
distinct end states. We can tell the various end states apart because the
vertex labelling will be different. Let’s fix the start state of the triangle to
be where the top vertex is labelled “1”, with “2” and “3” in the bottom left
and bottom right vertices respectively. One way to count all of the symme-
tries is to count the number of positions to which a single vertex, say the
“1” vertex, can be sent. Once you choose where the “1” vertex goes you
have two choices for where the “2” and “3” vertices go. Since there are three
places the “1” vertex can go, including its starting position, and since each
other vertex has two possibilities, there are 3 · 2 = 6 possible permutations.
These are pictured in figure 1.

If you carefully examine figure 1, you will notice that the first column
corresponds to the three possible rotations about an axis that pierces the
triangle in its center and comes out of the page. The first symmetry is
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Figure 1. The six symmetries of an equilateral triangle.

a rotation by 0◦ about that axis or any integer multiple of 360◦ for that
matter. The second symmetry in the first column is a counter-clockwise
rotation by 120◦ or 2π/3 radians, and finally the third one is a rotation by
240◦ or 2(2π/3) radians. Notice that 360◦ = 3(2π/3) radians.

Each symmetry in the second column of figure 1 corresponds to flip-
ping the triangle through an axis that starts at a vertex and intersects the
opposite side midway. For example the first symmetry of column two corre-
sponds to rotating the triangle 180◦ about a vertical axis which starts at the
top vertex and cuts the bottom edge midway. Since we rotate by 180◦ this
results in flipping the triangle over, but keeping one vertex in its original
position. The first symmetry in the second column corresponds to preserv-
ing the original position of the “1” vertex, the second with preserving the
“2” vertex and the third preserves the original position of the “3” vertex.
Therefore there are three rotational symmetries and three flip symmetries
for a total of six symmetries, which agrees with our previous count.

There are a few things to notice here. First, the six symmetries are
functions which act on a set of labelled triangles. The phrase “act on”
here simply means that each symmetry sends each triangle in the set of six
possible triangles to some triangle in that same set. It is important to see
that there is a distinction between the six possible end states of the triangle
and the motions which achieve those end states. For example the second
symmetry in the first column of figure 1 is rotation by 120◦ counter-clockwise
around an axis through the center, but this symmetry can be applied to any
triangle not just one in the designated start state. If we apply it to the
triangle with “2” at the top and “1” and “3” in the bottom left and right
vertices, then we end up with a triangle that has “3” at the top and “2” and
“1” in the respective bottom vertices.
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Second, we can combine or compose two symmetries to get a new sym-
metry. Since each symmetry is just a function which maps each triangle to
some triangle in the set of possible triangles, these functions share the same
domain and codomain, i.e. the set of six possible end states, and hence they
can be composed. This is analagous to composing functions of a real vari-
able. The difference is that now instead of having our domain and codomain
equal to R, the set of real numbers, it is a finite set consisting of six labelled
triangles.

Third, each symmetry can be undone by some symmetry. For example,
rotating by 120◦ is undone by rotating by 240◦ and vice versa. Interestingly,
each one of the “flip” symmetries in the right hand colmn of figure 1 undoes
itself. Also, the “do nothing” symmetry or rotation by 0◦ is undone by itself
as well. Thus each symmetry has an inverse symmetry .

So far we have been discussing the symmetries of the equilateral triangle
by referring to their physical movements, but this is awkward and tedious.
We should name them. Naming something should never be taken lightly.
Math and science are littered with several poor name choices which cause
difficulty. One reasonable choice might be to use the letters R and F with
subscripts. Subscripts on the letter R could denote the angle of rotation and
subscripts on the letter F could denote the three different types of flips. Our
set of symmetries would then be: {R0, R120, R240, F1, F2, F3}. These names
are fairly easy to remember because the physical transformation which cor-
responds with each rotation is obvious. The subscripts on the flips also
indicate which vertex is “preserved”, when applied to our “start state” tri-
angle. Thus the motion corresponding with each symmetry can be easily
remembered. This is good.

Using these new names we can write statements such as (check this):

(1.1) (R120 ◦ F1)(∆) = R120(F1(∆)) = F3(∆).

Here the Greek letter ∆, pronounced “delta”, is taking the place of our
usual placeholder of x for unknowns. This is decent notation, but we can
do better. Notice that all of the rotations of column one can be generated
by R120, specifically (check these):

R0 = R120 ◦R120 ◦R120,

R120 = R120

R240 = R120 ◦R120.

Also, the flips of column two can be generated by composing R120 and F1,
(check these too):

F1 = F1

F2 = R120 ◦R120 ◦ F1,

F3 = R120 ◦ F1.
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Furthermore, since writing the “◦” symbol for function composition is te-
dious let’s just drop it and instead use mulitplicative style notatation where
juxtaposing two symbols implies function composition. For example, R120 ◦
R240 = R120R240. This multiplicative style notation has a nice feature, it
allows us to use exponents to represent functions or symmetries composed
with themselves repeatedly. For example,

R120 ◦R120 ◦R120 = R120R120R120 = R3
120.

Thus we see that it suffices to use these two symbols, R120 and F1 two
describe all of the symmetries. Or simpler yet, we could just use the lower
case letters r and f where r = R120 and f = F1.

R0 = R120 ◦R120 ◦R120 = rrr = r3

R120 = r

R240 = R120 ◦R120 = rr = r2

F1 = f

F2 = R120 ◦R120 ◦ F1 = rrf = r2f

F3 = R120 ◦ F1 = rf.

Above we are just being flexible with notation, but in order to make the
analogy with mulitplication complete it probably makes more sense to let
R0 = 1 instead of writing R0 = R120 ◦ R120 ◦ R120 = r · r · r = r3. This is
because the number 1 is the multiplicative identity, which if you recall means
that multiplying any number by 1 does not change that number. Similarly,
composing R0 with any other symmetry does not change that symmetry.

Figure 2 shows the six symmetries labelled with these new names.

Figure 2. The six symmetries of an equilateral triangle.

Let’s recap what we have learned up to this point. We have found that
that the set of symmetries of an equilateral triangle contains six elements,
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{1, r, r2, f, r2f, rf}. Further we have seen that we are able to generate all six
symmetries by composing together just a single counter-clockwise rotation
of 120◦ with a single flip, in this case we used the flip that preserves the “1”
vertex, F1. Could we have used F2 or F3 instead? For that matter could
we generate all the symmetries with say two different flip symmetries, or
perhaps two rotational symmetries?

Exercise 1.1. Determine which pairs of symmetries generate the entire set
of symmetries, i.e. {R0, R120, R240, F1, F2, F3}. Show how to generate each
element of the set using just elements in the pair. Can this set be generated
by a single symmetry?

1.1.1. Properties of Symmetries. To summarize our findings so far, we
have found the following:

(1) Action: Symmetries are functions which “act” upon certain sets, by
sending each element of the set to some other element in that set or
possibly the same element.

(2) Closure: When we compose two symmetries, we always end up with
another symmetry from the set of all symmetries of an object.

(3) Identity Symmetry: The identity symmetry, or “do nothing” sym-
metry is a member of the set of all possible symmetries of an object.

(4) Inverses: Every symmetry has an opposite or inverse symmetry which
undoes its action.

(5) Generators: It might be possible to generate (via composition) the
complete set of symmetries with only a proper subset of the whole set.

Not every set of symmetries acts on every set. For example the symme-
tries of the equilateral triangle do not act on squares and vice versa. That
is to say that rotating a square by 120◦ will not leave it in an equivalent
state, and neither will rotating an equilateral triangle by 90◦ leave it in an
equivalent state.

We won’t discuss generators much further here, except to say that if you
have studied Linear Algebra, then the notion of a basis vector is analogous
to that of a generator.

1.1.2. Associativity. There is actually another subtle property that sets
of symmetries possess which stems from the fact that they are functions.
Function composition is associative. To illustrate, let f, g and h be three
functions and suppose:

f : A→ B,

g : B → C,

h : C → D.
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Since the domain of g matches the codomain of f we can compose them to
get:

(g ◦ f) : A→ C.

Similarly for g and h. But now we can create two new functions which both
have domain A and codomain D, but are they equal? That is,

h ◦ (g ◦ f)
?
= (h ◦ g) ◦ f.

We can look at the simple binary operation of subtraction to see that where
you put parentheses can matter, to wit:

3− (4− 5) 6= (3− 4)− 5.

Back to our specific example, it is actually very easy to prove that function
composition is associative. We want to show that h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Recall that (g ◦ f)[x] = g[f [x]], where we use parentheses around functions
and brackets around values to make this rewrite rule more clear. By applying
this rewrite rule repeatedly, we see that,

(h ◦ (g ◦ f))[x] = h[(g ◦ f)[x]]

= h[g[f [x]]]

= (h ◦ g)[f [x]]

= ((h ◦ g) ◦ f)[x],

which proves the claim.



Chapter 2

Groups

We have discovered that the set of symmetries of an object must have certain
features, namely:

• closure,

• associativity,

• an identity element,

• inverses.

The four properties above capture the essence of symmetry. Naturally
anything that important deserves a name. Any set with a law of composition
that satisfies these four properties is called a group. In short, you should
think of a group as a “set with structure”. The structure derives from
the law of compositon, which in our only example, so far, is “◦”, function
composition.

Definition 2.1. A group is a set, G, with a binary law of composition, ·,
often written (G, ·), satisfying the following for all a, b, c ∈ G:

(1) closure: a · b ∈ G.

(2) associativity: a · (b · c) = (a · b) · c.
(3) identity element: There exists an e ∈ G such that a · e = a = e · a.

(4) inverses: For every a ∈ G there exists some b ∈ G such that a · b = e
and b · a = e, we often denote b as b = a−1.

Just from the definition of a group we can deduce that the identity
element must be unique. To see this, suppose that G is a group and suppose
that e and e′ are two identity elements in G, then

e = e · e′ = e′.

9
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The group of symmetries of the equilateral triangle has a special name,
it is called the Dihedral group for the regular triangle, or (D6, ◦), or usually
just D6, because the law of composition is well known for this group. In
fact there are an infinite number of Dihedral groups, one for each regular
polygon, and they are denoted D2n where n is the number of sides of the
regular polygon, thus the group of symmetries of the square is denoted D8,
and the group of symmetries of the regular pentagon is D10.

Notice that the group definition does not require the set to be finite.
Our first group example, D6 is a finite group, but there are many infinite
groups. One important way of classifying a group is based upon the number
of elements it contains.

Definition 2.2. The order of a group, G, is the number of elements it
contains. The order of G is denoted by |G|.

The order of D6 is 6, or |D6| = 6. You are already familiar with some
infinite groups, for example the real numbers, R, form a group under multi-
plication. Well, this set is almost a group. The problem is that zero doesn’t
have a multiplicative inverse, but if we exclude zero: R−{0}, then we have
a true group. We have closure because whenever you multiply two real num-
bers you get a real number. Multiplication is associative. The multiplicative
identity is just the number 1. Finally, every real number x ∈ R − {0} has
inverse 1/x. Thus (R−{0},×) is a group. Since this group comes up often,
the shorthand name, R× is usually preferred. The order of R× is infinite
and we write |R×| =∞.

If we change the operation from multiplication to addition, then we have
a different group, (R,+), which again is usually shortened to just R+. In this
group, the identity is the number 0. Every number has an inverse, but in an
additive group, i.e. a group where the operation is designated by “+”, we
often call inverses opposites. For example, we usually say -3 is the opposite
of 3, rather than the inverse of 3.

2.0.3. Cayley Tables. It can be instructive to create a table which shows
all possible ways of composing two symmetries. The first person to do so
was the English mathematician Arthur Cayley, hence such tables are called
Cayley tables. These are exactly analogous to multiplication tables.

To use a multiplication table to find the product, 9 × 12, you find 9 in
the leftmost vertical column and 12 in the top row. The answer of course
lies at the intersection of the 9th row and 12th column (not counting the
leftmost column and topmost row).

Similarly, we can create a table for composing symmetries. Table 1 is a
Cayley table for the symmetries of the equilateral triangle.
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Table 1. Cayley table for the symmetries of an equilateral triangle

◦ 1 r r2 f r2f rf

1 1 r r2 f r2f rf

r r r2 1 rf f r2f

r2 r2 1 r r2f rf f

f f r2f rf 1 r r2

r2f r2f rf f r2 1 r

rf rf f r2f r r2 1

There are some very interesting things to observe about this table. First
notice that:

r ◦ f = rf 6= r2f = f ◦ r.
In other words composition of symmetries in D6 is non–commutative. Com-
mutativity refers to order in space, i.e. position. Associativity refers to
order in time, i.e. sequence. The law of composition for a group needs to
be associative, but not necessarily commutative. If it is also commutative,
then we have a special word to describe those groups.

Definition 2.3. An abelian group is a group where the law of composition
is commutative. That is, if (G, ·) is abelian then for all a, b ∈ G, a · b = b · a.
If the law of composition is non–commutative in a group, then we say the
group is non–abelian.

It may seem like the mathematicians who came up with this term were
just trying to be fancy, but that is not the case, we will soon learn that the
term commutative is reserved for another group like object.

Another interesting thing to note about this table is that if you examine
the upper left, 3 × 3 block of the table, the part with 1, r and r2, you can
see that it forms a group all on its own. It is the group of rotations of the
triangle. Naturally this subset is called a subgroup.

Definition 2.4. A subgroup is a subset of a group that is itself a group.

Notice that for a subset to be a subgroup it must contain the iden-
tity element. Subgroups play an important role in the study of polynomial
equations. We will have much more to say about them later.

Exercise 1.2. Create a Cayley table for the symmetries of a square.
Hints: This group has eight symmetries. There are four rotational sym-
metries and four flip symmetries. Two of the flips are with respect to axes
through diagonal vertices and two flips are with respect to axes through
opposite midpoints i.e. one horizontal axis and one vertical axis.
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Use similar notation as in the triangle case, let r = R90 and let f be a flip
through the vertical axis. In other words, your symmetries should be named
only using the characters r and f with exponents only on r. Furthermore,
any symmetry names with an f in them should have it at the end.

Cut out and label a paper square to help you.

2.1. Groups and Algebra

Groups are the fundamental building blocks of algebraic systems. You can
think of a group as the smallest unit within which it is possible to solve sym-
bolic equations. To illustrate, we will solve for x in the following equation:

rf ◦ x = r2f.

The rules of algebra and the Cayley table provide a systematic way of solving
for the unknown, or isolating x. Each step will use one of the four group
properties or a table lookup:

rf ◦ x = r2f

(rf)−1 ◦ (rf ◦ x) = (rf)−1 ◦ r2f inverses

((rf)−1 ◦ rf) ◦ x = (rf)−1 ◦ r2f associativity

1 ◦ x = (rf)−1 ◦ r2f inverses

x = (rf)−1 ◦ r2f identity

x = rf ◦ r2f table lookup

x = r2 table lookup

This is exactly analogous to how you might systematically solve a simple
equation such as 3x = 6.

3x = 6

3−1(3x) = 3−16 inverses

(3−13)x = 3−16 associativity

1x = 3−16 inverses

x = 3−16 identity

x = 2 table lookup

If x were on the left instead of right such as: x◦rf = r2f , then we could
begin to isolate x by multiplying both sides of the equation by (rf)−1 but
from the right hand side, i.e.

(x ◦ rf) ◦ (rf)−1 = r2f ◦ (rf)−1.

Here our handy notation tells us that the answer is r without going through
the algebraic steps.
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2.2. The Symmetric Group: Sn

The next group we will examine is called the symmetric group on n objects
or Sn for short. Actually this is an infinite family of groups, one group for
each natural number n ∈ N. If n = 3, then S3 is the group of permutations
of three objects.

Often we think of these groups as acting on the numbers 1 . . . n, or even
lists of numbers but there are many different objects this group can act on.
One important class of objects are polynomials in more than one variable.
These groups, especially S5 are very important for understanding Galois’
ideas.

Definition 2.5. A permutation in Sn is an invertible function where the
domain and codomain are the same set, namely: {1, 2, 3, . . . , n}.

Recall that a function is invertible when it is one–to–one and onto. A
good way to denote permutations is by a simple two row table. The following
permutation is an element of the group S3:(

1 2 3
3 2 1

)
.

The first row lists all domain values and the second row lists the image of
each domain element directly below. Thus 1 7→ 3, 2 7→ 2 and 3 7→ 1. Each
element in the codomain is the image of some element in the domain, thus
this mapping is onto. Also, each element in the codomain is the image of a
single element in the domain, thus this mapping is one–to–one. An example
of a function that is not one–to–one, nor onto is the following:(

1 2 3
3 3 2

)
.

The above table is a function, because each element in the domain gets
mapped to exactly one element in the codomain. However, it is neither
one–to–one, nor onto. It is not one–to–one because two elements, 1 and 2
in the domain get mapped to the same element, namely 3. If you were to
try to undo this mapping, you would face a dilemma on what to do with 3.
Should the inverse function send 3 to 1 or 2? Furthermore, it is not onto,
so we have no idea as to which element the inverse function should send the
number 1. These ambiguities are what makes this function non–invertible,
and thus it is not a permutation.

A simple criterion for deciding whether a given table is a permutation is
to check whether each number that occurs in the top row occurs just once
in the bottom row. This will ensure that the function is both one–to–one
and onto.
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In this new “table notation” for functions, the identity permutation of
the group S3 is denoted by: (

1 2 3
1 2 3

)
.

It is the mapping which sends each element to itself.

2.2.1. The Order of Sn. Now that we have established workable nota-
tion for permutations, we should investigate exactly how many elements are
in Sn. A single permutation makes a choice of where to send each and every
element in the domain. We need to count how many choices are possible.
Once you choose where the element “1” is sent to, you have n−1 remaining
choices for where to send 2, 3, . . . , n. If we make a choice as to where “2”
will be sent, then there will be n− 2 possible image values for 3, 4, . . . , n. If
we continue in this fashion we will eventually end up with

n(n− 1)(n− 2) · · · 2 · 1 = n!

possible choices, each of which corresponds to a unique permutation. Thus
|Sn| = n!.

2.2.2. Composition of Permutations. It is fairly simple to compose
permutations that are written in table notation. The key is to remember
that the rightmost function is the first mapping to be applied, followed by
the function directly left of it, and so on. Thus f ◦ g, should be read: g
followed by f . Get in the habit of reading it that way. For example,(

1 2 3
3 2 1

)
◦
(

1 2 3
1 3 2

)
=

(
1 2 3
3 1 2

)
.

Here is another example of the composition of two permutations from S5:(
1 2 3 4 5
2 3 4 5 1

)
◦
(

1 2 3 4 5
1 3 2 5 4

)
=

(
1 2 3 4 5
2 4 3 1 5

)
.

Even with these small examples, we see that this notation can get un-
wieldy. If we were to compose permutations from say S11 the tables would
be rather large and tedious to write. We need a better notation for permu-
tations.

2.2.3. Cycle Notation. Table notation for permuatations is good, but
it requires a fair bit of writing. A more efficient notation is called cycle
notation. The idea behind cycle notation is to write a permutation as an
ordered list. Thus the table becomes a one row list:(

1 2 3
3 2 1

)
7−→

(
1 7→ 3 3 7→ 2 2 7→ 1

)
7−→ (1 3 2) .
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We drop the arrows entirely in the last list, and remember that the last
number in the list always cycles back to the first number in the list, hence
the term cycle notation.

The first thing to notice about this notation is that it is not unique.
There may be more than one way to write a cycle, based upon which number
you choose to put first in the list. The following cycles all start with a
different number but are equivalent.

(1 2 3) = (2 3 1) = (3 1 2)

They are equivalent because they all represent the mapping:

1 7→ 2

2 7→ 3

3 7→ 1.

Another important observation to make is that disjoint cycles commute.
Two cycles are disjoint if they share no numbers in common. For example,

(1 2) (3 4 5) = (3 4 5) (1 2) =

(
1 2 3 4 5
2 1 4 5 3

)
.

Thus a permutation written in cycle notation is a product of disjoint cycles.
If two or more cycles in a product of cycles are not disjoint, then the whole
expression can be simplified via the cycle composition algorithm which is
explained in the next section.

The fact that disjoint cycles commute further increases the number of
equivalent ways in which a permutation can be written in cycle notation.
For example, a permutation with three disjoint cycles such as:

(1 2) (3 4 5) (6 7) ,

has 3! = 6 equivalent ways of ordering the three cycles, and there are two
distinct ways of writing each 2–cycle and three distinct ways of writing the
3–cycle for a grand total of 3! · 2 · 2 · 3 = 72 distinct ways of writing this
permutation in cycle notation! In practice this doesn’t matter too much,
but to make it easier for us to recognize equivalent permutations, we will
declare that the standard way to write a cycle is to put the smallest number
in that cycle first. Thus we will prefer (1 2 3) to (2 3 1) and (3 1 2).

The above examples are fairly simple. They do not illustrate all the
subtleties of converting a permutation into cycle notation. For example,
often a permutation will need to be decomposed into more than one cycle
like the following example shows.(

1 2 3 4 5
3 2 1 5 4

)
7−→ (1 3 2) (4 5)

We need to make the algorithm for writing a permuation in cycle nota-
tion explicit. In the following algorithm, when we refer to the domain list,
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we simply mean the top row of the permutation when it is written in table
notation.

Input: a permutation σ in table notation
Output: permutation σ in cycle notation

D := the domain list;

while D is not empty do
a := the smallest number in the domain list;

remove a from D;

start := a;

print “(a”;

while σ(a) 6= start do
a := σ(a);

remove a from D;

print “ a”;

end

print “)”;

end

remove any 1–cycles;

Algorithm 1: Cycle Generation Algorithm in Pseudocode

Let’s do a more complicated example. Convert the following permuta-
tion from table notation to cycle notation.(

1 2 3 4 5 6 7 8 9 10 11 12
3 4 5 7 9 6 8 2 1 12 11 10

)
This permutation becomes (1 3 5 9) (2 4 7 8) (6) (10 12) (11), which after re-
moving the unnecessary 1–cycles becomes:

(1 3 5 9) (2 4 7 8) (10 12) .

Exercise 1.3. Convert the following permutation to cycle notation:(
1 2 3 4 5 6 7 8
4 7 6 3 8 1 2 5

)
Exercise 1.4. Convert the following permutation to cycle notation:(

1 2 3 4 5 6 7 8 9 10 11
9 10 11 7 1 8 2 4 6 5 3

)
Exercise 1.5. Convert the following permutation to cycle notation:(

1 2 3 4 5 6 7 8 9 10 11
11 9 5 3 8 2 1 4 6 7 10

)
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Exercise 1.6. Convert the following permutation to cycle notation:

(
1 2 3 4 5 6 7 8 9 10 11 12
5 8 6 3 7 2 1 4 9 11 12 10

)

2.2.4. Composing/Multiplying Cycles. Composition of permutations
written in cycle notation is straightforward. First, the composition sym-
bol, ◦, is dropped in favor of multiplicative notation, thus (1 2 3) ◦ (1 2) =
(1 2 3) (1 2), and we will often just refer to composition as multiplication.

The most important thing to remember when multiplying (composing)
cycles is that they are functions and function application begins with the
rightmost function and then proceeds leftward. In other words, to determine
the composition of two permutations written in cycle notation, you start by
writing “(1”, and then determine the image of that input under the mapping
of the first (rightmost) cycle. The output or image is then fed into the next
cycle to the left and so on and so forth until there are no more cycles left. For
example to see where “1” gets mapped under the composition (1 2 3) (1 2),
you start with the rightmost cycle which maps 1 7→ 2, the next cycle then
maps 2 7→ 3, thus the composition in total sends 1 7→ 3. Thus we have “(1
3”. We repeat this procedure but this time we start with “3” and find that
since “3” does not occur in the rightmost cycle that means it sends 3 7→ 3.
The next cycle to the left sends 3 7→ 1 and that is the last cycle, so we write:
“(1 3)”. We close the cycle to indicate that “3” cycles back to “1”. Next,
since the next lowest number in the domain is “2”, we start a new cycle
“(2”, and repeat the whole process above. The rightmost cycle sends 2 7→ 1,
and the next cycle maps 1 7→ 2, thus 2 gets mapped to itself and we write
“(1 3)(2)”. Finally, we remove all 1–cycles (cycles of length one) from the
product (composition). Thus,

(1 2 3) (1 2) = (1 3) .
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Input: a non-empty, finite sequence of cycles
Output: a finite sequence of disjoint cycles

// create the domain list

D := concatenate all cycles;

remove parentheses from D;

remove duplicates from D;

// prime the pump

a := the smallest number in D;

remove a from D;

start := a;

print “(a”;

while D is not empty do
while cycles remain do

// cycles are chosen from right to left

σ := next cycle;

a := σ(a);

end

if a 6= start then
remove a from D;

print “ a”;

else
if D is not empty then

a := the smallest number in D;

remove a from D;

start := a;

print “)(a”;

end

end

end

print “)”;

remove any 1–cycles;

Algorithm 2: Cycle Multiplication Algorithm in Pseudocode

The cycle composition algorithm has similar aspects to the algorithm
for writing a permutation in cycle notation. Notably, you start with the
lowest number that occurs in all cycles, say a and begin by writing “(a”.
Next, while there are cycles remaining you keep updating a according to
the mapping defined in each cycle moving from right to left, until no cycles
remaining. You then check to see if the resulting value matches the first
number in the cycle. If it matches, you close the cycle by writing “)”. If
it does not match you append a space and the current mapped value “ a”.
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This loop continues until all values in the domain have been written exactly
once. Finally, you remove one cycles.

Exercise 1.7. Compute (1 2 3) (1 2).

Exercise 1.8. Compute (1 2) (1 2 3).

Exercise 1.9. Compute (1 2 3 5) (4 3 5) (3 4 5).

Exercise 1.10. Compute (1 2 3) (2 3) (1 3 2).

Exercise 1.11. Compute (2 5 3) (2 3) (2 3 5).

Exercise 1.12. Compute (1 2) (1 2 5 3 4) (1 2).

Exercise 1.13. Compute (2 3) (2 5 3 4) (2 3).

Exercise 1.14. Compute (4 5) (3 6 5 4) (5 3 4 7) (3 6 7).

2.2.5. Cycle Inverses. Another useful feature of cycle notation is that
it is very easy to find the inverse of any permutation written as a disjoint
product of cycles. The inverse of a cycle is simply the cycle written in reverse
order. For example, the inverse of (1 3 2 4) is simply (4 2 3 1) which if we
follow our convention of writing cycles with the smallest number first would
become (1 4 2 3). You can check that indeed,

(1 3 2 4) (1 4 2 3) = (1)(2)(3)(4) = 1.

If a permutation consists of several disjoint cycles multiplied together,
then the inverse will be the product of the inverses of each individual cycle.
Thus

[(1 3 5) (2 4 6) (7 8)]−1 = (1 3 5)−1 (2 4 6)−1 (7 8)−1

= (1 5 3) (2 6 4) (7 8) ,

which you should verify for yourself.

2.2.6. Equivalence of S3 and D6. Below is the Cayley table for S3 with
the permutations expressed in cycle notation, and the Cayley table for the
symmetries of the equilateral triangle or D6. Compare them carefully.

If you look carefully at both tables, you will see that they have the
exact same structure, just different names for each element or symmetry
in the group. In other words we can create an invertible mapping, call it
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Table 2. Cayley table for the symmetric group on three objects: S3

◦ 1 (1 2 3) (1 3 2) (2 3) (1 3) (1 2)

1 1 (1 2 3) (1 3 2) (2 3) (1 3) (1 2)

(1 2 3) (1 2 3) (1 3 2) 1 (1 2) (2 3) (1 3)

(1 3 2) (1 3 2) 1 (1 2 3) (1 3) (1 2) (2 3)

(2 3) (2 3) (1 3) (1 2) 1 (1 2 3) (1 3 2)

(1 3) (1 3) (1 2) (2 3) (1 3 2) 1 (1 2 3)

(1 2) (1 2) (2 3) (1 3) (1 2 3) (1 3 2) 1

◦ 1 r r2 f r2f rf

1 1 r r2 f r2f rf

r r r2 1 rf f r2f

r2 r2 1 r r2f rf f

f f r2f rf 1 r r2

r2f r2f rf f r2 1 r

rf rf f r2f r r2 1

Table 3. Cayley table for the symmetries of an equilateral triangle: D6

ϕ : S3 → D6 where,

1 7−→ 1,

(1 2 3) 7−→ r,

(1 3 2) 7−→ r2,

(2 3) 7−→ f,

(1 3) 7−→ r2f,

(1 2) 7−→ rf,

and we see that these two groups are essentially the same group in different
guises.

Another way to think of this is to suppose that I want to determine
(1 2 3) ◦ (2 3). One way to do this is to rewrite it as r ◦ f which is of course
just rf , then map backwards via the mapping above to get (1 2). Thus

(1 2 3) ◦ (2 3) = (1 2) .
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To better understand what is happening here, a diagram helps.

(S3, S3)
◦S3−−−−→ S3yϕ×ϕ xϕ−1

(D6,D6)
◦D6−−−−→ D6

The symbol ϕ×ϕ is just a fancy way of saying that you have to apply ϕ to
both of the elements from the pair (S3, S3).

Equipped with this mapping we can answer any question regarding S3 by
considering the equivalent question in terms of elements of D6 or vice versa.
This idea of transforming a problem or question into an equivalent problem
in a different realm, solving the problem there and then mapping the answer
back to the original domain via an inverse mapping is the basis of much of
mathematics. For example you may be familiar with the Laplace transform
method of solving differential equations which uses this idea. Near the end
of our investigations, we will see that this is exactly what Galois did. He
found a way to associate a group with a polynomial equation such that the
solvability of the equation was reflected in the structure of the group.

In order to study the structure of groups we need a better tool than the
Cayley table. The problem with Cayley tables is twofold. First, they become
unwieldy for large groups. For example, consider S5, |S5| = 5! = 120 which
would require a huge table too big to write on a single page! Second, groups
often don’t have a natural ordering, and thus the order in which you place
the elements along the top row and left column of the Cayley table is rather
arbitrary, but it drastically changes the appearance of the table. Thus using
a Cayley table to determine when two groups are essentially equivalent is
only feasible for groups of very small order. We need a better tool.

2.3. Homomorphisms

The primary tool for examining group structure is a special function or map
called a homomorphism.

Definition 2.6. A homomorphism is a map from one group to another
which preserves the group structure. That is, the map ϕ : G → G′ is a
homomorphism if for all a, b ∈ G,

ϕ(ab) = ϕ(a)ϕ(b).

There are two specific and important examples of what we mean by, a
homomorphism “preserves the group structure”. First, a homomorphism,
ϕ : G → G′ must map the identity of G to the identity of G′. Let e be the
identity of G and e′ the identity of G′ then by the definition of identity for
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all a ∈ G, ae = a = ea. Thus,

ϕ(ae) = ϕ(ea)

ϕ(a)ϕ(e) = ϕ(e)ϕ(a).

Notice that ϕ(e) above exactly satisfies the definition of an identity, therefore
ϕ(e) = e′, that is, it is the identity element of G′. Since we assumed nothing
about ϕ except that it is a homomorphism we see that every homomorphism
must preserve the identity element.

Second, homomorphisms preserve inverses. Let a ∈ G, then since G is a
group a−1 is also in G. Since aa−1 = e, we see that:

ϕ(e) = ϕ(aa−1)

e′ = ϕ(a)ϕ(a−1).

But also,

ϕ(e) = ϕ(a−1a)

e′ = ϕ(a−1)ϕ(a).

Therefore we see that ϕ(a) and ϕ(a−1) exactly satisfy the requirements to
be inverses. This implies ϕ(a−1) = [ϕ(a)]−1.

Definition 2.7. Given a homomorphism ϕ : G→ G′, then the kernel of ϕ,
denoted ker(ϕ) is the subset of all elements in the domain which get mapped
to the identity in the codomain. In set notation,

ker(ϕ) = {a ∈ G |ϕ(a) = 1} .

Proposition 2.1. The kernel of a homomorphism is a subgroup of the do-
main of the homomorphism.

Exercise 1.15. Prove that the kernel of a homomorphism is a subgroup of
the domain of the homomorphism.

Hints: Since the domain is a group, and since any subgroup shares the
same operation as its parent there is no need to show that the operation is
associative. Let ϕ : G→ G′ be a homomorphism, then you must show three
things:

(1) closure: Pick two arbitrary elements say a, b ∈ ker(ϕ) and show that
their product must necessarily also be an element of ker(ϕ), i.e. show
ϕ(ab) = 1.

(2) identity: Show that 1 ∈ ker(ϕ).

(3) inverses: Show that if a ∈ ker(ϕ), then a−1 ∈ ker(ϕ).

Exercise 1.16. Let G be a group, the map f : G→ G given by f : g 7→ g−1

is not always a homomorphism. Why not? What property must G have to
make it a homomorphism?
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Hint: Consider the product of two elements in G say ab, then f(ab) =
[ab]−1, but you can actually figure out how to write [ab]−1 in terms of a−1

and b−1 if you use the definition of inverses (found in the group definition).

Exercise 1.17. Let G be a group, prove that “the conjugation by g” map
ϕg : G→ G given by ϕg : a 7→ gag−1 is a homomorphism.

Hint: You want to show that given a, b ∈ G,ϕg(ab) = ϕg(a)ϕg(b). This
can be done by inserting a special form of the identity element, namely,
g−1g, into the image of ab.

2.3.1. Normal Subgroups.

Definition 2.8. A subgroup N of G is a normal subgroup if for every a ∈ N
and every g ∈ G, the conjugate of a, gag−1 ∈ N .

Proposition 2.2. The kernel of a homomorphism is a normal subgroup.

Proof. Suppose ϕ : G → G′ is a homomorphism. Assume a ∈ ker(ϕ) and
let g be any element in G, then,

ϕ(gag−1) = ϕ(g)ϕ(a)ϕ(g−1)

= ϕ(g)1ϕ(g−1)

= ϕ(g)ϕ(g−1)

= ϕ(g)[ϕ(g)]−1

= 1.

�

2.3.2. Isomorphisms.

2.4. Equivalence Relations and Partitions

Definition 2.9. A partition of a set S, is a collection of disjoint, non–empty
subsets, E1, E2, . . . En such that their union is S, i.e. S = E1∪E2∪· · ·∪En.

Definition 2.10. A relation between two sets S and T is a collection of
ordered pairs, where the first element of each ordered pair is from S and the
second is from T .

Notice that relations are similar to functions, but more general. That is
every function is a relation but not every relation is a function. In order for
a relation to be a function every element in the domain must be related to
only one element in the range.

You can also have a relation from a single set S to itself.

Suppose R = {{1, 1}, {2, 0}, {3, 1}, {4, 0} . . .} then we say that 2 is re-
lated to 0 and 3 is related to 1 or symbolically, 2 ∼ 0, and 3 ∼ 1.
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Definition 2.11. An equivalence relation on a set S is a relation from S to
itself that satisfies the following for all a, b, c ∈ S:

(1) reflexive: a ∼ a.

(2) symmetric: If a ∼ b, then b ∼ a.

(3) transitive: If a ∼ b and b ∼ c, then a ∼ c.

Proposition 2.3. A partition of a set E determines an equivalence relation
on E and conversely (vice versa).

Proof. Suppose we have a partition of E, thus E = E1∪E2∪· · ·∪En. Pick
any a ∈ E1, we can define an equivalence relation on E by saying a ∼ b if
b ∈ E1. In other words, elements in the same subset are equivalent. (You
should verify for yourself that this satisfies all the requirements of being an
equivalence relation.)

Conversely, suppose we have an equivalence relation defined on E, we
can create a partition of E by picking any element of E, say a and defining
E1 to be the set of all elements that are equivalent to a, that is:

E1 = {b ∈ S | b ∼ a} .

Continue this partitioning by picking another element, say c ∈ S such that
c 6∈ E1 to create E2 and so on and so forth. Since E is finite, this algorithm
must terminate, and by design each set Ei will be nonempty and the union
E1 ∪ E2 ∪ · · · ∪ En = E. �

2.5. Cosets and Lagrange’s Theorem

Definition 2.12. Suppose H is a subgroup of G, and a ∈ G, then the subset

aH = {ah |h ∈ H} ,

is called a left coset .

Lemma 2.13. The left cosets of a subgroup, H of G, partition G.

Proof. We can define an equivalence relation on G as follows:

a ∼ b if b = ah for some h ∈ H.

We must verify that this is indeed an equivalence relation, but once we do,
then by the previous proposition, this equivalence relation also defines a
partition.

Reflexive: We must show a ∼ a. Every subgroup must contain the
identity, so 1 ∈ H, therefore, a ∼ a because a = a1.

Symmetric: We must show that if a ∼ b, then b ∼ a. Suppose a ∼ b,
then by definition of the equivalence relation there is some h ∈ H such that
b = ah, then a = bh−1 and h−1 is in H, so b ∼ a.
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Transitive: We must show that if a ∼ b and b ∼ c, then a ∼ c. Suppose
a ∼ b and b ∼ c then a = bh1 and b = ch2. This implies a = (ch2)h1 =
c(h2h1), but this implies c ∼ a, and by symmetry a ∼ c. �

Lemma 2.14. All left cosets aH of a subgroup H have the same order.

Proof. Define a map of sets

f : H → aH

f(h) = ah.

Notice that this map has an inverse, namely

f−1 : aH → H

f−1(ah) = a−1(ah),

but a−1(ah) = (a−1a)h = h, so f−1(ah) = h. Therefore the sets H and
aH have a bijection between them and therefore have an equal number of
elements. Finally, the choice of a was arbitrary meaning that the same set
of maps can be generated for any element of G. �

Theorem 2.15 (Lagrange’s Theorem). Let H be a subgroup of a finite group
G, then the order of H divides the order of G.

Proof. Since the cosets of H all have the same order, and since they parti-
tion G we obtain the counting formula:

|G| = |H| [G : H]

(order of G) = (order of H)(number of cosets),

which implies that the order of H divides the order of G. �

Notice that Lagrange’s theorem does not imply that if a number divides
the order of a group that there necessarily must be a subgroup of that order.
That notion is the converse of Lagrange’s theorem which is not true.

2.6. Simple Groups

As was mentioned earlier, Galois’ core idea was to translate the problem
of solvability from the language of equations to the language of groups.
What Galois noticed is that normal subgroups are special. They are special
because whenever a group has a normal subgroup, we can decompose the
parent group into a kind of product of smaller groups. This is exactly
analagous to composite and prime numbers. A composite number can be
decomposed into a product of primes: e.g. 57 = 3 · 19.

As we shall see later, if the Galois group associated with a particular
polynomial equation can be decomposed in a particular way then the poly-
nomial equation will be solvable. If the group can’t be decomposed, then
the equation will not be solvable in radicals.
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Groups which are not decomposable, are akin to prime numbers and
they form the building blocks of all finite groups. Since they are the simplest
building blocks in the study of groups we call them simple.

Definition 2.16. A nontrivial group is simple if its only normal subgroups
are the the trivial subgroup and itself.

Since we are going to associate subgroups of Sn with polynomials, we
need to find the simple groups in Sn. We will show that when n ≥ 5 a certain
class of subgroups called alternating groups or An are simple. Before we can
prove this, we need to build up a few ideas.

Every permutation in Sn can be thought of as a shuffle, just like when
you shuffle a deck of cards. This is because if you think of each card as
representing a number from 1 to 52, then if you start with an ordered deck,
the shuffle will simply permute the cards. Furthermore, any shuffle can be
effected simply by a series of two card swaps. That is to say, starting with
an ordered deck of cards, one can permute them into any other order simply
by repeatedly swapping just two cards in the deck. In other words, any
permutation can be decomposed into a series of swaps or transpositions.
For example, in cycle notation we can write a three cycle as the product of
two non-disjoint cycles.

(1 2 3) = (1 3) (1 2) .

Or even a 4–cycle can be decomposed this way, for example:

(1 2 3 4) = (1 4) (1 3) (1 2) .

There is a pattern to this:

(1 2 3 . . . n−1 n) = (1 n) (1 n−1) · · · (1 3) (1 2) .

Thus we see that the set of all transpositions in Sn generate Sn.

However, these are not the only ways to write cycles as products of
transpositions. There are many ways to write a particular permutation as
a product of two cycles. For example:

(1 2 3) = (2 3) (1 3) ,

and even,

(1 2 3) = (1 2) (2 3) (2 1) (1 2) .

The above examples show that a 3–cycle can be decomposed into a product
of either two or four transpositions. By multiplying the above products
by a special form of the identity permutation, e.g. (1 2) (1 2), then we see
that we could easily write any 3–cycle as a product of any even number
of transpositions. The question naturally arises, “Is it possible to write a
3–cycle as a product of an odd number of transpositions?”. Notice that the
4–cycle above required three transpositions in its decomposition. Clearly we
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could use the same “multiply by 1” trick to write it as a product of an odd
number of transpositions.

every cycle might be fixed. By parity we mean whether there are an
even or odd number of transpositions. This is indeed true, and we shall now
prove it.

Recall how the symmetries of the triangle acted on the set of six possible
configurations of a triangle. We will use the same idea but our group will
be one of the symmetric groups from the family Sn and we will let these
permutations act on special multivariable polynomials.

Suppose f(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3). Then the group S3
acts on f , by applying the permutation to the subscripts. Suppose σ ∈ S3,
then we will define:

σ • f(x1, x2, x3) = f(xσ(1), xσ(2), xσ(3)).

An example should illustrate what we mean:

(1 2 3) • f = (1 2 3) • (x1 − x2)(x1 − x3)(x2 − x3)
= (x2 − x3)(x2 − x1)(x3 − x1)
= (x2 − x3)(−1)(x1 − x2)(−1)(x1 − x3)
= (−1)2(x1 − x2)(x1 − x3)(x2 − x3)
= f.

Thus the cycle (1 2 3) sends this particular polynomial back to itself instead
of some other polynomial, but notice that the action of the permutation
(1 2) is different:

(1 2) • f = (1 2) • (x1 − x2)(x1 − x3)(x2 − x3)
= (x2 − x1)(x2 − x3)(x1 − x3)
= (−1)(x1 − x2)(x2 − x3)(x1 − x3)
= (−1)(x1 − x2)(x1 − x3)(x2 − x3)
= −f.

You can check that every permutation in S3 amounts to one of two
possible mappings: f 7→ f or f 7→ −f . In fact if we define f as:

f = (x1 − x2) · · · (x1 − xn)(x2 − x3) · · · (x2 − xn) · · · (xn−1 − xn)

f =
∏
i<j

(xi − xj)

where 1 ≤ i < n and 1 < j ≤ n, then we can prove the following lemma:

Lemma 2.17. For every transposition τ ∈ Sn, τ • f = −f .
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Proof. The proof is simply a counting argument. Assume τ = (i j) where
i < j. We need to count the number of factors (xa − xb) which get mapped
to a factor (xc − xd) where c > d, because these are exactly the factors
which will produce a factor of (−1) when we rewrite the mapped version of
f . There are exactly three types of factors which lead to a sign change:

(1) (xa − xj) when i < a < j, of which there are j − i− 1,

(2) (xi − xb) when i < b < j, of which there are j − i− 1,

(3) the single term (xi − xj).

The −1 at the end of the first two lines above is due to the fact that when
a = b we overcount by 1. Thus there 2(j − i− 1) + 1 terms which lead to a
sign change, but this is an odd number thus τ • f = −f . �

The following calculation shows that the action defined above on our
special polynomial f is associative. In other words, acting on f by a product
of permutations is the same as first acting on f by the right permutation
and then on the result of that by the left permutation. If σ, ρ ∈ Sn then,

(σρ) • f =
∏
i<j

(x(σρ)(i) − x(σρ)(j))

= σ •

∏
i<j

(xρ(i) − xρ(j))


= σ •

ρ •
∏
i<j

(xi − xj)


= σ • (ρ • f)

If σ is any permutation in Sn and σ = τ1τ2 · · · τk, where each τi is a
transposition then:

σ • f = (τ1τ2 · · · τk) • f
= τ1 • τ2 • . . . • τk • f
= τ1 • (τ2 • (. . . • (τk • f) . . .))

= (−1)kf

Finally, since a cycle can be decomposed into a product of transpositions
in multiple equivalent ways, we need to show that all such decompositions
have the same parity. Suppose σ ∈ Sn and τ1, . . . , τj and µ1, . . . , µk are all
transpositions in Sn. Finally suppose,

σ = τ1, . . . , τj

σ = µ1, . . . , µk,
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with j not necessarily equal to k. Then it follows that

σ • f = (τ1 . . . , τj) • f = (−1)jf = (−1)kf = (µ1 . . . , µk) • f = σ • f
and thus j and k must have the same parity, that is they must both be odd
or even.

Definition 2.18. A permutation will be called even if it can be decomposed
into an even number of transpositions and odd otherwise.

Our work above proves the following theorem:

Theorem 2.19. A permutation in Sn is either odd or even, but not both.

Notice that the above definition means that 3–cycles, 5–cycles, 7–cycles,
etc. are even while 2–cycles, 4–cycles, 6–cycles etc. are odd. This theorem
allows us to make the following table.

◦ even odd
even even odd
odd odd even

Table 4. Multiplication (composition) of even and odd permutations

Proposition 2.4. The subset of Sn consisting of entirely even permutations
is called An and is a subgroup of Sn.

Proof. associativity: Recall that the law of composition in Sn is function
composition which is associative, thus the law of composition for An is as-
sociative as well.

closure: If σ, ρ ∈ An, then the number of transpositions in both σ and ρ
is even. Their product will have an even number of transpositions as well
because one way to write the product of σ and ρ is to simply concatenate
all of their transpositions. The sum of two even numbers is even, thus the
product of σ and ρ can be written as a product of an even number of trans-
positions.

identity: The identity element of Sn is the empty cycle which has is com-
posed of zero transpositions, and thus is in An.

inverses: Suppose σ ∈ An, then since σ−1 is equivalent to σ but with each
cycle written in reverse order, we see that σ−1 will also be even and thus in
An. �

Proposition 2.5. The group An is a normal subgroup of Sn.
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Proof. Let α ∈ An. We must show that for every σ ∈ Sn, σασ−1 ∈ An.

Notice that by definition α must consist of an even number of transpo-
sitions, but σ could have either an odd or even number of transpositions.
However, as noted in the proof of proposition 2.4 both σ and σ−1 both have
the same number of transpositions. Thus when we concatenate all the trans-
positions in the product σασ−1 we get either: odd + even + odd, or even
+ even + even. Either way the new permutation will have an even number
of transpositions and hence will be even. �

The above proof is rather straightforward, but we can prove that An is
a normal subgroup of Sn via more elegant means if we recall proposition 2.2
which says that the kernel of a homomorphism is a normal subgroup of
the domain. To use this theorem we will need to create an appropriate
homomorphism ϕ : Sn → G such that An = ker(ϕ). Table 4, the even, odd
multiplication table, holds the secret if we compare it to the multiplication
table for the group of integers 1 and -1, under multiplication:

× 1 -1
1 1 -1
-1 -1 1

Table 5. Cayley table for the group {±1}×.

The homomorphism ϕ : Sn → {±1}× which does the trick is given by

ϕ(σ) =

{
1 if σ is even,

−1 if σ is odd.

By construction An = ker(ϕ). Also by construction this is a homomorphism,
although that point may be a little harder to recognize. The key to seeing
why it is a homomorphism boils down to the fact that we were able to
partition the elements of Sn in a way such that the equivalence classes formed
by the partition form a new group. In this case there were two equivalence
classes, even and odd. They partition Sn because every permutation must
be in one class or the other, but cannot be in both.



Chapter 3

Ancient Algebra

3.1. Egypt

Although the Egyptians used a base 10 number system, they did not employ
a place value system like we do today. Instead they had special hieroglyphs
to represent various values such as one, ten, one hundred, one thousand and
so forth. Table 1 shows some of these hieroglyphs.

1 |
10 2

100 3
1,000 4

10,000 5
100,000 6

1,000,000 7
Table 1. Values of hieroglyphic numerals

A number was represented by a jumble of these glyphs juxtaposed to-
gether. The usual practice was to put the largest numerals to the right with
smaller numerals appended on going from right to left. For example, to
represent the number 12,643, the Egyptians would write:

|||2222333333445
31
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3.1.1. Mulitplication by Doubling. The ancient Egyptians multiplied
numbers by a method of repeated doubling. For example to perform the
multiplication 13×12, they would set up a table where they would repeatedly
double the number on the right like so:

1′ 12
2 24
4′ 48
8′ 96

Now the next number in the left hand coulumn of the table would be 16
which is larger than 13, thus there is no need to continue the table. Notice
that 1+4+8=13, thus 13× 12 is equivalent to summing the first, third and
fourth entries in the right hand column of the table. That is,

13× 12 = 12 + 48 + 96 = 156.

Division was accomplished by changing the problem into the equivalent
multiplicative statement which involved an unknown quantity which could
then be deduced. The Egyptians also had a system for denoting fractional
values and could multiply and divide these as well.

3.1.2. Ahmes.

• Lived during the Hyksos dynasty, about [1990-1780 BC].

• Earliest recorded name known to have some definite connection with
mathematics.

• The name is found on the Rhind papyrus after A. Henry Rhind, a Scots-
man who was vacationing in Egypt for his health—he had tuberculosis—
in the winter of 1858. This document is now known as the Ahmes
papyrus.

3.2. Ancient Mesopotamian Mathematics

Mesopotamia is a word of Greek origin which literally means “land between
rivers”. It is an umbrella term for the area around the Tigris and Euphrates
rivers in modern day Iraq. We have evidence that people have lived in this
region since at least 4,000 BC. One of the most ancient civilizations of this
region was that of the Sumerians. Later the Akkadians came to dominate
but Sumerian language and culture coexisted with Akkadian language and
culture. Sumerian was eventually only used by the scientific and religious
scholars and during religious ceremonies.

Mesopotamians used a base 60 number system, but they did not use
60 separate symbols to represent the numbers 0-59. Instead they would
use vertical marks to represent the unit and marks made at roughly 135◦

angle to represent 10. Thus the number 35 was written somewhat like:
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\\\ |||||. Numbers were written according to a place value system simi-
lar to our decimal system but the columns now represented powers of 60:
. . . , 602, 601, 600, 60−1, 60−2, . . ..

The drawback of this system becomes evident when you try to multiply
two numbers. A base 10 number system requires you to either memorize a
10×10 multiplication table or have one readily available. The Mesopotamian
sexagesimal number system on the other hand requires a 60 × 60 multipli-
cation table. Such a multiplication table has 3600 entries! As is evidenced
by the high number of cuneiform multiplication table tablets that have been
found, probably no one bothered to actually memorize the sexagesimal mul-
tiplication table.

Because it is cumbersome to read numbers written in cuneiform, we will
adopt an equivalent but more convenient notation based upon our Arabic
numerals 0—9. For example, we will write the base 10 number 65 as 1,5
where the comma separates the columns in our place value system. We can
write larger numbers such as 212 like so: 3,32. A yet larger number such as
3726, will be written: 1,2,6, because

3726 = 3, 600 + 120 + 6

= 1 · 602 + 2 · 601 + 6 · 600

= 1, 2, 6

[Insert material about fractions here.]

3.2.1. Systems of Equations. Interestingly, very few cuneiform tablets
have been found which have problems whose solution corresponds to qua-
dratic equations in one variable. Instead most problems were posed such
that solving them required you to solve a system of equations. For example,
some problems correspond to the following system in the two unknowns x
and y: {

x+ y = p

xy = q.

This system actually corresponds to a quadratic equation in one variable.
You can see this if you solve the second equation for y, yielding: y = q

x .
Substituting this into the first equation yields:

x+
q

x
= p

x2 + q = px.
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The key to solving this system is a special quadratic identity:

(3.1)

(
x+ y

2

)2

−
(
x− y

2

)2

= xy.

Notice that the idenity has both the expressions x+ y and xy which occur
in the original system. To solve the system, one makes the following two
substitutions x+ y = p and xy = q in the above identity giving:(p

2

)2
−
(
x− y

2

)2

= q(
x− y

2

)
= ±

√(p
2

)2
− q.(3.2)

At this point your natural inclination might be to solve the last equation
directly for x and y, but the ancients used two simple identities to finish the
problem.

x =

(
x+ y

2

)
+

(
x− y

2

)
(3.3)

y =

(
x+ y

2

)
−
(
x− y

2

)
(3.4)

These new identities combined with equation (3.2) and the first equation of
the original system give us the two solutions.

x =
(p

2

)
+

√(p
2

)2
− q,(3.5)

y =
(p

2

)
−
√(p

2

)2
− q.(3.6)

With our modern symbols it is not hard to see that identity (3.1) is
simply the product of equations (3.3) and (3.4), but the Mesopotamians did
not use symbolic equations. Most likely they constructed the identity or
something very similar via geometric means. Figure 1 provides the basis for
one such construction. Although figure 1 does not appear on any ancient
tablets, it does appear in Book II proposition 5 of Euclid’s Elements which
frequently drew from ancient Egyptian and Mesopotamian sources.

Lemma 3.1. The area of rectangles A∪B∪D equals the area of the square
formed by rectangles B ∪ C ∪ D ∪ E.

Proof. Rectangle A has the same area as region C ∪ E because this region
forms a rectangle with sides equal to that of rectangle A �
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p
2

p
2 − z

p

x y

z

A B C

D E

p
2 − z

z

Figure 1. Geometric justification for identity (3.1).

Symbolically, the lemma can be stated as

q + z2 =
(p

2

)2
,

because according to the original system of equations q is the area of rec-
tangle A∪B because it has sides x and y, and z2 is the area of rectangle D.
The proof could be expressed symbolically via

q + z2 = xy + z2 =
(p

2
+ z
)(p

2
− z
)

+ z2 =
(p

2

)2
.

Finally, we see that lemma 3.1 along with figure 1 allow us to derive iden-
tity (3.1) like so: (p

2

)2
− z2 = q(p

2

)2
−
(

2z

2

)2

= q(
x+ y

2

)2

−
(
x− y

2

)2

= xy

3.2.2. The Ancient Method of Completing the Square. The ancients
understood multiplication geometrically in terms of areas and volumes. That
is, two numbers multiplied together, say ab, would be literally interpreted as
the area of the rectangle formed by two segments of length a and b adjoined
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at right angles. If the numbers were the same, such as in the case of x2, then
the value would be interpreted as the area of a square. This extended up to
three numbers to volumes of rectangular prisms and cubes. Thus it should
come as no surprise that the best way to understand the ancient technique
of completing the square is via a diagram, see figure 2.

Figure 2. Geometrical interpretation of completing the square.

Before we use the method of completing the square to derive the qua-
dratic formula, let’s review how to use it to solve a quadratic equation.

A typical problem found on clay tablets is the following one: find the
side of a square given that the area minus the side is 14,30. This corresponds
to the modern day equation:

x2 − x = 870,

because 14,30 = 870. The Babylonian solution reads:

Take half of 1, which is 0;30, and multiply 0;30 by 0;30 which is
0;15. Add this to 14,30 to get 14,30;15. This is the square of
29;30. Now add 0;30 to 29;30. The result is 30, the side of the
square.

3.2.3. The Modern Method of Completing the Square. Suppose we
wish to solve the equation x2 + 5x+ 7 = 0. The first thing one always does
is check to see if it factors, but since 7 is prime it only has factors of 1 and
7, and these can not be added or subtracted to yield the middle coefficient
5, thus this polynomial does not factor. Therefore we must either complete
the square or use the quadratic formula to solve this system, which we will
see are essentially the same.
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Example 3.2.

x2 + 5x− 7 = 0

x2 + 5x = 7

x2 + 5x+

(
5

2

)2

= 7 +

(
5

2

)2

(
x+

5

2

)2

=
28

4
+

25

4(
x+

5

2

)2

=
53

4

x+
5

2
= ±

√
53

4

x = −5

2
±
√

53

2

♦

Theorem 3.3 (The Quadratic Formula). Given a quadratic equation of the
form ax2 + bx+ c = 0, in the unknown x, where a 6= 0 (thus it actually is a
quadratic equation), then there are two solutions for x given by:

(3.7) x =
−b±

√
b2 − 4ac

2a
.

Proof.

ax2 + bx+ c = 0

x2 +
b

a
x = − c

a

x2 +
b

a
x+

(
b

2a

)2

= − c
a

+

(
b

2a

)2

(
x+

b

2a

)2

=
b2

4a2
− 4ac

4a2

x+
b

2a
= ±

√
b2 − 4ac

4a2

x+
b

2a
= ±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a

�
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3.3. Ancient Greece and Alexandria

3.3.1. Pythagoras. It was one of the most surprising discoveries of the
Pythagorean School of Greek mathematicians that there are irrational num-
bers. According to Courant and Robbins in “What is Mathematics”: This
revelation was a scientific event of the highest importance. Quite possibly
it marked the origin of what we consider the specifically Greek contribution
to rigorous procedure in mathematics. Certainly it has profoundly affected
mathematics and philosophy from the time of the Greeks to the present day.

Theorem 3.4. The diagonal of a square whose sides are one unit long
cannot be rational. That is

√
2 is irrational.

Proof. (By Contradiction) Suppose
√

2 is rational. This means that we can
write it as the ratio of two integers, p and q

(3.8)
√

2 =
p

q

where p and q have no common factors.

Squaring both sides of (3.8) yields:

(3.9) 2 =
p2

q2
=⇒ p2 = 2q2.

Therefore p2 is even. This is only possible if p itself is even, because
an odd times an odd is odd. Therefore p is even. But then p2 is actually
divisible by 4! Hence q2 and thus q must be even. But this contradicts our
initial assumption that p and q shared no common factors. Therefore our
inital assumption that

√
2 is rational must be false. �

Proposition 3.1. The interior angles of a triangle sum to π radians.

Theorem 3.5 (Pythagoras). Given a right triangle with sides of length a
and b and hypotenuse of length c, then:

a2 + b2 = c2.

Proof. The proof is by dissection. Take two equal squares, both with sides
of length a+ b. Dissect the first as shown on the left hand side of the figure.
Each triangle in the right hand side square is equal to one of the triangles
in the left hand square.

Since each triangle in the diagram is a right triangle, the two non–
right angles in each one sum to π/2 radians. this forces each angle of the
quadrangle with sides marked c on the right hand side to be π/2 radians or
90◦. Thus the tilted quadrangle in the right hand figure is indeed a square
with area c2, and not just a parallelogram.

Finally, by removing equal areas from both of the two equal squares,
namely the four right triangles, we see that a2 + b2 = c2.
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�

3.3.2. Euclid. The Elements of Euclid is the most important mathe-
matical text of Greek times and probably of all time. It has appeared in
more editions than any work othen than the Bible. It has been translated
into countless languages and has been continuously in print in one country
or another nearly since the beginning of printing. Yet to the modern reader
the work is incredibly dull. There are no examples; there is no motiva-
tion; there are no witty remarks; there is no calculation. There are simply
definitions, axioms theorems and proofs. Nevertheless, the book has been
intensively studied. Biographies of many famous mathematicians indicate
that Euclid’s work provided their initial introduction into mathematics. It
provided them with a model of how “pure mathematics” should be written,
with well–thought–out axioms, precise definitions, carefully stated theorems,
and logically coherent proofs.

Besides his famous book, Euclid also has an important algorithm named
after him—the Euclidean Algorithm—for finding the greatest common divi-
sor or gcd of two whole numbers. Recall that the gcd of two whole numbers
is simply the greatest (largest) whole number which divides both numbers.
The gcd of 72 and 180 is 36 because 180 = 22 · 32 · 5 and 72 = 23 · 32, and
thus the greatest common divisor is 22 · 32 = 36.

The algorithm is simple, but often it is not taught because we can rely
upon prime factorization as shown above. However, when the numbers are
very, very large, for example a number with a hundred digits, then the
prime factorization technique becomes slow because we don’t have very fast
algorithms for factorization. Euclid’s algorithm on the other hand is very
fast even for extremely large numbers. The algorithm is recursive (meaning
that it is applied repeatedly to smaller and smaller inputs) and based upon
division.

Example 3.6. Here are the steps required to compute gcd(5463, 381):
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5463 = 381 · 14 + 129 gcd(5463, 381) = gcd(381, 129)

381 = 129 · 2 + 123 gcd(381, 129) = gcd(129, 123)

129 = 123 · 1 + 6 gcd(129, 123) = gcd(123, 6)

123 = 6 · 20 + 3 gcd(123, 6) = gcd(6, 3)

6 = 3 · 2 + 0 gcd(6, 3) = 3

Notice how the divisor becomes the dividend and the remainder becomes
the divisor on each next line, where:

dividend = divisor · quotient + remainder.

The quotient is discarded at each step, and the algorithm terminates when
the remainder is 0. The gcd will equal the last nonzero remainder. ♦

Proposition 3.2 (The Elements VII.2). blah

There is an equivalent and often more useful way of stating the Euclidean
algorithm.

Corollary 3.1. For every pair of whole numbers a and b, there exist two
integers s, t (perhaps negative) such that:

a · s+ b · t = gcd(a, b).

Proof. The proof is by induction on the number of steps in the Euclidean
algorithm. Define Eulen(a, b) to be the number of steps required to compute
gcd(a, b), thus Eulen(a, b) is a natual or counting number. Assuming a > b,
we have to prove the basis step and the inductive step.

[Eulen(a, b) = 1]: If the algorithm terminates in one step, then b | a (b
divides a), and hence a = bu where u is an integer. Hence,

a · 1︸︷︷︸
s

+ b · (1− u)︸ ︷︷ ︸
t

= b = gcd(a, b).

[Eulen(a, b) = n]: Apply the division algorithm to a and b to yield:

a = bq + r q, r ∈ Z.
Eulen(b, r) = n − 1, thus by the inductive hypothesis there exist x, y ∈ Z
such that

bx+ ry = gcd(b, r) = gcd(a, b).

But r = a− bq thus ry = ay − bqy, hence

bx+ ay − bqy = gcd(a, b),

a · y︸︷︷︸
s

+ b · (x− qy)︸ ︷︷ ︸
t

= gcd(a, b).

�
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If you analyze the proof carefully, you will see that it actually gives us a
way to construct the linear combination as well. This is best illustrated by
an example.

Example 3.7. How to compute s and t in the integral linear combination:

5463 · s+ 381 · t = 3 = gcd(5463, 381).

First, solve each equation from the Euclidean algorithm (except for the
last one) for the remainder.

5463 = 381 · 14 + 129 −→ 129 = 5463− 381 · 14 (3.10a)

381 = 129 · 2 + 123 −→ 123 = 381− 129 · 2 (3.10b)

129 = 123 · 1 + 6 −→ 6 = 129− 123 · 1 (3.10c)

123 = 6 · 20 + 3 −→ 3 = 123− 6 · 20 (3.10d)

This last equation is our starting point for unrolling the recursive steps of the
Euclidean algorithm. We substitute equation (3.10c) into equation (3.10d)
to obtain the new equation:

3 = 123− (129− 123 · 1) · 20

3 = 123 · 21− 129 · 20(*)

Next, substitute equation (3.10b) into equation (*):

3 = (381− 129 · 2) · 21− 129 · 20

3 = 381 · 21− 129 · 62(**)

Finally, substitute equation (3.10a) into equation (**):

3 = 381 · 21− (5463− 381 · 14) · 62

3 = 381 · 889 + 5463 · (−62)(***)

Thus s = −62 and t = 889.

♦

Proposition 3.3 (The Elements VII.24). If two numbers are relatively
prime to any number, then their product is also relatively prime to the same.

Proof. Suppose a is relatively prime to both b and c. Since a and b are
relatively prime, there exist integers (perhaps negative) m and n such that
ma+ nb = 1. Similarly ja+ kc = 1 for some j, k.

Multiplying these two equations together,

(ma+ nb)(ja+ kc) = 1

= maja+makc+ nbja+ nbkc

= (maj +mkc+ nbj)a+ (nk)bc

= 1

so a and bc are relatively prime. �
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Repeating the argument verifies that if a is relatively prime to b, then a
is relatively prime to bn for any positive integer n.

Proposition 3.4 (The Elements VII.30). If two numbers, multiplied by one
another make some number, and any prime number measures (divides) the
product, then it also measures one of the original factors.

Proof. Let a prime p divide the product ab. Assume p - a. Then gcd(a, p) =
1. By Corollary, ax+py = 1 for some x and y. Multiply by b: abx+pby = b.
Now, p | ab and p | pb. Hence, p | b. �

With these tools in hand, we can now prove the Rational Root theorem.

Theorem 3.8 (Rational Root Theorem). Let P (x) be a polynomial with
integer coefficients, say

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and suppose that r = c
d is a rational root of P , that is P (r) = 0, expressed

in lowest terms (so that c and d are relatively prime). Then c divides a0
and d divides an.

Proof. Inserting the argument x = c
d into the expression for P (x) yields:

0 = an
cn

dn
+ an−1

cn−1

dn−1
+ · · ·+ a1

c

d
+ a0

Multiplying through by dn and isolating the first term yields:

−ancn = an−1c
n−1d+ · · ·+ a1cd

n−1 + a0d
n.

Since d is a factor of every term on the right hand side of this equation, d
must divide anc

n. But c and d are relatively prime, so d and cn are relatively
prime, and it follows from proposition VII.30 that d divides an.

Isolating the last term instead of the first, we see that

anc
n + an−1c

n−1d+ · · ·+ a1cd
n−1 = −a0dn.

As before, since c is a factor of every term in the left side of this equation,
c must divide a0d

n. Since c and d are relatively prime, c and dn are relatively
prime, and we conclude that c must divide a0. �

Now consider the equation for the nth root of an integer t: xn − t = 0.
If r = c/d is a rational nth root of t expressed in lowest terms, the Rational
Root Theorem states that d divides 1, the coefficient of xn. That is, that d
must equal 1, and r = c must be an integer, and t must be itself a perfect
nth power.
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3.3.3. Diophantus. Although we know little about Diophantus’ life other
than that he lived in Alexandria, we know that his book Arithmetica was
known to Islamic scholars. Arithmetica like Euclid’s Elements was divided
into thirteen books. Only ten of these books have survived, six in Greek
and four in Arabic.

Diophantus studied several higher order equations such as fourth order
polynomial equations and even sixth order. Especially of note is that he is
the first person to develop a symbolic notation for algebraic problems.

KΥαςγΛ∆Υγ
◦
M α

x3 · 1 + x · 3− (x2 · 3 + 1)

x3 − 3x2 + 3x− 1





Chapter 4

Medieval Algebra

4.1. Medieval Persia

4.1.1. Al–Khwarizmi. Muhammad ibn Musa al–Khwarizmi lived in the
ninth century where present day Baghdad exists. He is known as the father
of Algebra. He is famous for classifying the solvable (at that time) algebraic
equations into six types.

(1) ax2 = bx Squares are equal to roots

(2) ax2 = c Squares are equal to a number

(3) bx = c Roots are equal to a number

(4) ax2 + bx = c Squares and roots are equal to a number

(5) ax2 = bx+ c Roots and number are equal to squares

(6) ax2 + c = bx Squares and a number are equal to roots

Table 1. Al–Khwarizmi’s classification of equations

Although Al–Khwarizmi may have been familar with Diophantus’ sym-
bolic way of writing a problem, he did not adopt it, but it is abundantly
clear that the Greek way of doing mathematics had a strong influence upon
him. Even though his book entitled Al–kitab al–muhtasar fi hisab al–jabr
wa–l–muqabala (The Condensed Book on the Calculation of al–Jabr and al–
Muqabala) was intended to primarily be a practical book of instruction he
felt compelled to provide geometric proofs of many of his procedures. This
book showed how to use al–jabr which can be translated as “restoring” and

45
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in modern day terminology refers to the act of changing a negative quan-
tity on one side of an equation to a positive quantity on the other side,
to transform a problem into one of his six canonical forms. The word al–
muqabala refers to elminating a positive term by subtracting equal amounts
from both sides of the equation. For example, the conversion of 5x+2 = 6 to
5x = 4 is an example of al–muqabala. While the conversion of the equation
5x− 2 = 4− 2x to 3x− 2 = 4 is an example of al–jabr.

4.1.2. Omar Khayyam. Omar Khayyam lived in the 11th century and
thus was not a contemporary of Al–Khwarizmi. He is known for finding a
way to solve cubic equations geometrically. The basic idea of his method
is to transform a single cubic equation into two conic section equations and
then finding their point(s) of intersection.

The types of conic sections involved could be a circle, hyperbola or
parabola depending on the form the equation takes. If we assume a monic
equation (leading coefficient of one) and only allow all other coefficients to
be positive or zero, then any cubic equation can be written in one of the
fourteen forms given in table 2.

Equation Solutions Curves

(1) x3 = c x1 > 0;x2,3 ∈ C P,P

(2) x3 + bx = c x1 > 0;x2,3 ∈ C C,P

(3) x3 + c = bx x1,2 > 0 or ∈ C;x3 < 0 P,H

(4) x3 = bx+ c x1 > 0;x2,3 < 0 or ∈ C P,H

(5) x3 + ax2 = c x1 > 0;x2,3 < 0 or ∈ C P,H

(6) x3 + c = ax2 x1,2 > 0 or ∈ C;x3 < 0 P,H

(7) x3 = ax2 + c x1 > 0;x2,3 ∈ C P,H

(8) x3 + ax2 + bx = c x1 > 0;x2,3 < 0 or ∈ C C,H

(9) x3 + ax2 + c = bx x1,2 > 0 or ∈ C;x3 < 0 H,H

(10) x3 + bx+ c = ax2 x1,2 > 0 or ∈ C;x3 < 0 C,H

(11) x3 = ax2 + bx+ c x1 > 0;x2,3 < 0 or ∈ C H,H

(12) x3 + ax2 = bx+ c x1 > 0;x2,3 < 0 or ∈ C H,H

(13) x3 + bx = ax2 + c x1 > 0;x2,3 > 0 or ∈ C C,H

(14) x3 + c = ax2 + bx x1,2 > 0 or ∈ C;x3 < 0 H,H

Table 2. Omar Khayyam’s classification of cubic equations
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Example 4.1. Let us show how to solve a type (2) equation: x3 + bx = c,

by intersecting a circle and parabola. First we let p =
√
b and q = c

b . After
making this substitution, equation (2) from the table becomes:

x3 + p2x = p2q.

Next, we draw a semicircle of diameter q and a parabola of parameter p
with vertex coinciding with the leftmost point of the semicircle as shown
in figure 1. Recall that Cartesian coordinates had not been invented yet,
so Khayyam would not have drawn axes. However, he did have tools with
which he could accurately draw circles and all the other conic sections.

x q − x

y

q

Figure 1. Omar Khayyam’s geometric method for solving cubic equations.

The equation of the circle is
(
x− q

2

)2
+ y2 =

( q
2

)2
, which can be rewrit-

ten:

(4.1)
q − x
y

=
y

x
.

It should be pointed out that Khayyam did not use the equation of a circle
with center shifted to the right on the x axis. Most likely, he reasoned via
Thale’s theorem which states that any triangle inscribed in a circle with
hypotenuse on a diameter is a right triangle. From this theorem one can
deduce equation (4.1).

The equation of the parabola is py = x2 =⇒ y = 1
px

2 or

(4.2)
y

x
=
x

p
.

If we combine equation (4.1) with equation (4.2) we get:

(4.3)
q − x
y

=
x

p

Multiplying equation (4.3) by py we obtain:

(4.4) pq − px = xy =
x3

p
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This yields: x3 + p2x = p2q, which is the original cubic equation we wished
to solve. ♦

4.2. Medieval Italy

4.2.1. Leonardo of Pisa [1170–1240].

• Leonardo’s father was an official of the independent republic of Pisa,
and was appointed to represent its merchants in the trading colony of
Bugia on the North African coast in 1192.

• Leonardo accompanied his father and was exposed to the works of many
Muslim scholars.

• Wrote: Liber abacci, “Book of Calculation” which introduced Arabic
(actually Indian) numerals including zero to the West. The book bor-
rowed many problems verbatim from Al–Khwarizmi, Abu Kamil and
others.

• Later known as Fibonacci, literally son of Bonacci.



Chapter 5

Renaissance Algebra

5.1. Italy

5.1.1. Luca Pacioli [1445–1517].

• Invented double–entry bookkeeping.

• Friend of Leonardo da Vinci

• Coined the term million

• Wrote: Summa in 1494. This book did not break any new ground,
but standardized the current notation of the day. He used co for cosa
(“thing”), ce for census (“property”), and cu for cubus (“cube”). Clas-
sified the following types of cubic equations as unsolvable:
(1) n = ax+ bx3

(2) n = ax2 + bx3

(3) ax+ n = bx3

• The third classification above was not actually listed in his book, but
we’ll refer to this classification system below.

5.1.2. The Story of the Cubic. The following is verbatim from John
Derbyshire’s book “Unknown Quantity: A Real and Imaginary History of
Algebra”.

At some point in the early 16th century, a person named Scipione
del Ferro found the general solution to the type 1 cubic. Del
Ferro was professor of mathematics at the University of Bologna;
his dates are ca. 1456–1526. We don’t know exactly when he got
his solution or whether he also solved type 2. He never published
his solution.

49
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Before del Ferro died, he imparted the secret of his solution
for “the cosa and the cube” to one of his students, a Venetian
named Antonio Maria Fiore. This poor fellow has gone down in
all the history books as a mediocre mathematician. I don’t doubt
the judgment of the historians, but it seems a great misfortune for
Fiore to have gotten mixed up—as a catalyst, so to speak—in such
a great and algebraically critical affair, so that his mathematical
mediocrity echoes down the ages like this. At any rate, having
gotten the secret of the cosa and the cube, he decided to make
some money out of it. This wasn’t hard to do in the buzzing
intellectual vitality of northern Italy at the time. Patronage was
hard to come by, university positions were not well paid, and there
was no system of tenure. For a scholar to make any kind of living,
he needed to publicize himself, for example, by engaging in public
contests with other scholars. If some large cash prize was at stake
in the contest, so much better the publicity.

One mathematician who had made a name for himself in
this kind of contest was Nicolo Tartaglia, a teacher in Venice.
Tartaglia came from Brescia, 100 miles west of Venice. When he
was 13, a French army sacked Brescia and put the townsfolk to the
sword. Nicolo survived but suffered a grievous saber wound on his
jaw, which left him with a speech impediment: Tartaglia means
“stutterer”—this was still the age when last names were being
formed out of locatives, patronymics, and nicknames. Tartaglia
was a mathematician of some scope, author of a book on the
mathematics of artillery, and the first person to translate Euclid’s
Elements into Italian.

In 1530, Tartaglia had exchanged some remarks about cubic
equations with another native of Brescia, a person named Zuanne
de Tonini da Coi, who taught mathematics in that town. In the
course of those exchanges, Tartaglia claimed to have found a gen-
eral rule for the solution of type 2 cubics, though he confessed he
could not solve type 1.

Somehow Fiore, the mathematical mediocrity, heard of these
exchanges and of Tartaglia’s claim. Either believing Tartaglia to
be bluffing or confident that he was the only person who knew how
to solve type 1 cubics (the secret he had gotten from del Ferro),
Fiore challenged Tartaglia to a contest. Each was to present the
other with 30 problems. Each was to deliver the 30 solutions to
the other’s problems to a notary on February 22, 1535. The loser
was to stand the winner 30 banquets.

Having no great regard for Fiore’s mathematical talents, Tar-
taglia at first did not bother to prepare for the contest. However,
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someone passed on the rumor that Fiore, though no great mathe-
matician himself, had learned the secret of solving “the cosa and
the cube” from a master mathematician, since deceased. Now
worried, Tartaglia bent his talents to finding a general solution
of type 1 cubics. In the small hours of the morning of Saturday,
February 13, he cracked it. As he had suspected, all of Fiore’s
problems were type 1 cubics, the solution of which was Fiore’s
sole claim to mathematical ability.

Tartaglia’s questions seem (we only have the first four) to
have been a mix of types 2 and 3. It is plain that at this point
Tartaglia had mastered all the cubics, of any type, having just one
real solution—all the ones, that is, with a positive discriminant.
Cubic equations with a negative discriminant (and therefore hav-
ing three real solutions) can only be solved by manipulating com-
plex numbers, which had not yet been discovered. At any rate,
Tartaglia was able to solve all of Fiore’s problems, while Fiore
could solve none of his. Tartaglia took the honor but waived the
stake. Comments Cardano’s biographer: “The prospect of thirty
banquets face to face with a sad loser may have been rather unin-
spiring to him.”

5.1.3. Scipione del Ferro [1456–1526].

• The first to solve the depressed cubic for the case where the discrimi-
nant is negative.

• A professor at the University of Bologna.

• Shared his secret solution of the cubic with his student Antonio Maria
Fiore, who subsequently challenged Tartaglia.

• Never published his solution of the cubic.

5.1.4. Niccolo Fontana Tartaglia [1499–1557].

• Mathematician, engineeer, surveyor and bookkeeper

• “Tartaglia” means stutterer in Italian.

• Translated Euclid’s Elements into Italian.

• Independently discovered how to solve cubic equations with negative
discriminant.

• Confided his solution of the cubic to Cardano in the form of a poem,
but later regretted it.

5.1.5. Girolamo Cardano [1501–1576].

• A physician by trade.

• Avid gambler and caster of horoscopes.
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• Wrote at least 131 publications including an autobiography. Several of
his books were bestsellers in Europe.

• Cajoled Tartaglia into divulging his secret solution to the cubic.

• Wrote Ars Magna [1545] in which he published a general method of
solving cubic equations as well as quartic equations.

5.2. Modern Derivation of Cardano’s Formula

We will derive the equation known as Cardano’s formula. This formula
was first discovered by Tartaglia on February 12, 1535. Tartaglia subse-
quently entrusted Cardano with his secret to solving the cubic after the lat-
ter promised to not publish it. Cardano broke this promise and published
the formula in his book Ars magna. Consequently, it is usually known as
Cardano’s formula. This formula gives you one real root of any cubic equa-
tion with real coefficients such as the one given below.

(5.1) Ay3 +By2 + Cy +D = 0

Before we do anything we notice that if this is truly a cubic equation
then A 6= 0 and thus we can divide both sides of the equation by A to
obtain a monic equation, that is a polynomial equation where the leading
coefficient is 1.

(5.2) y3 + ay2 + by + c = 0 where a =
B

A
, b =

C

A
, d =

D

A

And of course both of these equations share the same roots.

The derivation is done in two steps, first we reduce the cubic polynomial.
This simply refers to a clever trick to rewrite the polynomial such that it
has no quadratic term. We can accomplish this by letting y = x + k in
equation (5.2).

y3 + ay2 + by + c = (x+ k)3 + a(x+ k)2 + b(x+ k) + c

= (x3 + 3x2k + 3xk2 + k3) + a(x2 + 2xk + k2) + b(x+ k) + c

= x3 + (3k + a)x2 + (3k2 + 2ak + b)x+ (k3 + ak2 + bk + c)

= 0.

We are free to choose whatever value we wish for k. If we choose k = −a
3 ,

then the quadratic term will vanish leaving:

x3 +

(
b− a2

3

)
x+

(
2
(a

3

)3
− ab

3
+ c

)
= 0.

Thus we have reduced the original equation to the somewhat simpler equa-
tion:

(5.3) x3 + px+ q = 0.
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Where,

p = b− a2

3

q = 2
(a

3

)3
− ab

3
+ c

At this point everything we have done is reversible. If we can solve
equation (5.3) for x, then we will have a solution for the original equation
as well because y = x+ k.

The next step of the derivation requires the counter–intuitive notion of
rewriting the unknown x as the sum of two unknowns u and v. That is we
will let x = u + v. At first, this seems ludicrous! How could changing a
single variable problem into a problem with two unknowns possibly make
our lives easier? Actually, this is an ancient trick. Omar Khayyam did it
when he geometrically solved the cubic, and the Babylonians were certainly
aware of it because they used it to solve quadratic equations, and Tartaglia
was an excellent mathematician, so he was certainly aware of it.

The reason we choose to write x = u+ v is to exploit the identity:

(u+ v)3 = u3 + 3u2v + 3uv2 + v3,

which we will rewrite:

(u+ v)3 − 3uv(u+ v)− (u3 + v3) = 0.

If x = u + v is to be a solution, then by comparing this equation to equa-
tion (5.3), u and v must satisfy two new equations:

u3 + v3 = −q

uv = −p
3
.

A second identity: (
u3 − v3

2

)2

=

(
u3 + v3

2

)2

− u3v3,

allows us to write:

u3 + v3

2
= −q

2
(5.4)

u3 − v3

2
= ±

√(q
2

)2
+
(p

3

)3
.(5.5)
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The sum and difference of equations (5.4) and (5.5) allows us to solve for u
and v.

u =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
v =

3

√
−q

2
−
√(q

2

)2
+
(p

3

)3
Cardano’s formula is simply the sum of the two expressions for u and v:

(5.6) x =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
+

3

√
−q

2
−
√(q

2

)2
+
(p

3

)3

5.3. Ferrari’s Solution to the Biquadratic

One might imagine that since quartic or biquadratic equations are more
complicated than cubic equations, their solution would require a bold stroke
of genius similar to Tartaglia’s choice of letting the unknown x equal the
sum of two new unknowns, u+v, but actually it only involves incorporating
a single new variable.

We wish to solve the equation,

(5.7) y4 + ay3 + by2 + cy + d = 0.

Our first step, just like Tartaglia is to reduce the equation. Let y = x + k
in (5.7),

(x+ k)4 + a(x+ k)3 + b(x+ k)2 + c(x+ k) + d = 0.

After expanding this expression and collecting like powers of x we get:

x4 +

(a+ 4k)x3 +

(b+ 3ak + 6k2)x2 +

(c+ 2bk + 3ak2 + 4k3)x +

(d+ ck + bk2 + ak3 + k4) = 0

Which tells us to choose k = −a
4 , whereupon we get the reduced equation:

(5.8) x4 + px2 + qx+ r = 0.

The next step is the clever part. Add the expression 2zx2 + z2 to both sides
of the equation and rearrange. Since we are introducing a new variable z,
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into the equation it gives us a new degree of freedom which we will soon
exploit.

x4 + 2zx2 + z2 = 2zx2 + z2 − px2 − qx− r
(x2 + z)2 = (2z − p)x2 − qx+ (z2 − r).(5.9)

Adding this expression allows us to factor the left hand side of the equation
into a perfect square, but it also allows us to factor the right hand side
of the equation into a perfect square. To see this, consider the equation
ax2 − qx+ b = 0. If −q = 2

√
a
√
b then we can factor:

ax2 + 2
√
a
√
b+ b = 0(√

a x+
√
b
)(√

a x+
√
b
)

= 0(√
a x+

√
b
)2

= 0.

We can apply this technique to our problem. If we choose z such that:

(5.10) − q = 2
√

2z − p
√
z2 − r,

then the right hand side of equation (5.9) factors and we get,

(x2 + z)2 =
(√

2z − p x+
√
z2 − r

)2
.

Upon solving for x, we get:

x1,2 =
1

2

√
2z − p±

√
−1

2
z − 1

4
p+

√
z2 − r(5.11)

x3,4 =
1

2

√
2z − p±

√
−1

2
z − 1

4
p−

√
z2 − r(5.12)

You may wonder whether we can actually find a z such that equation (5.10)
is satisfied. It turns out that equation (5.10) is actually a cubic equation in
disguise.

2
√

2z − p
√
z2 − r = −q

(2z − p)(z2 − r) =
q2

4

2z3 − pz2 − 2rz + pr =
q2

4

z3 − p

2
z2 − rz +

(
pr

2
− q2

8

)
= 0(5.13)

Thus by Cardano’s formula we are guaranteed to be able to find a z which
satisfies equation (5.10).

Notice that Ferrari’s solutions, equations (5.11) and (5.12) are expressed
in terms of z which is obtained via Cardano’s formula and may involve a
complicated expression with square roots inside a cube root. Thus, although



56 5. Renaissance Algebra

Ferrari’s solution does not appear too complicated, if you were to replace
every occurence of z in these formulas with Cardano’s formula, the resulting
formulas would fill an entire page! These are truly complicated formulas.

5.3.1. Lodovico Ferrari [1522–1565].

• Was a secretary to Cardano beginning at age 14.

• Discovered a way to solve the general quartic equation by transforming
it to a cubic equation.

• Allowed Cardano to publish his solution to the quartic in Ars Magna.

5.3.2. Rafael Bombelli [1526–1572].

• A civil engineer who was responsible for draining
marshland in central Italy.

• His friend Antonio Maria Pazzi introduced him to
Diophantus’ writings which were at the university
in Rome.

• Wrote l’Algebra [1572] with the goal of making
an easier to understand version of Cardano’s Ars
Magna.
(1) First clear usage of negative and complex

numbers.
(2) Included 143 problems from Diophantus’ writ-

ings.
(3) Was the first introduction to Diophantus’ writ-

ings for most Europeans.
(4) Still lacked good symbolism.

5.4. Extending Cardano’s Formula with Complex Numbers

Cardano’s formula (5.6) gives us only one solution to a cubic equation, but
of course by the Fundamental Theorem of Algebra, every cubic equation has
three solutions (with perhaps repetition). In this section we will will show
how to find the other two solutions.

The key idea is to multiply the two cube roots in Cardano’s formula by
special numbers called the cube roots of unity. The cube roots of unity are
exactly the complex valued solutions to the equation:

z3 = 1,

and consequently yield 1 when cubed. Clearly this equation has solution
z1 = 1, thus to find the other two solutions we use polynomial long division
to divide z3 − 1 by z − 1 to obtain the following quadratic expression:

(5.14)
z3 − 1

z − 1
= z2 + z + 1.
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The quadratic equation, z2+z+1 = 0 has two complex–conjugate solutions:

z1,2 =
−1±

√
−3

2
.

We immediately rewrite these solutions in complex number notation: a+ bi
where a, b ∈ R and i =

√
−1.

z1,2 = −1

2
±
√

3

2
i.

Recall that complex numbers are multiplied according to the following rule:

(a+ bi)(c+ di) = ac+ (bc+ ad)i+ bdi2

= ac+ (bc+ ad)i− bd
= (ac− bd) + (bc+ ad)i.

Let’s check whether our solution is correct, that is whether z31 = z32 = 1?

z31 =

(
−1

2
+

√
3

2
i

)(
−1

2
+

√
3

2
i

)(
−1

2
+

√
3

2
i

)

=

(
−1

2
−
√

3

2
i

)(
−1

2
+

√
3

2
i

)
= 1

The middle equation shows that z21 = z2. How about z2?

z32 =

(
−1

2
−
√

3

2
i

)(
−1

2
−
√

3

2
i

)(
−1

2
−
√

3

2
i

)

=

(
−1

2
+

√
3

2
i

)(
−1

2
−
√

3

2
i

)
= 1

The middle calculation here shows that z22 = z1! This is remarkably similar
to the symmetries of the equilateral triangle. There we had three rotational
symmetries, {1, R120, R240} where the subscript stood for degrees of counter–
clockwise rotation. Notice,

R2
120 = R120 ◦R120 = R240, and

R2
240 = R240 ◦R240 = R120.

[Insert derivation of Euler’s Formula eix = cosx+ i sinx here.]

Now let’s return to our original goal and modify Cardano’s formula to
obtain formula’s for all three roots of the cubic equation and not just a single
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real root. For the sake of short formulas, we will denote the two complex
cube roots of unity by ω and ω2, where

ω =

(
−1

2
+

√
3

2
i

)
ω2 =

(
−1

2
−
√

3

2
i

)

Nine Possibilities:

x1 = u+ v

x2 = u+ ωv

x3 = u+ ω2v

x4 = ωu+ v

x5 = ωu+ ωv

x6 = ωu+ ω2v

x7 = ω2u+ v

x8 = ω2u+ ωv

x9 = ω2u+ ω2v

This is kind of absurd, we have nine different possible roots, but a cubic
equation only has three roots! It turns out that six of these solutions are
not valid, because if you recall, when Tartaglia set x = u+ v he found that
if the solutions were to have this form, then they must satisfy a system of
two equations, namely: {

u3 + v3 = −q
uv = −p

3 .

By design, all nine possible roots satisfy the first equation in this system, but
only candidates x1, x6 and x8 satisfy the second equation. After reindexing,
these are the three solutions of the cubic.

x1 =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
+

3

√
−q

2
−
√(q

2

)2
+
(p

3

)3
(5.15)

x2 = ω
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
+ ω2 3

√
−q

2
−
√(q

2

)2
+
(p

3

)3
(5.16)

x3 = ω2 3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
+ ω

3

√
−q

2
−
√(q

2

)2
+
(p

3

)3
(5.17)

5.5. France
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5.5.1. François Viète [1540–1603].

• Born into a Huguenot family (French protestant).

• A lawyer by trade.

• Privy councillor to both Henry III and Henry IV.

• Wrote In artem analyticem isagoge or “Introduc-
tion to the Analytic Art”.

• This book had the first systematic use of letters to
represent numbers. Unknowns were represented
by uppercase vowels (A,E,I,O,U,Y) and data such
as coefficients were represented by uppercase con-
sonants.

• Discovered that polynomial coefficents can always
be represented via symmetric polynomials in the
roots. This led Lagrange and later Galois on to
important discoveries.

The last bullet point above needs explanation. Let’s work backwards by
supposing we know the roots of a polynomial. If these roots are labelled
r1 through r4, then we can write quadratic, cubic or quartic polynomials in
these roots in the following ways:

(x− r1)(x− r2) = x2

− (r1 + r2)x

+ r1r2

(x− r1)(x− r2)(x− r3) = x3

− (r1 + r2 + r3)x
2

+ (r1r2 + r1r3 + r2r3)x

− r1r2r3
(x− r1)(x− r2)(x− r3)(x− r4) = x4

− (r1 + r2 + r3 + r4)x
3

+ (r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4)x
2

− (r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4)x

+ r1r2r3r4

This pattern extends indefinitely and is known as Viète’s theorem. In
what follows we will change notation and use z as the unknown or indetermi-
nate in polynomial expressions and x1, x2, . . . , xn will represent the n roots
of an nth degree polynomial equation. The coefficient expressions above are
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called elementary symmetric polynomials in n variables, and are denoted:

σ1 = x1 + · · ·+ xn

σ2 = x1x2 + x1x3 + · · ·+ xn−1xn =
∑
i<j

xixj

σ3 =
∑
i<j<k

xixjxk

...

σn = x1x2 · · ·xn

Theorem 5.1 (Viète’s Theorem). Let p(z) be an nth degree, monic polyno-
mial with roots x1, x2, . . . , xn. Let σ1, σ2, . . . , σn be the n elementary sym-
metric polynomials in the xi, then

p(z) = zn − σ1zn−1 + σ2z
n−2 − · · ·+ (−1)nσn.

5.5.2. René Descartes [1596–1650].

• Famous philosopher, best known for saying, “Cog-
ito ergo sum.” (I think therefore I am.).

• Wrote La géométrie.
(1) Introduced the xy coordinate system which

is now named for him, i.e. Cartesian coordi-
nates.

(2) Borrowed the +,−,√ symbols from German
mathematicians.

(3) Used superscripts for exponentiation.
(4) Used lowercase letters such as a, b, c, . . . to

represent data such as polynomial coefficients, and letters such as
x, y, z to represent unknowns.

Descartes’ intruduction of Cartesian coordinates marked a subtle yet
profound break with past thinking on geometry. Before Descartes mathe-
maticians tended to connect unknowns with lengths, squares of unknowns
with square areas, and cubes of unknowns as cubic volumes. And since there
is no fourth spatial dimension, ancient and medieval mathematicians often
viewed expressions such as x4 and higher powers of an unknown as rather
meaningless. In fact, this is why Cardano only devoted a single chapter in
his great tome Ars Magna, he saw the solution of the quartic as a curious
oddity.

Descartes’ great idea was to envision multiplication as scaling.
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Symmetric Polynomials

Definition 6.1. A function f of n variables is symmetric if for every per-
mutation σ ∈ Sn, σ • f = f . That is, if

σ • f = f(xσ(1), xσ(2), . . . , xσ(n))

= f(x1, x2, . . . , xn)

= f.

In simple terms, a multivariable function is symmetric if you can swap
any two variables in its definition and you get the exact same function.
Recall that we can generate Sn via certain subsets of permutations. For ex-
ample, Sn can be generated by its transpositions (2–cycles). This is exactly
analogous to how any shuffle of a deck of cards can be accomplished by a
series of swaps

It turns out that when determining whether a function on n variables,
say f , is symmetric, it suffices to just check whether f is symmetric under
the action of a set of generators for Sn. This is due to the way we defined
how a group acts on a set, which in this case is permutations acting on
multi–variable functions. In short it is due to the associativity of the action.

Suppose you have two permutations, say σ, τ ∈ Sn, and f is any function
(not necessarily symmetric) then

σ • (τ • f) = σ • f(xτ(1), xτ(2), . . . , xτ(n))

= f(xσ(τ(1)), xσ(τ(2)), . . . , xσ(τ(n)))

= f(x(σ◦τ)(1), x(σ◦τ)(2), . . . , x(σ◦τ)(n))

= (σ ◦ τ) • f.

Thus acting on the function f by τ and then σ is equivalent to acting on
f by their composition: σ ◦ τ . In general, acting on a function by several

61
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permutations is the same as first composing all the permutations together
and then applying the result to f .

The above fact allows us to realize that if a subset of Sn, say {σ1, . . . , σk}
generates Sn, then when determining whether f is symmetric, it suffices to
simply test the effect of each σi, . . . , σk on f . This is a great time saver
because recall that the size of Sn grows factorially, that is, |Sn| = n!.

Example 6.2.

(1) x21 + x2 − x1x2 is a symmetric polynomial in two variables. To check
this we need to check that all permutations in S2 = {1, (1 2)} leave it
fixed. Clearly the identity permutation leaves it unchanged, so we only
need to check (1 2):

(1 2) • (x21 + x2 − x1x2) = x22 + x21 − x2x1
= x21 + x2 − x1x2

(2) x21 + x22 + x23 is symmetric because S3 = 〈(1 2) , (1 2 3)〉 and because:

(1 2) • (x21 + x22 + x23) = x22 + x21 + x23

= x21 + x22 + x23, and

(1 2 3) • (x21 + x22 + x23) = x22 + x23 + x21

= x21 + x22 + x23.

(3) 5x1x2 + 5x1x3 + 5x2x3 is symmetric, but if we change the coefficients
to say: 5x1x2 + x1x3 + x2x3, then it is no longer symmetric because:

(1 2 3) • (5x1x2 + x1x3 + x2x3) = 5x2x3 + x2x1 + x3x2

= 5x2x3 + x1x2 + x2x3

6= 5x1x2 + x1x3 + x2x3

(4) x21x2 + x22x3 + x23x1 is not symmetric because:

(1 2 3) • (x21x2 + x22x3 + x23x1) = x22x3 + x23x1 + x21x2

= x21x2 + x22x3 + x23x1, but

(1 2) • (x21x2 + x22x3 + x23x1) = x22x1 + x21x3 + x23x2

6= x21x2 + x22x3 + x23x1

♦

6.1. Generators for Sn

S3 is generated by any 2–cycle and any 3–cycle. Also any two distinct 2–
cycles will also generate S3.

Proposition 6.1. The cycles (1 2) and (1 2 · · · n) generate Sn.
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Proof. First we note that (1 2 · · · n)n−1 = (1 2 · · · n)−1. This allows us
to generate the following transpositions:

(2 3) = (1 2 · · · n) (1 2) (1 2 · · · n)−1

(3 4) = (1 2 · · · n) (2 3) (1 2 · · · n)−1

(4 5) = (1 2 · · · n) (3 4) (1 2 · · · n)−1

...

(n− 1 n) = (1 2 · · · n) (n− 2 n− 1) (1 2 · · · n)−1

We showed previously that these transpositions can be used to generate
any cycle with up to n elements, thus they can be used to generate any
permutation because the permutations in Sn consist of products of disjoint
cycles of length less than or equal to n. �

The situation with S4 is slightly more complicated, for example,

S4 = 〈(1 2) , (1 2 3 4)〉 , but,

S4 6= 〈(1 3) , (1 2 3 4)〉 .

You must be careful because not any 2–cycle and 4–cycle will generate S4.
In the case of S4 it turns out that any 4–cycle paired with any 2–cycle that
appears inside the 4–cycle will generate. So for example since 1 and 2 are
adjacent in (1 2 3 4) the first pair above generates. However, since 1 and
3 are not adjacent in (1 2 3 4) the second pair above does not generate S4.
Why this is the case is an interesting story, but beyond the scope of this
book.

6.2. Fundamental Theorem of Symmetric Polynomials

6.3. Generalizing the Solution Method

If we let x1 and x2 represent the two roots of the monic quadratic equation:

x2 + bx+ c = 0

x2 − (x1 + x2)x+ x1x2 = 0

then the solutions can be expressed very succinctly:

x1 =
1

2
[(x1 + x2) + (x1 − x2)] =

1

2

[
(x1 + x2) +

√
(x1 − x2)2

]
x2 =

1

2
[(x1 + x2)− (x1 − x2)] =

1

2

[
(x1 + x2)−

√
(x1 − x2)2

]
.

Notice that the two rightmost expressions correspond exactly to the familiar

x1, x2 =
−b±

√
b2 − 4c

2
.
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because −b = x1 + x2, and

b2 − 4c = [−(x1 + x2)]
2 − 4x1x2

= x21 + 2x1x2 + x22 − 4x1x2

= x21 − 2x1x2 + x22

= (x1 − x2)2.

Building on work by Euler, Alexandre–Théophile Vandermonde realized
that the above technique of writing each solution in terms of all the solutions
could be extended to higher degree equations if we take into account the
various nth roots of unity.

In the n = 2 case the two, second roots of unity, or solutions of z2 = 1
are just ±1, hence the minus sign preceding the square root in the expression
for x2 above. If you recall from the section on extending Cardano’s formula,
there are three solutions to z3 = 1 which we denoted: 1, ω, ω2 because they
formed a group of three elements under multiplication, generated by

ω = −1

2
+

√
3

2
i.

The first root of the cubic equation with roots x1, x2, and x3

x3 + ax2 + bx+ c = 0

x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3 = 0,

can be written:

x1 =
1

3

[
(x1 + x2 + x3) + (x1 + ωx2 + ω2x3) + (x1 + ω2x2 + ωx3)

]
=

1

3

[
(x1 + x2 + x3) + 3

√
(x1 + ωx2 + ω2x3)3 + 3

√
(x1 + ω2x2 + ωx3)3

]
.

Vandermonde’s insight was that permuting the three roots only resulted
in two unique expressions. Notice that the expression x1 + x2 + x3 is sym-
metric and thus fixed by all six permutations in S3, but the expressions
under the cube roots are not fixed by S3. Thus to understand what the six
possible permutations of the roots do to this expression for x1 we just need
to understand what they do to u and v where:

u = (x1 + ωx2 + ω2x3)
3

v = (x1 + ω2x2 + ωx3)
3.



6.3. Generalizing the Solution Method 65

(1 2) • u = (1 2) • (x1 + ωx2 + ω2x3)
3

= (x2 + ωx1 + ω2x3)
3

= ω6(x2 + ωx1 + ω2x3)
3

= [ω2(x2 + ωx1 + ω2x3)]
3

= [ω2x2 + ω3x1 + ω4x3)]
3

= [ω2x2 + x1 + ωx3)]
3

= [x1 + ω2x2 + ωx3)]
3

= v.

Similarly

(1 2) • v = (1 2) • (x1 + ω2x2 + ωx3)
3

= (x2 + ω2x1 + ωx3)
3

= ω3(x2 + ω2x1 + ωx3)
3

= [ω(x2 + ω2x1 + ωx3)]
3

= [ωx2 + ω3x1 + ω2x3)]
3

= [ωx2 + x1 + ω2x3)]
3

= [x1 + ωx2 + ω2x3)]
3

= u.

Now we examine the action of the other permutation needed to generate
S3: (1 2 3).

(1 2 3) • u = (1 2 3) • (x1 + ωx2 + ω2x3)
3

= (x2 + ωx3 + ω2x1)
3

= ω3(x2 + ωx3 + ω2x1)
3

= [ω(x2 + ωx3 + ω2x1)]
3

= [ωx2 + ω2x3 + ω3x1)]
3

= [x1 + ωx2 + ω2x3)]
3

= u.
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