1. There are three elementary symmetric polynomials in three unknowns:

$$
\begin{aligned}
& \sigma_{1}=x_{1}+x_{2}+x_{3} \\
& \sigma_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& \sigma_{3}=x_{1} x_{2} x_{3}
\end{aligned}
$$

The following calculation shows how to express the symmetric polynomial $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ in terms of the elementary symmetric polynomials above.

$$
\begin{aligned}
\sigma_{1}^{2} & =\left(x_{1}+x_{2}+x_{3}\right)^{2} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+x_{3}\right) \\
& =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) \\
& =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 \sigma_{2}
\end{aligned}
$$

Thus $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\sigma_{1}^{2}-2 \sigma_{2}$.
Express the symmetric polynomial $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ in terms of the elementary symmetric polynomials σ_{1}, σ_{2} and σ_{3}. Hint: start with σ_{1}^{3}, and consider various products of σ s.

Solution: Your answer here...

