1. Omar Khayyam developed a technique which used the point of intersection of two conic sections in the plane to geometrically estimate solutions to cubic polynomial equations. In our class discussion, I mentioned that the following equation is actually the equation of a circle in disguise:

$$
\frac{q-x}{y}=\frac{y}{x} .
$$

Show that this equation is equivalent to the equation of a circle with center located at $(q / 2,0)$.

Solution: Your answer here...
2. Solve the following cubic equation in y via Tartaglia's method.

$$
y^{3}-3 y^{2}-y+3=0
$$

First, reduce it to a cubic equation in x with no quadratic term, i.e. an equation of the form $x^{3}+p x+q=0$.
(Hint 1: Set $y=x+k$, and then choose k such that the coefficient of the quadratic term is 0 .)
Once you know p and q use Cardano's formula below to solve for x and finally use your values for x and k to solve for the root $y=x+k$.
(Hint 2: Cardano's formula will give you an expression involving complex numbers, but this expression simplifies to an integer.)

$$
x=\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} \quad \text { (Cardano's Formula) }
$$

Show your work to receive full credit.

Solution: Your answer here...

