1. Omar Khayyam developed a technique which used the point of intersection of two conic sections in the plane to geometrically estimate solutions to cubic polynomial equations. In our class discussion, I mentioned that the following equation is actually the equation of a circle in disguise:

$$
\frac{q-x}{y}=\frac{y}{x} .
$$

Show that this equation is equivalent to the equation of a circle with center located at $(q / 2,0)$.

Solution:

$$
\begin{aligned}
\frac{q-x}{y}(x y) & =\frac{y}{x}(x y) \\
q x-x^{2} & =y^{2} \\
x^{2}-q x+y^{2} & =0 \\
x^{2}-q x+\left(\frac{q}{2}\right)^{2}+y^{2} & =\left(\frac{q}{2}\right)^{2} \\
\left(x-\frac{q}{2}\right)^{2}+y^{2} & =\left(\frac{q}{2}\right)^{2}
\end{aligned}
$$

Which is the equation of a circle of radius $q / 2$, centered at $(q / 2,0)$.
2. Solve the following cubic equation in y via Tartaglia's method.

$$
y^{3}-3 y^{2}-y+3=0
$$

First, reduce it to a cubic equation in x with no quadratic term, i.e. an equation of the form $x^{3}+p x+q=0$.
(Hint 1: Set $y=x+k$, and then choose k such that the coefficient of the quadratic term is 0 .)
Once you know p and q use Cardano's formula below to solve for x and finally use your values for x and k to solve for the root $y=x+k$.
(Hint 2: Cardano's formula will give you an expression involving complex numbers, but this expression simplifies to an integer.)

$$
\begin{equation*}
x=\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}} \tag{Cardano'sFormula}
\end{equation*}
$$

Show your work to receive full credit.

Solution:

$$
\begin{aligned}
(x+k)^{3}-3(x+k)^{2}-(x+k)+3 & =0 \\
\left(x^{3}+3 x^{2} k+3 x k^{2}+k^{3}-3\left(x^{2}+2 x k+k^{2}\right)-(x+k)+3\right. & =0 \\
x^{3}+(3 k-3) x^{2}+\left(3 k^{2}-6 k-1\right) x+\left(k^{3}-3 k^{2}-k+3\right) & =0
\end{aligned}
$$

Let $k=1$ then we get:

$$
\begin{aligned}
& x^{3}-4 x=0 \quad \longrightarrow \quad p=-4, q=0 . \\
& x=\sqrt[3]{-\frac{0}{2}+\sqrt{\left(\frac{0}{2}\right)^{2}}+\left(\frac{-4}{3}\right)^{3}}+\sqrt[3]{-\frac{0}{2}-\sqrt{\left(\frac{0}{2}\right)^{2}+\left(\frac{-4}{3}\right)^{3}}} \\
& x=\sqrt[3]{\sqrt{(-1)^{3}\left(\frac{4}{3}\right)^{3}}}+\sqrt[3]{-\sqrt{(-1)^{3}\left(\frac{4}{3}\right)^{3}}} \\
& x=\sqrt[3]{\sqrt{(-1)^{3}\left(\frac{4}{3}\right)^{3}}}-\sqrt[3]{\sqrt{(-1)^{3}\left(\frac{4}{3}\right)^{3}}} \\
& x=0 .
\end{aligned}
$$

Thus $y=x+k=0+1=1$.

