1. Prove that the kernel of a homomorphism is a subgroup of the domain of the homomorphism.

Hints: Since the domain is a group, and since any subgroup shares the same operation as its parent there is no need to show that the operation is associative. Let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism, then you must show three things:

1. closure: Pick two arbitrary elements say $a, b \in \operatorname{ker}(\varphi)$ and show that their product must necessarily also be an element of $\operatorname{ker}(\varphi)$, i.e. show $\varphi(a b)=1$.
2. identity: Show that $1 \in \operatorname{ker}(\varphi)$.
3. inverses: Show that if $a \in \operatorname{ker}(\varphi)$, then $a^{-1} \in \operatorname{ker}(\varphi)$.

Solution: This is a "proof by definitions" where we combine applicable definitions to obtain the desired results.
closure: We must show that if φ is a homomorphism, and $a, b \in \operatorname{ker}(\varphi)$ then the product $a b \in \operatorname{ker}(\varphi)$.
φ a homomorphism \Longleftrightarrow for all $a, b \in G, \varphi(a b)=\varphi(a) \varphi(b)$.
Suppose 1^{\prime} is the identity in G^{\prime}, then $a, b \in \operatorname{ker}(\varphi) \Leftrightarrow \varphi(a)=1^{\prime}$ and $\varphi(b)=1^{\prime}$.

$$
\varphi(a b)=\varphi(a) \varphi(b)=1^{\prime} 1^{\prime}=1^{\prime} .
$$

Which implies that the product $a b \in \operatorname{ker}(\varphi)$.
identity: We must show that if 1 is the identity of G, then $1 \in \operatorname{ker}(\varphi)$. By the definition of kernel, this is equivalent to showing $\varphi(1)=1^{\prime}$, if 1^{\prime} is the identity of G^{\prime}.
1 is the identity of $G \Longleftrightarrow$ for all $a \in G, a 1=a=1 a$.

$$
\begin{aligned}
& \varphi(a 1)=\varphi(a)=\varphi(1 a) \\
& \varphi(a) \varphi(1)=\varphi(a)=\varphi(1) \varphi(a)
\end{aligned}
$$

Notice that every factor on the bottom line is an element of G^{\prime} and that the element $\varphi(1) \in G^{\prime}$ satisfies the requirements for being the identity of G^{\prime}, therefore by the uniqueness of identities (see discussion after group definition), $\varphi(1)=1^{\prime}$.
inverses: We must show that if $a \in \operatorname{ker}(\varphi)$ then $a^{-1} \in \operatorname{ker}(\varphi)$. This is equivalent to showing $\varphi\left(a^{-1}\right)=1^{\prime}$.
a and a^{-1} are inverses in $G \Longleftrightarrow a a^{-1}=1=a^{-1} a$.
$a \in \operatorname{ker}(\varphi) \Longleftrightarrow \varphi(a)=1^{\prime}$.
Assume $a \in \operatorname{ker}(\varphi)$, but we can's assume this of a^{-1}. We can only assume that it exists because $a \in G$ and G is a group.

$$
\begin{aligned}
\varphi\left(a a^{-1}\right) & =\varphi(1)=\varphi\left(a^{-1} a\right) \\
\varphi(a) \varphi\left(a^{-1}\right) & =\varphi(1)=\varphi\left(a^{-1}\right) \varphi(a)
\end{aligned}
$$

By hypothesis, $\varphi(a)=1^{\prime}$ and by our previous result $\varphi(1)=1^{\prime}$ thus:

$$
1^{\prime} \varphi\left(a^{-1}\right)=1^{\prime}=\varphi\left(a^{-1}\right) 1^{\prime}
$$

The definition of what it means to be the identity of G^{\prime} then implies that $\varphi\left(a^{-1}\right)=1^{\prime}$.
2. Let G be a group, the map $f: G \rightarrow G$ given by $f: g \mapsto g^{-1}$ is not always a homomorphism. Why not? What property must G have to make it a homomorphism?
Hint: Consider the product of two elements in G say $a b$, then $f(a b)=[a b]^{-1}$, but you can actually figure out how to write $[a b]^{-1}$ in terms of a^{-1} and b^{-1} if you use the definition of inverses (found in the group definition).

Solution: Suppose 1 is the identity of G, then $(a b)^{-1}=b^{-1} a^{-1}$ because:

$$
(a b)(a b)^{-1}=(a b)\left(b^{-1} a^{-1}\right)=a\left(b b^{-1}\right) a^{-1}=a 1 a^{-1}=a 1 a^{-1}=1
$$

and

$$
(a b)^{-1}(a b)=\left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1} 1 b=1,
$$

but

$$
f(a b)=(a b)^{-1}=b^{-1} a^{-1}=f(b) f(a) \neq f(a) f(b),
$$

unless G is abelian.
3. Let G be a group, prove that "the conjugation by g " map $\varphi_{g}: G \rightarrow G$ given by $\varphi_{g}: a \mapsto g a g^{-1}$ is a homomorphism.

Hint: You want to show that given $a, b \in G, \varphi_{g}(a b)=\varphi_{g}(a) \varphi_{g}(b)$. This can be done by inserting a special form of the identity element, namely, $g^{-1} g$, into the image of $a b$.

Solution:

$$
\varphi_{g}(a b)=g a b g^{-1}=g a 1 b g^{-1}=g a\left(g^{-1} g\right) b g^{-1}=\varphi_{g}(a) \varphi_{g}(b)
$$

