Name \qquad

Typesetting with $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$

1. [5 pts.] Choose the correct list of special characters in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$. Just write the letter corresponding to the list in the blank below.
A. \# \$ \% ~ \& _ \{ \} ~
B. $\$ \%^{\sim} \& *^{*}\{ \} \sim$
C. \# \$ \% ^ \& _ \{ \} * \}
D. \# \$ \% ~ \& _ \{ \} ~ +
2. \qquad
A
3. [10 pts.] Write the $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ code which generates the following table in the box below:

number	English	Spanish
1	one	uno
2	two	dos

Solution:

```
\begin{tabular}{cll}
    number & English & Spanish \\
    \hline
    1 & one & uno \\
    2 & two & dos \\
\end{tabular}
```

3. [10 pts.] Write the $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$ code which generates the following equation in the box below. You may assume that the amsmath package has been loaded.

$$
\begin{equation*}
\sqrt[3]{2-\sqrt{3}}=\frac{1}{\sqrt[3]{2+\sqrt{3}}} \tag{1}
\end{equation*}
$$

```
Solution:
\begin{equation}
    \sqrt[3]{2 - \sqrt{3}} = \dfrac{1}{\sqrt[3]{2 + \sqrt{3}}}
\end{equation}
```


Symmetries and Groups of Symmetries

For the next few questions, let $\left\{R_{0}, R_{120}, R_{240}, F_{1}, F_{2}, F_{3}\right\}$ be the set of symmetries of the equilateral triangle.
4. [5 pts.] $R_{240} \circ F_{2} \circ R_{120}=$ \qquad
4. \qquad
5. [5 pts.] Solve the following equation for X :

$$
R_{240} \circ X \circ F_{3}=R_{0}
$$

\qquad
6. [5 pts.] How can you generate F_{1} via the two generators F_{2} and F_{3} ? In other words, what string of flips consisting only of F_{2} and F_{3} is equivalent to F_{1} ? There is more than one correct answer, and short answers are appreciated.

$$
\text { 6. } \quad F_{2} \circ F_{3} \circ F_{2}
$$

7. [5 pts.] Write the following permuatation given in tabular notation in cycle notation. That is, write it as a product of disjoint cycles.

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 7 & 4 & 1 & 6 & 2 & 5
\end{array}\right)
$$

$$
\text { 7. } \quad(134)(2756)
$$

8. Multiply (compose) the following permutations written in cycle notation.
(a) [5 pts.] $(368)(2683)(23)$
(a) \qquad
(b) [5 pts.] (1 23$)(456)$
(b) $\quad(123)(456)$
(c) $[5 \mathrm{pts}].(123)(1234)(132)$
(c) $\quad(1423)$
9. [20 pts.] True or False. Circle one.
(a) $\mathrm{T} \quad \mathrm{F}$ The empty set is a group. (A group must contain an identity element.)
(b) T F The law of composition in a group must be associative. (By definition.)
(c) $\mathrm{T} \quad \mathrm{F}$ The law of composition in a group must be commutative. $\left(S_{3}\right)$
(d) $\mathrm{T} \quad \mathrm{F}$ A group may not be an infinite set. (\mathbb{R}^{+}is an infinite group.)
(e) T F $\left|S_{5}\right|=120 .\left(\left|S_{5}\right|=5!=120\right)$
(f) T F If G is a group and $a \in G$, then $a^{-1} \in G$. (By definition.)
(g) $\mathrm{T} \quad \mathrm{F}$ If G is a group and $a \in G$, then $a^{-1} \neq a$.
(The identity element is always its own inverse.)
(h) T F In every group the identity element is unique. (Proved in the notes.)
(i) $\mathrm{T} \quad \mathrm{F}$ According to Lagrange's theorem, if a group G has a subgroup H, then $|H|$ divides $|G|$. (G must be finite.)
(j) T F According to Lagrange's theorem, if G is a group and $|G|=12$, then G has a subgroup of order 4 , because 4 divides 12 .
(Converse of Lagrange's theorem is false.)
10. [5 pts.] If G is a group and $a b=b a$ for all $a, b \in G$, then G is called what?
11. abelian
12. [5 pts.] Is the following permutation odd or even?
13. odd
14. [10 pts.] Define: the kernel of a homomorphism.

Solution: The kernel of a homomorphism is the set of all elements in the domain of the homomorphism which get mapped to the identity element in the codomain.
13. [10 pts.] Let G be a group, prove that "the conjugation by g " map $\varphi_{g}: G \rightarrow G$ given by $\varphi_{g}: a \mapsto g a g^{-1}$ is a homomorphism.

Solution: Let $a, b \in G$, then

$$
\begin{aligned}
\varphi_{g}(a b) & =g a b g^{-1} \\
& =g a 1 b g^{-1} \\
& =g a\left(g^{-1} g\right) b g^{-1} \\
& =\left(g a g^{-1}\right)\left(g b g^{-1}\right) \\
& =\varphi_{g}(a) \varphi_{g}(b) .
\end{aligned}
$$

The answers below are the class averages.
14. [5 pts.] On a scale of 1 to 10 where 1 is extremely easy and 10 is extremely hard, how hard was this test?
14. \qquad 6.1
15. [5 pts.] On a scale of 1 to 10 where 1 is completely unfair and 10 is completely fair, how fair was this test?
15. 8.0

