
Math 2250 Exam 3 YOUR NAME HERE

Name

1. [10 pts.] Consider the set of odd functions, V = {f(x) | f(−x) = −f(x)}. Show that V is
closed under linear combinations.

2. (a) [6 pts.] Find the general solution, y(x), to the differential equation:

y′′ − 4y′ + 4y = 0

(b) [5 pts.] Give an example of a linear, homogeneous differential equation with constant
coefficients that has characteristic equation: r(r + 1)2 = 0.
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3. [10 pts.] Use the method of undetermined coefficients to find a general solution to:

y′′ − y′ − 2y = 3 cosx
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4. For each differential equation below, determine the correct form of yp to use in the method of
undetermined coefficients.

Do not solve for the unknown coefficients!

(a) [5 pts.] y′′ + 9y = x2ex

(b) [5 pts.] y′′ + 9y = cos 3x

(c) [5 pts.] y′′ + 2y′ + 10y = e−x cos 3x

5. [14 pts.] True or False. Circle one.

(a) T F If the Wronskian of three functions W (y1, y2, y3) ≡ 0, then the three
functions are linearly dependent.

(b) T F The set of polynomials: {1, 1 + x, 1 + x + x2} is linearly dependent.

(c) T F The Wronskian for two functions is defined to be: W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣.
(d) T F The set of solutions to a linear, homogeneous differential equation form a

vector subspace of the set of all functions.

(e) T F A basis for the solution space of a third order, linear, homogeneous differ-
ential equation will always contain three vectors.

(f) T F All mass, spring, dashpot systems exhibit oscillatory behavior.

(g) T F The natural frequency, ω0, of a mass, spring system is given by ω0 = k
m

.
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6. Consider the mass, spring, dashpot system below, which is governed by equation (1).

mx′′ + cx′ + kx = F0 cosωt (1)

(a) [3 pts.] Suppose m = 1, k = 25. What value must c have for the system to be
critically damped?

(b) [3 pts.] Now suppose m = 1, c = 1 and k = 100. This system is (circle one):

overdamped critically damped underdamped

(c) [5 pts.] Suppose again that m = 1, c = 1, k = 100. What is the natural frequencey
of this system, ω0?

(d) [4 pts.] Suppose we have the same m, c, k values as part (c), with F0 = 2. Recall
that the amplitude of oscillation as a function of ω (the driving frequency) is given
by:

C(ω) =
F0√

(k −mω2)2 + (cω)2

We can maximize the above amplitude function by differentiating with respect to
ω, setting that equal to 0, and solving for ω. Upon doing so, we find:

ωr =

√
k

m
− c2

2m2
(2)

Calculate ωr, where practical resonance will occur using formula (2).

Circle one: ωr < ω0 ωr = ω0 ωr > ω0
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7. [10 pts.] Use the Laplace transform method to solve the following IVP:

y′ + 2y = e−t y(0) = 0.
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8. [15 pts.] Use the Laplace transform method to solve the following IVP:

y′′ + 4y′ − 5y = e−t y(0) = 0, y′(0) = 1.
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Function Transform Function Transform

L {y(t)} Y (s) L
{
eat
} 1

s− a

L {y′(t)} sY (s)− y(0) L
{
tneat

} n!

(s− a)n+1

L {y′′(t)} s2Y (s)− sy(0)− y′(0) L {cos kt} s

s2 + k2

L {y′′′(t)} s3Y (s)− s2y(0)− sy′(0)− y′′(0) L {sin kt} k

s2 + k2

L
{
eatf(t)

}
F (s− a) L {k} k

s

Table 1: Table of Laplace Transforms

Page: 1 2 3 4 5 6 Total

Points: 21 10 29 15 10 15 100

Score:


