Name \_\_\_\_\_

1. [10 pts.] Consider the set of odd functions,  $V = \{f(x) | f(-x) = -f(x)\}$ . Show that V is closed under linear combinations.

2. (a) [6 pts.] Find the general solution, y(x), to the differential equation:

$$y'' - 4y' + 4y = 0$$

(b) [5 pts.] Give an example of a linear, homogeneous differential equation with constant coefficients that has characteristic equation:  $r(r+1)^2 = 0$ .

3. [10 pts.] Use the method of undetermined coefficients to find a general solution to:

 $y'' - y' - 2y = 3\cos x$ 

4. For each differential equation below, determine the correct form of  $y_p$  to use in the method of undetermined coefficients.

## Do not solve for the unknown coefficients!

(a) [5 pts.]  $y'' + 9y = x^2 e^x$ 

(b) [5 pts.]  $y'' + 9y = \cos 3x$ 

(c) [5 pts.]  $y'' + 2y' + 10y = e^{-x} \cos 3x$ 

- 5. [14 pts.] True or False. Circle one.
  - (a) T F If the Wronskian of three functions  $W(y_1, y_2, y_3) \equiv 0$ , then the three functions are linearly dependent.
  - (b) T F The set of polynomials:  $\{1, 1 + x, 1 + x + x^2\}$  is linearly dependent.
  - (c) T F The Wronskian for two functions is defined to be:  $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$ .
  - (d) T F The set of solutions to a linear, homogeneous differential equation form a vector subspace of the set of all functions.
  - (e) T F A basis for the solution space of a third order, linear, homogeneous differential equation will always contain three vectors.
  - (f) T F All mass, spring, dashpot systems exhibit oscillatory behavior.
  - (g) T F The natural frequency,  $\omega_0$ , of a mass, spring system is given by  $\omega_0 = \frac{k}{m}$ .

6. Consider the mass, spring, dashpot system below, which is governed by equation (1).



- (a) [3 pts.] Suppose m = 1, k = 25. What value must c have for the system to be critically damped?
- (b) [3 pts.] Now suppose m = 1, c = 1 and k = 100. This system is (circle one): overdamped critically damped underdamped
- (c) [5 pts.] Suppose again that m = 1, c = 1, k = 100. What is the natural frequencey of this system,  $\omega_0$ ?
- (d) [4 pts.] Suppose we have the same m, c, k values as part (c), with  $F_0 = 2$ . Recall that the amplitude of oscillation as a function of  $\omega$  (the driving frequency) is given by:

$$C(\omega) = \frac{F_0}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}}$$

We can maximize the above amplitude function by differentiating with respect to  $\omega$ , setting that equal to 0, and solving for  $\omega$ . Upon doing so, we find:

$$\omega_{\rm r} = \sqrt{\frac{k}{m} - \frac{c^2}{2m^2}} \tag{2}$$

Calculate  $\omega_{\rm r}$ , where practical resonance will occur using formula (2).

Circle one:  $\omega_{\rm r} < \omega_0$   $\omega_{\rm r} = \omega_0$   $\omega_{\rm r} > \omega_0$ 

7. [10 pts.] Use the Laplace transform method to solve the following IVP:

 $y' + 2y = e^{-t}$  y(0) = 0.

8. [15 pts.] Use the Laplace transform method to solve the following IVP:

 $y'' + 4y' - 5y = e^{-t}$  y(0) = 0, y'(0) = 1.

| Function                                               | Transform                                 | Function                               | Transform                |
|--------------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------|
| $\mathscr{L}\left\{y(t) ight\}$                        | Y(s)                                      | $\mathscr{L}\left\{e^{at}\right\}$     | $\frac{1}{s-a}$          |
| $\mathscr{L}\left\{y'(t)\right\}$                      | sY(s) - y(0)                              | $\mathscr{L}\left\{t^{n}e^{at} ight\}$ | $\frac{n!}{(s-a)^{n+1}}$ |
| $\mathscr{L}\left\{ y^{\prime\prime}(t)\right\}$       | $s^2Y(s) - sy(0) - y'(0)$                 | $\mathscr{L}\left\{\cos kt\right\}$    | $\frac{s}{s^2 + k^2}$    |
| $\mathscr{L}\left\{ y^{\prime\prime\prime}(t)\right\}$ | $s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)$ | $\mathscr{L}\left\{\sin kt\right\}$    | $\frac{k}{s^2 + k^2}$    |
| $\mathscr{L}\left\{e^{at}f(t)\right\}$                 | F(s-a)                                    | $\mathscr{L}\left\{k ight\}$           | $rac{k}{s}$             |

Table 1: Table of Laplace Transforms

| Page:   | 1  | 2  | 3  | 4  | 5  | 6  | Total |
|---------|----|----|----|----|----|----|-------|
| Points: | 21 | 10 | 29 | 15 | 10 | 15 | 100   |
| Score:  |    |    |    |    |    |    |       |