Problem 88 (b) has been removed from HW4!
In addition, I do not believe there is enough information to properly solve part (a). This is because as \(x \) varies, clearly so do \(a \) and \(b \), that is \(a = a(x) \) and \(b = b(x) \). Thus we will modify the diagram for part (a) so it becomes:

\[h \text{ and } k \text{ are constants}, \]

Only this point can move. All other vertices are fixed.

Hints:
1) \(\theta = (\theta + \phi) - \phi \)
2) \(\tan (\theta + \phi) = \frac{h}{x} \) \(\tan (\phi) = ? \)
3) \(\tan^{-1} \left(\frac{h}{x} \right) = \theta + \phi \) \(\tan^{-1} (?) = \phi \)

Your answer for \(\frac{d\theta}{dt} \) should only contain: \(x \), \(h \), \(k \) and \(\frac{dx}{dt} \).