§ 9.8 Taylor and Maclaurin Series

We've looked at ways of manipulating power series to get new power series. Now we ask the obvious question:

Q: Can any function be represented by a power series?
A: (forthcoming)

Let's assume we can represent any function by a power series centered on \(a\), i.e., \(f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \ldots\)

What do higher derivatives of \(f(x)\) say about the \(a_n\)'s?

\[f'(x) = a_1 + 2a_2(x-a) + 3a_3(x-a)^2 + 4a_4(x-a)^3 + \ldots\]
\[f''(x) = 2a_2 + 3 \cdot 2 a_3(x-a) + 4 \cdot 3 a_4(x-a)^2 + 5 \cdot 4 a_5(x-a)^3 + \ldots\]
\[f'''(x) = 3 \cdot 2 a_3 + 4 \cdot 3 \cdot 2 a_4(x-a) + 5 \cdot 4 \cdot 3 a_5(x-a)^2 + 6 \cdot 5 \cdot 4 a_6(x-a)^3 + \ldots\]

Let \(x = a\) and solve for \(a_n\) in each equation above.

\[a_n = \frac{f^{(n)}(a)}{n!}\]

The above analysis tells us two things:
1. The coefficients \(a_n\) depend on \(f\).
2. The coefficients are unique for each \(f\).
Def A **Maclaurin series** is a power series representation of a function centered around 0.

Def A **Taylor Series** is a power series representation of a function centered around a constant "a".

Ex Taylor Series

\[f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots \]

Maclaurin Series

\[f(x) = c_0 + c_1x + c_2x^2 + c_3x^3 + c_4x^4 + \cdots \]

So a Maclaurin Series is just a special case of a Taylor series with the constant \(a = 0 \).

Ex What is the Maclaurin series of \(f(x) = 3x^2 + 2x + 1 \) ?

Recall: \(c_n = \frac{f^{(n)}(a)}{n!} \) here \(a = 0 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f^{(n)}(x))</th>
<th>(f^{(n)}(0))</th>
<th>(c_n = \frac{f^{(n)}(0)}{n!})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3x^2 + 2x + 1</td>
<td>1</td>
<td>(\frac{1}{0!} = 1)</td>
</tr>
<tr>
<td>1</td>
<td>6x + 2</td>
<td>2</td>
<td>(\frac{2}{1!} = 2)</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>(\frac{0}{2!} = 0)</td>
</tr>
</tbody>
</table>

\[\Rightarrow f(x) = 1 + 2x + 3x^2 + 0x^3 + 0x^4 + \cdots \]

\[= 1 + 2x + 3x^2 \]

\(\Rightarrow \) so the idea agrees with polynomial functions.
Ex. What is the Taylor Series of \(f(x) = 3x^2 + 2x + 1 \) centered at \(x = 2 \)?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f^{(n)}(x))</th>
<th>(f^{(n)}(2))</th>
<th>(C_n = \frac{f^{(n)}(2)}{n!})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(3x^2 + 2x + 1)</td>
<td>(3 \cdot 2^2 + 2 \cdot 2 + 1 = 17)</td>
<td>(\frac{17}{0!} = 17)</td>
</tr>
<tr>
<td>1</td>
<td>(6x + 2)</td>
<td>(6 \cdot 2 + 2 = 14)</td>
<td>(\frac{14}{1!} = 14)</td>
</tr>
<tr>
<td>2</td>
<td>(6)</td>
<td>(6)</td>
<td>(\frac{6}{2!} = 3)</td>
</tr>
<tr>
<td>3</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

\[f(x) = 17 + 14(x-2) + 3(x-2)^2 + O(x-2)^3 + \cdots \]

Is this really the same function? Let's expand...

\[f(x) = 17 + 14x - 28 + 3(x^2 - 4x + 4) \]
\[= 17 - 28 + 14x + 3x^2 - 12x + 12 \]
\[= 3x^2 + 2x + 1 \checkmark \text{ They do match!} \]

Thm A. Uniqueness Theorem

If \(f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \) has radius of convergence \(R > 0 \),

Then \(c_n = \frac{f^{(n)}(a)}{n!} \).

Remark Having non-zero radius of convergence implies \(f(x) \) is differentiable and we can differentiate \(f(x) \) indefinitely many times.
Ex. Find the Maclaurin series for \(f(x) = e^x \).

Solution. Maclaurin means \(a = 0 \) in \(f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \).

\[
\begin{array}{c|c|c|c}
 n & f^{(n)}(x) & f^{(n)}(0) & \frac{f^{(n)}(0)}{n!} = a_n \\
\hline
 0 & e^x & e^0 = 1 & 1 \\
 1 & e^x & e^0 = 1 & \frac{1}{1!} = 1 \\
 2 & e^x & e^0 = 1 & \frac{1}{2!} \\
 3 & e^x & e^0 = 1 & \frac{1}{3!} \\
 \vdots & \vdots & \vdots & \vdots \\
 n & e^x & e^0 = 1 & \frac{1}{n!} \\
\end{array}
\]

\[
\Rightarrow e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \ldots
\]

What is the radius of convergence, \(R \)? Use Absolute Ratio Test:

\[
\lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \right| \cdot \left| \frac{n!}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1} \cdot x}{x^n} \right| \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{|x|}{n+1} = 0
\]

So \(\rho = 0 \) for all real \(x \) \(\Rightarrow R = \frac{1}{\rho} = \frac{1}{0} = \infty \)

\(\Rightarrow \sum_{n=0}^{\infty} \frac{x^n}{n!} \) converges absolutely for all real \(x \)!
Ex. Find the Taylor Series for \(f(x) = \sin x \) centered on \(a = 2\pi \).

Solution

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f^{(n)}(x))</th>
<th>(f^{(n)}(2\pi))</th>
<th>(\frac{f^{(n)}(2\pi)}{n!})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\sin(x))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(\cos(x))</td>
<td>1</td>
<td>(\frac{1}{1!})</td>
</tr>
<tr>
<td>2</td>
<td>(-\sin x)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(-\cos x)</td>
<td>-1</td>
<td>(\frac{-1}{3!})</td>
</tr>
<tr>
<td>4</td>
<td>(\sin x)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\Rightarrow \sin(x) = (x - 2\pi) - \frac{1}{3!} (x - 2\pi)^3 + \frac{1}{5!} (x - 2\pi)^5 - \frac{1}{7!} (x - 2\pi)^7 + \ldots \]

\[\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (x - 2\pi)^{2n+1} \]

Radius of convergence, \(R \)?

Remark: The radius of convergence will be the same regardless of whether we expand around \(a = 2\pi \) or \(a = 0 \) (Maclauren), thus to make calculations easier set \(a = 0 \).

\[\lim_{n \to \infty} \frac{x^{2(n+1)+1}}{(2(n+1)+1)!} \left| \frac{(2n+1)!}{x^{2n+1}} \right| = \lim_{n \to \infty} \frac{(2n+1)!}{(2n+3)(2n+2)(2n+1)!} |x^2| = 0 \]

\(2(n+1)+1 = 2n+3 \quad \rho = 0 \Rightarrow R = \frac{1}{\rho} = \infty \)

Note: \(2(n+1)+1 = 2n+3 \quad \rho = 0 \Rightarrow R = \frac{1}{\rho} = \infty \)

Check the next page to see graphs of \(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad N=1, \ldots, 13 \)
The above plot shows the graph of $\sin(x)$ and graphs of partial sums of $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, that is, it plots $f(x) = \sum_{n=0}^{N} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ for $N = 1, 3, 5, 7, 9, 11, 13$.

04/10/12 12:47
Ex. We can differentiate the Taylor series for \(\sin(x) \) centered on \(2\pi \) to get a Taylor series for \(\cos(x) \) @ \(2\pi \):

\[
\frac{d}{dx} \left(\sin(x) = (x - 2\pi) - \frac{1}{3!} (x - 2\pi)^3 + \frac{1}{5!} (x - 2\pi)^5 - \frac{1}{7!} (x - 2\pi)^7 + \cdots \right)
\]

\[
\cos(x) = 1 - \frac{3}{3!} (x - 2\pi)^2 + \frac{5}{5!} (x - 2\pi)^4 - \frac{7}{7!} (x - 2\pi)^6 + \cdots
\]

\[
\cos(x) = 1 - \frac{1}{2!} (x - 2\pi)^2 + \frac{1}{4!} (x - 2\pi)^4 - \frac{1}{6!} (x - 2\pi)^6 + \cdots
\]

Radius of convergence? Recall that differentiating or integrating a power series term by term does not change the radius of convergence, i.e. the new series has the same radius of convergence as the previous one.

\(R \) for \(\sin(x) \) was \(\infty \) \(\Rightarrow \) \(R \) for \(\cos(x) \) is \(\infty \) too!

Note: We could have expanded \(\sin(x) \) around any integral multiple of \(\pi \), say \(n\pi \), then if \(n \) is even we get the same exact results as above. If \(n \) is odd, then this is equivalent to multiplying every term by \((-1)^n\). So usually we just give the power expansion of trig functions around 0:

\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \cdots
\]

\[
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \frac{1}{6!} x^6 + \cdots
\]

\[
e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \cdots
\]
The Taylor polynomial of order n based at a is
\[
P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n
\]
\[P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k\]

The nth Taylor remainder is
\[R_n(x) = f(x) - P_n(x)\]

Thm. A function equals its Taylor series at x if
\[
\lim_{n \to \infty} R_n(x) = 0.
\]

Note: Your text defines $R_n(x)$ slightly differently so as to make the proof of the above theorem easier. The definition I gave above is more natural and intuitive.

Now we can finally answer the question at the beginning:

Q: Can any function be represented by a power series?

A: No, only if
\[
\lim_{n \to \infty} R_n(x) = 0
\]

Ex. If \(f(x) = \begin{cases} e^{-\frac{1}{2}x^2} & x \neq 0 \\ 0 & x = 0 \end{cases} \) then \(R_n(x) \to 0 \) as \(n \to \infty \).

However, many functions can be faithfully represented.