7.2 Integration by Parts

Recall the product rule, where \(u = u(x) \), \(v = v(x) \):

\[
D_x [u \cdot v] = u'v + uv' \quad \text{product rule}
\]

\[
D_x [u \cdot v] = vdu + udv
\]

\[
\int D_x [u \cdot v] dx = \int vdu + \int udv
\]

\[
u \cdot v = \int vdu + \int udv
\]

\[
\Rightarrow \int udv = uv - \int vdu
\] \quad \text{memorize this!}

Notice there is a \(dv \) on the left and only \(v's \) on the right hand side of the equation.

This means: If we can break up an integrand into two factors, \(u \) and \(dv \), and we can integrate \(dv \) to get \(v \), then we can rewrite the difficult integral on the left using the "simpler" rewrite rule on the right.

Similar to how u-substitution "undoes" the chain rule of differentiation, one can think of integration by parts as "undoing" the product rule of differentiation, however this is only an analogy.
Ex. Find $\int x \cos x \, dx$

$u = x \quad dv = \cos x \, dx$
$du = dx \quad v = \sin x$

When doing integration by parts, I recommend writing both substitutions, i.e. $u \& dv$ in the top quadrants of a box.

\[
\int \frac{x \cos x \, dx}{u \ dv} = \frac{x \sin x}{1} - \int \frac{\sin x \, dx}{v} - \int v \, du
\]
\[
= x \sin x - (\cos x) + C
\]
\[
= x \sin x + \cos x + C
\]

Ex. $\int \frac{\ln x \, dx}{u \ dv}$

$u = \ln x \quad dv = dx$
$du = \frac{1}{x} dx \quad v = x$

We can finally integrate $\ln x$!

\[
\int \ln x \, dx = (\ln x) \cdot x - \int x \cdot \frac{1}{x} \, dx
\]
\[
= x \ln x - \int dx
\]
\[
= x \ln x - x + C
\]

Ex. $\int \arcsin x \, dx$

$u = \arcsin x \quad dv = dx$
$du = \frac{1}{\sqrt{1-x^2}} \, dx \quad v = x$

Now u-substitute!

\[
\frac{\arcsin x \, dx}{u \ dv} = x \cdot \arcsin x - \int \frac{x}{\sqrt{1-x^2}} \, dx
\]
\[
= x \cdot \arcsin x - \frac{1}{2} \int u^{1/2} \, du
\]
\[
= x \cdot \arcsin x + \frac{1}{2} \cdot 2 \cdot u^{1/2} + C
\]
\[
= x \cdot \arcsin x + \frac{1}{2} \cdot \sqrt{1-x^2} + C
\]
How to choose \(u \) & \(dv \):

LIPET

Guideline for how to choose \(u \), whatever is leftover becomes \(dv \).

Memorize This!

Ex. \(\int 2x e^{3x} \, dx \)

\[
\int 2x e^{3x} \, dx = \frac{2}{3} x e^{3x} - \frac{2}{9} e^{3x} + C
\]

Ex. \(\int e^{x} \cos x \, dx \)

\[
\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx
\]

\[
= e^{x} \sin x - \left[-e^{x} \cos x + \int e^{x} \cos x \, dx \right]
\]

\[
\Rightarrow \int e^{x} \cos x \, dx = \frac{1}{2} e^{x} \left[\sin x + \cos x \right] + C
\]
Tabular Method: A fast way to integrate \((poly) \cdot \{\text{exp, trig}\}\).

To find \(\int (P(x) \cdot E(x)) \, dx\), write 3 columns:

- **Polynomial**
- **Trigonometric or exponential function** (e.g., \(\sin x, e^{2x}\))

<table>
<thead>
<tr>
<th>du derivatives</th>
<th>(\int dv) integrals</th>
<th>sign(+)</th>
<th>-</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consecutive derivatives of (P(x))</td>
<td>Consecutive integrals of (E(x))</td>
<td>go here.</td>
<td>go here.</td>
<td>-</td>
</tr>
</tbody>
</table>

First row is always:

| \(P(x)\) | \(E(x)\) | - |

Ex. \(\int (2x^2 - 3) e^x \, dx = (2x^2 - 3)e^x - 4xe^x + 4e^x + C\)

<table>
<thead>
<tr>
<th>(du)</th>
<th>(\int dv)</th>
<th>(+/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x^2 - 3)</td>
<td>(e^x)</td>
<td>-</td>
</tr>
<tr>
<td>(4x)</td>
<td>(e^x)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>(e^x)</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>(e^x)</td>
<td>-</td>
</tr>
</tbody>
</table>
\[\int x^3 \sin \left(\frac{x}{2}\right) \, dx = -2x^3 \cos \left(\frac{x}{2}\right) + 12x^2 \sin \left(\frac{x}{2}\right) + 48x \cos \left(\frac{x}{2}\right) - 96 \sin \left(\frac{x}{2}\right) + C \]

<table>
<thead>
<tr>
<th>(du)</th>
<th>(\int dV)</th>
<th>(+/−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^3)</td>
<td>(\sin \left(\frac{x}{2}\right))</td>
<td>−</td>
</tr>
<tr>
<td>(3x^2)</td>
<td>−2 (\cos \left(\frac{x}{2}\right))</td>
<td>+</td>
</tr>
<tr>
<td>(6x)</td>
<td>−4 (\sin \left(\frac{x}{2}\right))</td>
<td>−</td>
</tr>
<tr>
<td>6</td>
<td>8 (\cos \left(\frac{x}{2}\right))</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>16 (\sin \left(\frac{x}{2}\right))</td>
<td>−</td>
</tr>
</tbody>
</table>

You can always check your work in this column by starting at the last entry and differentiating until you hopefully get the first entry.

Hint: This is a great type of test question!
\[\int_{0}^{1} \frac{1}{t+1} \, dt = (t-1)^{12}, \quad \frac{t^2}{2} \bigg|_{0}^{1} - \int_{0}^{1} \frac{t^2}{2} \, (t-1)^{11} \, dt \]

\[u = (t-1)^{12}, \quad \frac{dv}{dt} = t \, dt \]
\[du = 12(t-1)^{11} \, dt, \quad v = \frac{t^2}{2} \]

\[\int_{0}^{1} \frac{1}{t+1} \, dt = \frac{1}{13} (t-1)^{13} \bigg|_{0}^{1} - \int_{0}^{1} \frac{1}{13} (t-1)^{13} \, dt \]

\[= -\frac{1}{13} \cdot \frac{1}{14} (t-1)^{14} \bigg|_{0}^{1} \]
\[= \frac{-1}{13 \cdot 14} (1 - 0)^{14} \]
\[= \frac{-1}{182} \]

Try again!

The above demonstrates:
\[\int_{a}^{b} u \cdot dv = uv \bigg|_{a}^{b} - \int_{a}^{b} v \cdot du \]

that is, the method of integration of parts works for definite integrals too!