Math 6320, Assignment 5
Due: End of April

1. Let A be a finitely generated abelian group, viewed as an \mathbb{Z}-module. Describe A_p for each prime ideal p in \mathbb{Z}. Use the structure theorem for abelian groups.

2. Let R be a ring. Verify that for any r in R, the ring $R[x]/(xr - 1)$ is (canonically isomorphic) to the localization of R at the multiplicatively closed subset $\{r^i \mid i \geq 0\}$.

3. Let I be an ideal in R and M an R-module such that $M_m = 0$ for each maximal ideal $m \supseteq I$. Prove that $IM = M$.

4. Let R be a ring and M a faithful R-module; this means that $\operatorname{ann}_R M = (0)$. Prove that when M is noetherian, as an R-module, the ring R is noetherian.

5. Let R be a Noetherian ring and $\varphi : R \to R$ a surjective homomorphism of rings. Is φ an isomorphism?

6. Let K be a field.
 (a) Suppose $f(x)$ in $K[x]$ has positive degree. Prove that $K[x]$ is a finitely generated $K[f(x)]$-module.
 (b) Let R be a subring of $K[x]$ that contains K. Prove that R is Noetherian.
 (c) Describe a non-Noetherian subring of $K[x,y]$.

7. Suppose K is not algebraically closed. Prove that each algebraic set in K^n is the zero set of a single polynomial.

8. Prove that the subset $V = \{(t,t^2,...,t^n) \mid t \in \mathbb{C}\}$ of \mathbb{C}^n is algebraic.

9. Let K be an algebraically closed field and L an extension field. If polynomials f_1, \ldots, f_c in $K[x_1, \ldots, x_n]$ have a common root in L^n, prove they have a common root in K^n.

10. Let m be a maximal ideal of $\mathbb{R}[x,y]$ containing $x^2 + y^2 + 1$. What is the quotient $\mathbb{R}[x,y]/m$?