Math 6320, Assignment 2

Due: Weekend of February 9

- (a) If a polynomial f(x) := a₀ + a₁x + ··· a_nxⁿ has a rational root p/q with (p,q) = 1, then p divides a₀ and q divides a_n. Prove this assertion.
 - (b) Prove that a cubic polynomial in $\mathbb{Z}[x]$ with no rational roots is irreducible in $\mathbb{Q}[x]$.
 - (c) Is the polynomial $x^3 4x^2 (9/2)x (5/2)$ irreducible in $\mathbb{Q}[x]$?
- 2. Study the irreducibility of $x^4 + 1$ in $\mathbb{Q}[x]$ and factorize it as a product of irreducible factors in $\mathbb{Q}(\zeta)[x]$, where ζ is one of its roots.
- 3. For each prime *p* and integer *n*, verify that the polynomial $x^n + px + p^2$ is irreducible in $\mathbb{Q}[x]$.
- 4. Give an example of an irreducible quadratic polynomial f(x) in $\mathbb{Q}[x]$ such that $f(x^2)$ is reducible.
- 5. Let F be a field and f(x), g(x) polynomials in F[x]. Let α and β be roots of f(x) and g(x), respectively, in some extension of F.
 - (a) Verify that the polynomial $R(z) := \text{Res}_x(f(x), g(z-x))$ is a polynomial in F[z] having a + b as a root.
 - (b) More generally, for any polynomial p(x,y) in F[x,y], the element $p(\alpha,\beta)$ is a root of the polynomial

 $\operatorname{Res}_{x}(f(x),\operatorname{Res}_{y}(z-p(x,y),g(y)))$ in F[z].

- (c) Verify that $\alpha\beta$ is a root of the polynomial $\operatorname{Res}_x(f(x), x^ng(z/x))$, where $n = \deg(g(x))$.
- (d) For a polynomial p(y) in F[y], describe a polynomial over F that vanishes at $p(\alpha)$.
- 6. Let α be a root of the polynomial $f(x) = x^3 + 2x + 2$ in $\mathbb{Q}[x]$. Since f(x) is irreducible, by the Eisentein criterion, the \mathbb{Q} -vector space $\mathbb{Q}(\alpha)$ has a basis $1, \alpha, \alpha^2$. Express the following elements in $\mathbb{Q}(\alpha)$ in terms of this basis:

 a^{-1} , $1/(a^2 + a + 1)$, and $a^6 + 3a^4 + 2a^3 + 6a$

Determine the minimal polynomials, over \mathbb{Q} , of these elements.

- 7. Let *R* be a ring and $f(x) := a_0 + a_1x + \cdots + a_nx^n$ a polynomial over *R*. Prove the following assertions.
 - (a) f(x) is a unit in R[x] if and only if a_0 is a unit and each a_i is nilpotent.
 - (b) f(x) is nilpotent if and only if each a_i is nilpotent.
 - (c) f(x) is a zerodivisor if and only if there exists a nonzero element $r \in R$ such that $r \cdot f(x) = 0$.