MATH 3220-1 FALL 2008 First Mock Exam

INSTRUCTOR: H.-PING HUANG

LAST NAME	
FIRST NAME	
ID NO.	

INSTRUCTION: SHOW ALL OF YOUR WORK. MAKE SURE YOUR ANSWERS ARE CLEAR AND LEGIBLE. USE **SPECIFIED** METHOD TO SOLVE THE QUESTION. IT IS NOT NECESSARY TO SIMPLIFY YOUR FINAL ANSWERS.

- PROBLEM 1 25 _____
- PROBLEM 2 25 _____
- PROBLEM 3 25 _____
- PROBLEM 4 25 _____

TOTAL 100 _____

 $\mathbf{2}$

 $(25~{\rm pt})$ State the Cauchy-Schwarz Inequality. Use that to prove the Triangle Inequality.

(25 pt) Prove that every convergent sequence in \mathbb{R}^d is bounded.

(25 pt) For each of the following sets, sketch E^o , \overline{E} , and ∂E .

$$\begin{split} (a)E &= \{(x,y): x^2 + 4y^2 \leq 1\} \\ (b)E &= \{(x,y): x^2 - 2x + y^2 = 0\} \cup \{(x,0): x \in [2,3]\} \\ (c)E &= \{(x,y): y \geq x^2, \quad 0 \leq y < 1\} \\ (d)E &= \{(x,y): x^2 - y^2 < 1, \quad -1 < y < 1\} \end{split}$$

(25 pt) Prove that if K is a compact subset of \mathbb{R}^d , then K contains points of minimal norm and points of maximal norm. That is, there are points $x_0, x_1 \in K$ such that

$$\|x_0\| \le \|x\| \le \|x_1\| \quad \forall x \in K$$