
Ch 13.3, Ex. 4
Find the volume of the solid in the first octant x ≥ 0,  y ≥ 0,  z ≥ 0( )  bounded
by the circular paraboloid z = x2 + y2 ,  the cylinder x2 + y2 = 4,  and the coordinate
planes.

Solution

Mock Exam 3 Solutions
Problem 1

The region S in the first quadrant of xy − plane is bounded 
by a quarter of the circle x2 + y2 = 4 and the lines x = 0 and 
y = 0. Although S can be thought of as either a y-simple or 
an x-simple region, we shall treat S as the latter and write 

its boundary curves as x = 4 − y2 ,  
x = 0,  and y = 0. Thus,

    S = x, y( ) : 0 ≤ x ≤ 4 − y2 ,  0 ≤ y ≤ 2{ }
Figure 14 shows the region S in the xy − plane. Now our 
goal is to calculate V = x2 + y2( )dA

S
∫∫

by means of an iterated integral. This time we first fix y 
and integrate along a line

Figure 14( )  from x = 0 and x = 4 − y2  and then integrate the results from y = 0 to y = 2.
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By the trigonometric substitution y = 2sinθ,  the latter integral can be rewritten as
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Ch 13.4, Ex 2

Evaluate ydA where S is the region in the first quadrant that is outside the circle
S
∫

r = 2 and inside the cardioid r = 2 1+ cosθ( ). The graph of the carioid will be given.

Solution

Since S is an r-simple set, we write the given integral as an iterated polar
integral, with r  as the inner variable of integration. In this inner integration, θ
is held fixed; the integration is along the heavy line of Figure 7 from r = 2 to 
r = 2 1+ cosθ( ).
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Ch 13.6, Ex 3

Find the area of the surface G  cut from the hemisphere 
x2 + y2 + z2 = 42,  z ≥ 0,  by the plane z = 1 and z = 3.

Solution

The surface of the hemisphere is defined

by z = 16 − x2 − y2 .

zx =
−2x

2 16 − x2 − y2

zy =
−2y

2 16 − x2 − y2

The surface area of the hemisphere
between z = 1 and z = 3 is

1+ zx( )2 + zy( )2
S
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∫∫

16 − x2 − y2 + x2 + y2

16 − x2 − y2S
∫∫
We will use polar coordinates to find the radius values we find the radius
of the two circles created by the intersections of z = 1 and z = 3 with the 
hemisphere. We find them to be 7  and 15,  respectively.
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16 − r2r= 7
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∫ r dr dθ
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Evaluate the triple integral of f x, y, z( ) = 2xyz over the solid region S in the
first octant bounded by the parabolic cylinder z = 2 − 1

2 x
2  and the plane

z = 0,  y = x, and y = 0.

Solution

The solid region S is shown in Figure 4. The triple integral 2xyzdV
S
∫∫∫

can be evaluated by an iterated integral. We integrate along a vertical
line from z = 0 to z = 2 − 1

2 x
2 .
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S
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Find the volume of the solid S bounded above by the sphere ρ = 4 and
below by the cone φ = π

3 .

Solution

The volume is given by V = ρ2 sinφ
ρ=0
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