Hsiang-Ping Huang

WeBWorK assignment number 3 is due : 03/04/2011 at 10:00pm MST.
The primary purpose of WeBWorK is to let you know that you are getting the correct answer or to alert you if you are making some kind of mistake. Usually you can attempt a problem as many times as you want before the due date. However, if you are having trouble figuring out your error, you should consult the book, or ask a fellow student, one of the TA's or your professor for help. Don't spend a lot of time guessing - it's not very efficient or effective.

Give 4 or 5 significant digits for (floating point) numerical answers. For most problems when entering numerical answers, you can if you wish enter elementary expressions such as $2 \wedge 3$ instead of $8, \sin (3 * p i / 2)$ instead of $-1, e \wedge(\ln (2))$ instead of 2 , $(2+\tan (3)) *(4-\sin (5)) \wedge 6-7 / 8$ instead of 27620.3413 , etc. Here's the list of the functions which WeBWorK understands.

You can use the Feedback button on each problem page to send e-mail to the professors.

1. (1 pt) Chap2/1_1.pg

USE THE DEFINITION OF DERIVATIVES.
Find the slope of the tangent line to the curve $y=f(x)=3 x^{2}$ at the point $(4,48)$.

2. (1 pt) Chap2/1 2.pg

USE THE DEFINITION OF DERIVATIVES.

Find the slope of the tangent line to the curve $y=f(x)=$ $-x^{2}+2 x+2$ at the point $(2,2)$.

3. (1 pt) Chap2/1 3.pg
 USE THE DEFINITION OF DERIVATIVES.

Find the equation of the tangent line to the curve $y=1 / x$ at $(3,1 / 3)$.
$y=$ \qquad $x+$ \qquad

4. (1 pt) Chap2/14.pg

USE THE DEFINITION OF DERIVATIVES.

An object, initially at rest, falls due to gravity. Find its instantaneous velocity ($\mathrm{ft} / \mathrm{sec}$) at $t=3.9$ seconds, \qquad (ft/sec), and at $t=5.4$ seconds, \qquad (ft/sec).

5. (1 pt) Chap2/1.5.pg

USE THE DEFINITION OF DERIVATIVES.

How long will it take the falling object, initially at rest, falling due to gravity, to reach an instantaneous velocity of 64 feet per second?
seconds.

6. (1 pt) Chap2/1_6.pg

USE THE DEFINITION OF DERIVATIVES.

A particle moves along a coordinate line and s, its directed distance in centimeters from the origin after t seconds, is given by $s=f(t)=\sqrt{4 t+5}$. Find teh instantaneous velocity of the particle after 3 seconds.
\qquad centimeter per second
7. (1 pt) Chap2/2_1.pg

USE THE DEFINITION OF DERIVATIVES.
Let $f(x)=5 x-4$. Find $f^{\prime}(-2)$.
8. (1 pt) Chap2/2_2.pg

USE THE DEFINITION OF DERIVATIVES.

If $f(x)=4 x^{3}+4 x$, find $f^{\prime}(x)$.
9. (1 pt) Chap2/23.pg

DO NOT USE THE DEFINITION OF DERIVATIVES!!
If

$$
f(x)=\frac{1}{x^{4.2}}
$$

find $f^{\prime}(x)$.
10. (1 pt) Chap2/24.pg
USE THE DEFINITION OF DERIVATIVES.

Find $F^{\prime}(x)$ if $F(x)=\sqrt[4]{x}, x>0$.
Hint: $\quad(a-b)(a+b)=a^{2}-b^{2},(a-b)\left(a^{2}+a b+b^{2}\right)=$ $a^{3}-b^{3}$, and $(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right)=a^{4}-b^{4}$

11. (1 pt) Chap2/2_5.pg USE THE DEFINITION OF DERIVATIVES.
 Find $g^{\prime}(c)$ if $g(x)=2 /(x+3)$.

12. (1 pt) Chap2/2.6.pg

USE THE DEFINITION OF DERIVATIVES.

Each of the following is a derivative, but of what function and at what point?
(a) $\lim _{h \rightarrow 0} \frac{(7+h)^{2}-49}{h}$
(b) $\lim _{x \rightarrow 3} \frac{\frac{2}{x^{3}}-\frac{2}{3^{3}}}{x-3}$
(a) $f(x)=$ \qquad at the point $x=$ \qquad
(b) $f(x)=$ \qquad at the point $x=$
13. (1 pt) Chap2/2_7.pg

Let $y=f(x)=3-x^{3}$. Find $\triangle y$ when x changes from 0.4 to 1.3.

14. (1 pt) Chap2/2_8.pg

USE THE DEFINITION OF DERIVATIVES.
Let $f(x)=|x|$. Sketch a graph of the derivative $f^{\prime}(x)$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{|2+h|-|2|}{h}= \\
& \lim _{h \rightarrow 0} \frac{|-2+h|-|-2|}{h}= \\
& \lim _{h \rightarrow 0^{+}} \frac{|0+h|-|0|}{h}= \\
& \lim _{h \rightarrow 0^{-}} \frac{|0+h|-|0|}{h}= \\
& \lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}=
\end{aligned}
$$

15. (1 pt) Chap2/3_1.pg

Find the derivatives of $8 x^{2}+9 x-3$, \qquad and $5 x^{6}-2 x^{5}-9 x^{2}+7 x+15$,
16. (1 pt) Chap2/3-2.pg

Let $g(x)=x, h(x)=5 x+2$, and $f(x)=g(x) \cdot h(x)$.
$D_{x} g(x)=$ \qquad
$D_{x} h(x)=$ \qquad
$D_{x} f(x)=$
$D_{x} g(x) \cdot D_{x} h(x)=$ \qquad
17. (1 pt) Chap2/33.pg

Find the derivative of $\left(4 x^{2}-7\right) \cdot\left(6 x^{4}-6 x\right)$ by use of the PRODUCT RULE.
18. (1 pt) Chap2/3-4.pg

Find $\frac{d}{d x} \frac{(4 x+3)}{(6 x+2)}$.
19. (1 pt) Chap2/3_5.pg

Find $D_{x} y$ if $y=\frac{2}{x^{3}+1}+\frac{2}{x}$.
20. (1 pt) Chap2/3_6.pg

Show that the power rule holds for all negative integral exponents; that is,

$$
D_{x}\left(x^{-3}\right)=D_{x}\left(\frac{1}{x^{3}}\right)=
$$

21. (1 pt) Chap2/4-1.pg

Find $D_{x}(7 \sin x-7 \cos x)$. \qquad

22. (1 pt) Chap2/4-2.pg

Find the equation of the tangent line to the graph of $y=3 \sin x$ at the point $(5 \pi, 0)$.
$y=$ \qquad $x+$ \qquad

23. (1 pt) Chap2/4_3.pg

Find $D_{x}\left(x^{5} \cos x\right)$.
24. (1 pt) Chap2/4-4.pg

$$
\text { Find } \frac{d}{d x}\left(\frac{1+\cos x}{\sin x}\right)
$$

25. (1 pt) Chap2/4_5.pg

At time t seconds, the center of a bobbing cork is $y=5 \sin t$ centimeters above (or below) water level. What is the velocity of the cork at $t=0, \pi / 2, \pi$?
\qquad ($\mathrm{cm} / \mathrm{sec}$), \qquad (cm/sec), and \qquad ($\mathrm{cm} / \mathrm{sec}$).

Hsiang-Ping Huang

math1210spring2011-6

WeBWorK assignment number 4 is due : 03/04/2011 at 10:00pm MST.

The primary purpose of WeBWorK is to let you know that you are getting the correct answer or to alert you if you are making some kind of mistake. Usually you can attempt a problem as many times as you want before the due date. However, if you are having trouble figuring out your error, you should consult the book, or ask a fellow student, one of the TA's or your professor for help. Don't spend a lot of time guessing - it's not very efficient or effective.

Give 4 or 5 significant digits for (floating point) numerical answers. For most problems when entering numerical answers, you can if you wish enter elementary expressions such as $2 \wedge 3$ instead of $8, \sin (3 * p i / 2)$ instead of $-1, e \wedge(\ln (2))$ instead of 2 , $(2+\tan (3)) *(4-\sin (5)) \wedge 6-7 / 8$ instead of 27620.3413 , etc. Here's the list of the functions which WeBWorK understands.

You can use the Feedback button on each problem page to send e-mail to the professors.

1. (1 pt) Chap2/4_6.pg

Find $D_{x} x^{5} \tan ^{3} x$, \qquad for $n \geq 1$.

2. (1 pt) Chap2/4_7.pg

Find the equation of the tangent line to the graph $y=\tan ^{2} x$ at the point $(\pi / 4,1)$.
$y=$ \qquad
\qquad
3. (1 pt) Chap2/4_8.pg

Find the point $x, 0<x<1$ on the graph of $y=\sin ^{2} 3 x$ where the tangent line is horizontal.
4. (1 pt) Chap2/5_1.pg

If $y=\left(4 x^{4}-6 x^{2}+4 x\right)^{71}$, find $D_{x} y$.

5. (1 pt) Chap2/5_2.pg

If $y=1 /\left(3 x^{4}-7 x^{2}+2 x\right)^{65}$, find $d y / d x$.
6. (1 pt) Chap2/5-3.pg

Find $D_{t}\left(\frac{5 t^{4}+5 t^{2}+4}{5 t^{5}-6 t^{3}+3 t}\right)^{17}$.

7. (1 pt) Chap2/5_4.pg

Let $y=\cos (2 x)$. Find $d y / d x$.

8. (1 pt) Chap2/5-5.pg

Find $F^{\prime}(y)$ where $F(y)=y^{3} \cos ^{3}(3 x)$.

9. (1 pt) Chap2/5_6.pg

$$
\text { Find } D_{x}\left(\frac{x^{5}(1-x)^{6}}{(1+x)^{4}}\right)
$$

10. (1 pt) Chap2/5_7.pg

$$
\text { Find } \frac{d}{d x} \frac{1}{(2 x-1)^{5}}
$$

11. (1 pt) Chap2/5_8.pg

Find $D_{x}\left(\sin \left(x^{7}\right)\right), \quad$ and $D_{x}\left(\sin ^{7}(x)\right)$,

12. (1 pt) Chap2/5_9.pg

Find $D_{x} \cos ^{2}(2 x)$.

13. (1 pt) Chap2/5_10.pg

Find $D_{x} \cos \left(\sin \left((2 x)^{3}\right)\right)$.

14. (1 pt) Chap2/5_11.pg

Let $f(2)=3, g(2)=4, f^{\prime}(2)=5, g^{\prime}(2)=6, f^{\prime}(3)=7$, $g^{\prime}(3)=8, f^{\prime}(4)=9, f^{\prime}(5)=10, g^{\prime}(5)=11, f^{\prime}(6)=12$, $g^{\prime}(6)=13$, etc.

Find $(f-g)^{\prime}(2)$, \qquad
Find $(f \circ g)^{\prime}(2)$, \qquad

15. (1 pt) Chap2/6-1.pg

If $y=\cos (2 x)$, find $d^{3} y / d x^{3}$,
$d^{4} y / d x^{4}$, \qquad and $d^{12} y / d x^{12}$,

16. (1 pt) Chap2/6_2.pg

An object moves along a coordinate line so that its position s satisfies $s=6 t^{2}-2 t+8$, where s is measured in centimeters and t in seconds with $t \geq 0$.

Determine the velocity of the object when $t=1$, \qquad $\mathrm{cm} / \mathrm{sec}$, and when $t=6$, \qquad $\mathrm{cm} / \mathrm{sec}$.
When is velocity $0 ? t=$ \qquad sec.
When is it positive?

17. (1 pt) Chap2/6_3.pg

An object moves along a horizontal coordinate line in such a way that its position at time t is specified by $s=t^{3}-15 t^{2}+$ $72 t+9$. Here s is measured in feet and t in seconds.
(a) When is the velocity $0 ? t=$ \qquad $<$ \qquad
(b) When is the velocity positive? $t<$ \qquad or $t>$
(c) When is the object moving to the left (that is, in the negative direction)? \qquad $<t<$ \qquad
(d) When is the acceleration positive? $t>$

18. (1 pt) Chap2/6-4.pg

From the top of a building 48 feet high, a ball is thrown upward with an initial velocity of 48 feet per second.
(a) When does it reaches its maximum height?
when $t=$ \qquad seconds
(b) What is its maximum height? \qquad feet
(c) When does it hit the ground? when $t=$ \qquad seconds
(d) With what speed does it hit the ground? negative
\qquad feet per second
(e) What is its acceleration at $t=2$? negative \qquad feet per second per second
19. (1 pt) Chap2/7.1.pg

Find $d y / d x$ if $3 x^{2} y-3 y=x^{3}-3$.

20. (1 pt) Chap2/7.2.pg

Find $d y / d x$ if $x^{2}+4 y^{2}=x+9$. \qquad
Hint: Leave y in your answer.

21. (1 pt) Chap2/7_3.pg

Find the equation of the tangent line to the curve $y^{3}-4 x y^{2}+$ $\cos 3 x y=2$ at the point $(0,1)$.
$y=$ \qquad $x+$ \qquad
22. (1 pt) Chap2/7_4.pg

If $y=2 x^{5 / 3}+\sqrt[5]{x^{2}+1}$, find $D_{x} y$.

23. (1 pt) Chap2/8_1.pg

A small balloon is released at a point 150 feet away from an observer, who is on level ground. If the balloon goes straight up at a rate of 4 feet per second, how fast is the distance from the observer to the balloon increasing when the balloon is 8 feet high?

> ___ feet per second

24. (1 pt) Chap2/8_2.pg

Water is pouring into a conical tank at the rate of 8 cubic feet per minute. If the height of the tank is 10 feet and the radius of its circular opening is 5 feet, how fast is the water level rising when the water is 4 feet deep?
\qquad inches per second

25. (1 pt) Chap2/8_3.pg

An airplane flying north at 800 miles per hour passes over a certain town at noon. A second airplane going east at 500 miles per hour is directly over the same town 15 minutes later. if the airplanes are flying at the same altitude, how fast will they be separating at 1:15 P.M.? miles per hour

Hsiang-Ping Huang

math1210spring2011-6
WeBWorK assignment number $5-1$ is due : 03/04/2011 at 10:00pm MST.
The primary purpose of WeBWorK is to let you know that you are getting the correct answer or to alert you if you are making some kind of mistake. Usually you can attempt a problem as many times as you want before the due date. However, if you are having trouble figuring out your error, you should consult the book, or ask a fellow student, one of the TA's or your professor for help. Don't spend a lot of time guessing - it's not very efficient or effective.

Give 4 or 5 significant digits for (floating point) numerical answers. For most problems when entering numerical answers, you can if you wish enter elementary expressions such as $2 \wedge 3$ instead of $8, \sin (3 * p i / 2)$ instead of $-1, e \wedge(\ln (2))$ instead of 2 , $(2+\tan (3)) *(4-\sin (5)) \wedge 6-7 / 8$ instead of 27620.3413 , etc. Here's the list of the functions which WeBWorK understands.

You can use the Feedback button on each problem page to send e-mail to the professors.

1. (1 pt) Chap2/8_4.pg

A woman standing on a cliff is watching a motorboat through a telescope as the boat approaches the shoreline directly below her. If the telescope is 100 feet above the water level and if the boat is approaching at 10 feet per seconds, at what rate is the angle of the telescope changing when the boat is 100 feet from the shore?
negative \qquad radian per second

2. (1 pt) Chap2/8_5.pg

As the sun sets behind a 120-foot building, the building's shadow grows. How fast is the shadow growing (in feet per second) when the sun's ray make an angle of $\pi / 3$ radians?

3. (1 pt) Chap2/8_6.pg

Webster City monitors the height of the water in its cylindrical water tank with an automatic recording device. Water is constantly pumped into the tank at the rate of 2500 cubic feet per hour. If the radius of the tank is 20 feet and the water level fell at the rate of 4 feet per hour at 7 A.M., at what rate was water being used exactly at that time?
cubic feet per hour

4. (1 pt) Chap2/9_1.pg

Find $d y$ if

(a) $y=5 x^{4}-5 x^{2}+3 x, d y=$ \qquad
(a) $y=\sqrt{5 x^{4}-5 x^{2}+3 x}, d y=\square d x$.
(a) $y=\sin \left(5 x^{4}-5 x^{2}+3 x\right), d y=\square d x$.

5. (1 pt) Chap2/9-2.pg

Suppose you need good approximations to $\sqrt{4.1}$ and $\sqrt{8.9}$, but your calculator has died. What might you do?
$\sqrt{4.1} \sim$ \qquad $\sqrt{8.9} \sim$
6. (1 pt) Chap2/9-3.pg

Use differentials to approximate the increase in the area of a soap bubble when its radius increases from 4 inches to 4.045 inches.
square inches

7. (1 pt) Chap2/9_4.pg

The side of a cube is measured as 11.4 centimeters with a possible error of ± 0.05 centimeter. Give an estimate for the possible error in the value of the volume of the cube.
\qquad cubic centimeters

8. (1 pt) Chap2/9_5.pg

Poiseuille's Law for blood flow says that the volume flowing through an artery is proportional to the fourth power of the radius, that is, $V=k R^{4}$. By how much must the radius be increased in order to increase the blood flow by 40% ?
$d R / R=$ \qquad \%

9. (1 pt) Chap2/9_6.pg

Find the linear approximation to $f(x)=1+\sin 6 x$ at $x=\pi / 2$. $y=$ \qquad $x+$ \qquad

