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1. Introduction.

A central problem in subfactor theory is the classification of inclusions
of II1 factors, N ⊆ M . An important invariant for such an inclusion is the
lattice of higher relative commutants, {M ′

i ∩Mj}i,j , known as the standard
invariant, contained in the Jones tower N ⊆ M ⊆ M1 · · ·. There are
several approaches to studying the standard invariant, namely paragroups
[3], λ-lattices [8], and planar algebras [6]. In the geometric framework of
planar algebras, the existence of rotation operators is apparent. This is
in contrast to the paragroup or λ-lattice setting where the existence of
rotation operators is by no means obvious. However, for the moment, the
planar algebra framework is restricted to the case then N ⊆ M is extremal,
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a condition that is reflected in the spherical invariance of the corresponding
planar algebra. For nonextremal inclusions N ⊆ M , it is not yet known
if there are corresponding pictorial descriptions. Our paper provides a
backbone to construct such “planar algebras”. We prove the higher relative
commutants of a subfactor inclusion are isomorphic to the cyclic tensor
products. These cyclic tensor products admit natural rotation operators
and other “planar” actions. In the future, we hope to use these actions to
extend the definition of planar algebras, via the λ-lattice description, to
the nonextremal setting.

The main result of this work is a structural result that decomposes a
factor M into elements in N ′ ∩M and commutators with a specific form:

Main Theorem. — Given a pair of II1 factors N ⊆ M , [M : N ] <

∞. There exists m ∈ N such that ∀z ∈ M with EN ′∩M (z) = 0, z is of the

form

z =
m∑

i=1

[ai, bi] where ai ∈ N, bi ∈ M,

‖ai‖ 6 2, ‖bi‖ 6
9
2
‖z‖.

The number m depends solely on the Jones index; and thus, is independent

of z. Here EN ′∩M denotes the trace-preserving conditional expectation.

This result can be viewed (by taking N = M) as an extension of a
result appearing in [4], that in a II1 factor, any element whose trace is zero
can be written as a finite sum of commutators.

The proof of the main theorem follows the arguments in [4]: con-
structing a series of commutators with the support of the commutators
being mutually orthogonal. In order for the series to converge, we need to
uniformly bound the norms of the commutators. In [4], the uniform bound
of norms heavily relies on the existence of spectral projections and the like,
which is no longer possible in our case. We use S. Popa’s relative Dixmier
property [9] (which requires the Jones index to be finite) to get the norm
estimate. Hence the series converges strongly.

In Section 2 we present the relative Dixmier property by S. Popa [10]
which is the main technical part in this paper. In Section 3, with the aid of
the relative Dixmier property, we prove the main theorem. In Section 4, we
define the cyclic tensor products. We use the main theorem to prove the
isomorphism between the graded vector space {N ′ ∩ Mn} and the cyclic
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tensor products. This isomorphism allows us to see clearly the existence of
rotation operators on {N ′ ∩Mn}.
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2. Preliminaries.

The following is the relative Dixmier property by S. Popa for any
inclusion of finite von Neumann algebras with finite Pimsner-Popa index.

Theorem 1 [9], [10]. — For any c > 1, any ε > 0, there exists m =
m(c, ε) ∈ N, such that given any inclusion N ⊆ M of finite von Neumann

algebras with a normal faithful conditional expectation EN : M → N

satisfying the Pimsner-Popa index IndEN 6 c and with a conditional

expectation EN ′∩M : M → N ′ ∩ M satisfying EN ′∩M (ab) = EN ′∩M (ba),
where a ∈ N, b ∈ M , we have that, ∀x ∈ M with EN ′∩M (x) = 0, there are

unitaries u1, · · · , um in N such that ‖
∑m

k=1
1
mukxu∗k‖ 6 ε‖x‖.

In [10] S. Popa proved the number m can be explicitly given.

The properties of conditional expectations (see for example [11]) are
vital and assumed without further reference in the paper. Let N ⊆ M be
a pair of finite von Neumann algebra with a faithful normal trace τ on M .
Let EN (resp. EN ′∩M ) be the trace preserving conditional expectation of
M onto N (resp N ′ ∩M). Define the II-norm on M with respect to τ by

‖x‖2 = τ(x∗x)
1
2 , ∀x ∈ M.

We observe that EN ′∩M (ab) = EN ′∩M (ba) and EN ′∩M ([a, b]) = 0 where
a ∈ N, b ∈ M . And it is a useful fact [2] that for a ∈ N,EN ′∩M (a) = τ(a)
where τ denotes the trace of M .

Proof. — For a ∈ N , b ∈ N ′ ∩M ,

τ(EN ′∩M (a)b) = τ(ab) = τ(aEN (b)) = τ(a)τ(b).
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Note that EN (b) ∈ N ′ ∩ N = C. Again EN is the trace-preserving
conditional expectation [2]. tu

3. Main theorem.

In this section we use the relative Dixmier property in Section 2 to
prove the following theorem.

Main Theorem. — Given a pair of II1 factors N ⊆ M , [M : N ] <

∞. There exists m ∈ N such that ∀z ∈ M with EN ′∩M (z) = 0, z is of the

form

z =
m∑

i=1

[ai, bi] where ai ∈ N, bi ∈ M.

‖ai‖ 6 2, ‖bi‖ 6
9
2
‖z‖.

The number m depends solely on the Jones index; and thus, is independent

of z. Here EN ′∩M denotes the trace-preserving conditional expectation.

3.1. Reduction to the left upper block.

This subsection is about reducing to a special case so that we can
apply the techniques in [4]. First we can reduce the main theorem to the
case where z is supported by a projection which is sufficiently small in the
following sense:

Lemma 1. — For all z ∈ M with EN ′∩M (z) = 0, there exist

mutually orthogonal projections p, q in N and elements z1, z−1 in M , such

that

z1 = pz1p, EN ′∩M (z1) = 0, τ(p) =
1
2
, ‖z1‖ 6 3‖z‖

z−1 = qz−1q, EN ′∩M (z−1) = 0, τ(q) =
1
2
, ‖z−1‖ 6 3‖z‖

and that z − (z1 + z−1) is the sum of three commutators of the form [x, y]
with x ∈ N , y ∈ M , ‖x‖ 6 1, and ‖y‖ 6 2‖z‖.

Proof. — Let p, q be two mutually orthogonal projections in N with
τ(p) = τ(q) = 1

2 . Setting

z1 = p(z − 2EN ′∩M (pz))p, z−1 = q(z − 2EN ′∩M (qz))q
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we have

z − (z1 + z−1) = pzq + qzp + 2pEN ′∩M (pz) + 2qEN ′∩M (qz).

Let w be a partial isometry in N with q as the initial projection and p as
the final projection. Then

pzq = [p, zq], qzp = [q, zp]

2pEN ′∩M (pz) + 2qEN ′∩M (qz) = 2pEN ′∩M (pz)− 2qEN ′∩M (pz)

= 2ww∗EN ′∩M (pz)− 2EN ′∩M (pz)w∗w

= [w, 2EN ′∩M (pz)w∗].

Thus z− (z1 +z−1) is the sum of three commutators with the special form.
Now we proceed to check the properties of z1, z−1, x’s and y’s:

EN ′∩M (z1) = EN ′∩M (p(z − 2EN ′∩M (pz)))

= EN ′∩M (pz)− 2EN ′∩M (p)EN ′∩M (pz) = 0,

since EN ′∩M (p) = τ(p) = 1
2 .

‖z1‖ 6 ‖z‖ + 2‖EN ′∩M (pzp)‖ 6 3‖z‖, because of the following: we
can write z = z1 + iz2, where z1, z2 are self adjoint and have norms less
than or equal to ‖z1‖:

EN ′∩M (pz1p) 6 ‖z1‖EN ′∩M (p) =
1
2
‖z1‖ 6

1
2
‖z‖.

EN ′∩M (pz2p) 6 ‖z2‖EN ′∩M (p) =
1
2
‖z2‖ 6

1
2
‖z‖.

In the same manner we get ‖z−1‖ 6 3‖z‖.

For the x’s and y’s part, the only thing to check is

‖2EN ′∩M (pz)w∗‖ 6 2‖z‖.

This follows from the above. tu

From now on, we concentrate on showing z1 is a finite sum of
commutators with the specific form; while z1, as in the lemma, is in M ,
satisfying EN ′∩M (z1) = 0, and z1 = pz1p. We take p1 = p, a projection in
N with τ(p1) = 1

2 . Likewise the case of z−1 follows.

3.2. Cutting into diagonal blocks.

This subsection is about setting up the environment we work on.
Take p1 as the first term of the sequence (pn)n∈N of mutually orthogonal
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projections in N , with τ(pn) = 2−n for all n ∈ N. we get that
∑

n∈N pn = 1
(the sum converges strongly). For all n ∈ N, we denote Mpn

(resp.
Mpn+pn+1) as the reduced algebra of M by pn (resp. pn + pn+1). Here
the reduced algebra of M by a projection pn in M is the von Neumann
subalgebra Mpn

= {x ∈ M,x = pnxpn} of M . Note the unit of the algebra
Mpn

, which is pn, is in general distinct from 1 ∈ M . Similarly, we can define
Npn

and Npn+pn+1 .

Define EpnNpn
′∩pnMpn

: pnMpn → pnNpn
′ ∩ pnMpn the conditional

expectation by

EpnNpn
′∩pnMpn

(x) = τ(pn)−1pnEN ′∩M (x) for x ∈ pnMpn.

Note that pnNpn
′ ∩ pnMpn = pnN ′ ∩ Mpn because pn ∈ (N ′ ∩M)′ ∩M

(see [7]). We have that

EpnNpn
′∩pnMpn

(anbn) = EpnNpn
′∩pnMpn

(bnan),

where an ∈ pnNpn, bn ∈ pnMpn.

Observe that pnNpn ⊆ pnMpn is an inclusion of II1 factors with the
conditional expectation EpnNpn

:= EN |pnMpn
, inherited from the inclusion

N ⊆ M ,

IndEpnNpn
(pnMpn → pnNpn) = [pnMpn : pnNpn] 6 [M : N ].

Remark. — These conditional expectations are τ -preserving.

3.3. Transfer from the upper left to the lower right.

This subsection is about constructing the commutators via transfer-
ring as in [4]. The essence of our argument, inspired by [4], consists of
constructing a sequence (zpn)n∈N where each zn is in a proper reduced
algebra Mpn

of M . Each zn is supported by pn, which is orthogonal to
each other. {zn}n∈N is required to be bounded above in norm. Therefore,
zn goes to zero in the strong operator topology. One important feature is
that the conditional expectation ENpn

′∩Mpn
of zn is zero. We show that

zn − zn+1 equals to a fixed number of commutators of the form [xn, yn]
where xn ∈ Npn+pn+1 , yn ∈ Mpn+pn+1 . Thus xn and yn are supported by
pn + pn+1. It is declared that xn (resp. yn) has a common upper bound in
norm for all n. Similarly xn, yn tends to zero strongly as n →∞. We form
two sets for xn’s (resp. yn’s): Xodd = {x2n−1, n ∈ N}, Xeven = {x2n, n ∈ N}
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(resp. Yodd, Yeven). Every element of Xodd is supported by a mutually or-
thogonal projection. In a word these elements are independently work-
ing algebraically in their blocks. From the global view, a unique element
xodd =

∑∞
n=1 x2n−1 can represent the behaviors of all these elements. That

is what we are seeking for. It also holds for xeven, yodd, yeven. We use them
to construct the commutators and show the latter do have the wanted
properties. This completes the line of the proof.

Remark. — By the proceeding corollary in Section 2 and the fact
that [Mpn , Npn ] 6 [M,N ], there exists m = m([M : N ], 1

2 ), ∀n,∀xn ∈ Mpn ,
ENpn

′∩Mpn
(xn) = 0, there exist un,1, · · · , un,m ∈ U(Npn

) such that ‖
∑m

k=1
1
mun,kxnu∗n,k‖ 6 1

2‖xn‖. Please note that by the definition of ENpn
′∩Mpn

,
and viewing xn as an element of Mpn ⊂ M , the condition EN ′∩M (xn) = 0
ensures us that ENpn

′∩Mpn
(xn) = 0.

3.3.1. Cutting the norm by half. Let us recollect that z1 =
p1z1p1 ∈ Mp1 ⊂ M , EN ′∩M (z1) = 0, and τ(p1) = 1

2 . Therefore
ENp1

′∩Mp1
(z1) = 0. Accordingly

∃u1,1, · · · , u1,m ∈ U(Np1) ⊂ N

such that

if we define z′1 =
1
m

m∑
k=1

u1,kz1u1,k
∗,

‖z′1‖ 6
1
2
‖z1‖.

It is observed that z′1 is supported in Mp1 and EN ′∩M (z′1) = 0 and z1 − z′1
is the sum of m- commutators in the desired form,

z1 − z′1 =
m∑

k=1

[ 1
m

u1,k
∗, u1,kz1

]
.

where 1
mu1,k

∗ ∈ Np1 ⊆ N, ‖ 1
mu1,k

∗‖ 6 1
m ,

u1,kz1 ∈ Mp1 ⊆ M, ‖u1,kz1‖ 6 ‖z1‖.

3.3.2. Moving down to the lower right. Find p′1 and p′′1 two
mutually orthogonal equivalent projections in Np1 , with the sum equal to
p1. Get w′

1 and w′′
1 , partial isometries in Np1+p2 with

w′
1
∗
w′

1 = p′1, w′′
1
∗
w′′

1 = p′′1 , w′
1w

′
1
∗ = p2 = w′′

1w′′
1
∗

and define
z2 = w′

1z
′
1w

′
1
∗ + w′′

1 z′1w
′′
1
∗
.
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It is clear that z2 is supported in Mp2 with

EN ′∩M (z2) = EN ′∩M ((p′1 + p′′1)z′1) = EN ′∩M (p1z
′
1) = 0,

‖z2‖ 6 2‖z′1‖ 6 ‖z1‖.

We want to show that z′1− z2 is a finite sum of commutators in the desired
form in Mp1+p2 .

3.3.3. Finding the specific commutators. Consider the partial
isometry w1 = w′

1
∗
w′′

1 ∈ Np1 ⊆ Np1+p2 with the initial projection p′1 and
the final projection p′′1 . And define

x1 = z′1w1 + w1
∗z′1w

′
1
∗ + z′1w

′′
1
∗ ∈ Np1+p2 , y1 = w1

∗ + w′′
1 ∈ Np1+p2 .

It is easy to see that ‖x1‖ 6 3‖z′1‖ 6 3
2‖z1‖, and ‖y1‖ 6 2.

Lemma 2.

z′1 = z2 + [−y1, x1] + [w′′
1
∗
, w′

1z
′
1w

′′
1
∗] + [−w′′

1 , w′′
1 z′1w

′
1
∗],

w′
1z
′
1w

′′
1
∗ ∈ Np1+p2 , w′′

1 z′1w
′
1
∗ ∈ Np1+p2 .

Note that the norm of either is less than the norm of z′1.

Proof. — It is noted that the calculation can be simplified in the
matricial form relative to p′1, p

′′
1 , p2 and the associated partial isometries:

set

p′1 =

 1 0 0
0 0 0
0 0 0

 , p′′1 =

 0 0 0
0 1 0
0 0 0

 , p2 =

 0 0 0
0 0 0
0 0 1


w1 =

 0 1 0
0 0 0
0 0 0

 , w′
1 =

 0 0 0
0 0 0
1 0 0

 , w′′
1 =

 0 0 0
0 0 0
0 1 0

 .

Then

z′1 =

 a b 0
c d 0
0 0 0

 , z2 =

 0 0 0
0 0 0
0 0 a + d

 .

x1 =

 0 a b

0 c a + d

0 0 0

 , y1 =

 0 0 0
1 0 0
0 1 0

 .
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w′
1z
′
1w

′′
1
∗ =

 0 0 0
0 0 0
0 0 b

 , w′′
1 z′1w

′
1
∗ =

 0 0 0
0 0 0
0 0 c

 .

And

[−y1, x1] =

 a b 0
c a + d 0
0 0 0

−

 0 0 0
0 a b

0 c a + d

 =

 a b 0
c d −b

0 −c −(a + d)


[w′′

1
∗
, w′

1z
′
1w

′′
1
∗] =

 0 0 0
0 0 b

0 0 0


[−w′′

1 , w′′
1 z′1w

′
1
∗] =

 0 0 0
0 0 0
0 c 0

 .

tu

3.3.4. Constructing the sequence. Then we obtain step by step
the sequences (zn)n∈N, (un,1), · · · , (un,m),

(z′n), (p′n), (p′′n), (w′
n), (w′′

n), (wn), (xn), (yn) in M satisfying

zn, z′n ∈ Mpn
, un,1, · · · , un,m unitaries ∈ Npn

,

EN ′∩M (zn) = EN ′∩M (z′n) = 0,

zn = z′n +
∑m

k=1

[
1
mun,k

∗, un,kzn

]
,

‖z′n‖ 6 1
2‖zn‖,

p′n, p′′n projections ∈ Npn
, w′

n, w′′
n, wn partial isometries ∈ Npn+pn+1 ,

p′n + p′′n = pn, w′
n
∗
w′

n = p′n, w′′
n
∗
w′′

n = p′′n, w′
nw′

n
∗ = w′′

nw′′
n
∗ = pn+1,

wn = w′
n
∗
w′′

n,

zn+1 = w′
nz′nw′

n
∗ + w′′

nz′nw′′
n
∗,

‖zn+1‖ 6 2‖z′n‖ 6 ‖zn‖

EN ′∩M (zn+1) = 0

z′n = zn+1 + [−yn, xn] + [w′′
n
∗
, w′

nz′nw′′
n
∗] + [−w′′

n, w′′
nz′nw′

n
∗],

xn = z′nwn + wn
∗z′nw′

n
∗ + z′nw′′

n
∗, yn = wn

∗ + w′′
n,

xn ∈ Mpn+pn+1 , yn ∈ Npn+pn+1 .

Note that the sequence (‖zn‖)n∈N is bounded and the construction
implies that ‖xn‖ 6 3

2‖zn‖ 6 3
2‖z1‖ 6 9

2‖z‖, ‖yn‖ 6 2 for all n ∈ N.
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The terms of the sequence (x2k)k∈N are in the respective reduced algebras
of M supported by the projections (p2k + p2k+1)k∈N which are mutually
orthogonal; as they are uniformly bounded, the series

∑∞
k=1 x2k converge

for the strong operator topology to an element whose uniform norm is equal
to supk ‖x2k‖ 6 3

2‖z1‖ 6 9
2‖z‖. Similarly, we can define:

uieven =
∞∑

k=1

1
m

u2k,i
∗ ∈ N ; uiodd =

∞∑
k=1

1
m

u2k−1,i
∗ ∈ N

vieven =
∞∑

k=1

u2k,iz2k
′ ∈ M ; viodd =

∞∑
k=1

u2k−1,iz2k−1
′ ∈ M

xeven =
∞∑

k=1

x2k ∈ M ; xodd =
∞∑

k=1

x2k−1 ∈ M

yeven =
∞∑

k=1

y2k ∈ N ; yodd =
∞∑

k=1

y2k−1 ∈ N

reven =
∞∑

k=1

w2k
′′ ∈ N ; rodd =

∞∑
k=1

w2k−1
′′ ∈ N

seven =
∞∑

k=1

w2k
′z2k

′w2k
′′∗ ∈ M ; sodd =

∞∑
k=1

w2k−1
′z2k−1

′w2k−1
′∗ ∈ M

teven =
∞∑

k=1

w2k
′′z2k

′w2k
′∗ ∈ M ; todd =

∞∑
k=1

w2k−1
′′z2k−1

′w2k−1
′∗∈M.

Then we have

z1 =
∞∑

n=1

(zn − zn+1) =
m∑

i=1

([uieven , vieven ] + [uiodd , viodd ])

+ [−yeven, xeven] + [−yodd, xodd]

+ [reven
∗, seven] + [rodd

∗, sodd]

+ [−reven, teven] + [−rodd, todd]

with
‖uieven‖, ‖uiodd‖ 6

1
m

, ‖vieven‖, ‖viodd‖ 6 ‖z1‖ 6 3‖z‖,

‖xeven‖, ‖xodd‖ 6
3
2
‖z1‖ 6

9
2
‖z‖, ‖yeven‖, ‖yodd‖ 6 2,

‖reven‖, ‖rodd‖ 6 1,

‖seven‖, ‖sodd‖ 6
1
2
‖z1‖ 6

3
2
‖z‖,
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‖teven‖, ‖todd‖ 6
1
2
‖z1‖ 6

3
2
‖z‖.

We have therefore showed the following statement, combined with the
lemma in Subsection 3.1: given a pair of II1 factors N ⊆ M with finite Jones
index, and z is an element of M . The following conditions are equivalent:

(1) EN ′∩M (z) = 0;

(2) z is a sum of 2m + 9 commutators of the form [a, b] where
a ∈ N, b ∈ M . Here m, giving in [10] depends solely on the index.

4. Application.

In this section we prove the vector space isomorphism between the
relative commutants and the cyclic tensor products. We also show the
existence of the rotations operators on them.

Theorem 2 [5]. — Let N ⊆ M be an inclusion of II1 factors with

finite Jones index. The tower of II1 factors Mn is defined by M−1 = N ,

M0 = M , Mn = 〈Mn−1, en〉 where en is the Jones projection of Mn onto

Mn−1. We have Mn ' M⊗N M⊗N ⊗N · · ·⊗N M (n+1-terms) as a M−M

(N −N) bimodule.

Proof. — The proof can be found in [5] and is included here for the
convenience of the reader.

Claim. — The map π : M⊗NM → M1 defined by π(x⊗Ny) = xe1y

is a M −M bimodule isomorphism.

The 2-sided ideal
∑n

k=1 xke1yk is equal to M1, since M1 is alge-
braically simple. This proves the map is onto. We need to prove it is injective
too. Because [M : N ] < ∞, we have a finite orthonormal basis {mk}k for
N ⊆ M . Take z in M ⊗N M . It is easily seen that z =

∑
k,l mkzk,l ⊗N m∗

l ,
where zk,l is in N ,

e1m
∗
pπ(z)mqe1 =

∑
k,l

e1m
∗
pmkzk,le1m

∗
l e1 = fpzp,qfqe1 = 0, ∀p, q,

where EN (m∗
kmk) = fk ∈ P(N) and mk = mkfk,∑
p,q

mpzp,q ⊗N m∗
q =

∑
mpfpzp,qfq ⊗N m∗

q = 0.
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The rest is an induction process:

Mn = Mn−1 ⊗Mn−2 Mn−1

= (Mn−2 ⊗Mn−3 Mn−2)⊗Mn−2 (Mn−2 ⊗Mn−3 Mn−2)

= Mn−2 ⊗Mn−3 Mn−2 ⊗Mn−3 Mn−2

= · · ·
tu

Corollary [1]. — Let N ⊆ M be an inclusion of II1 factors with

finite Jones index. Then M = (N ′ ∩M) ⊕ [N,M ] as a vector space. Here

[N,M ] denotes the vector space spanned by the commutators of the form

[a, b] where a ∈ N , b ∈ Mn. And the (n + 1)th cyclic tensor product Vn+1,

defined to be the quotient space of M ⊗N M ⊗N · · · ⊗N M (n + 1-terms)

by the subspace generated by the vectors of the form [a, bn] where a ∈ N ,

bn ∈ Mn, is isomorphic to the relative commutant N ′ ∩ Mn, where the

tower of II1 factors is defined by M0 = M , Mn = 〈Mn−1, en〉.

Proof. — The main theorem showed that M = (N ′ ∩M) + [N,M ].
And it is obvious that (N ′ ∩ M) ∩ [N,M ] = 0. This gives the first half
of the corollary. Now [Mn : N ] = [M : N ]n+1 < ∞. Therefore we have
Mn = (N ′ ∩ Mn) ⊕ [N,Mn] as a vector space. By the above theorem,
Mn ' M ⊗N M ⊗N · · · ⊗N M (n + 1 terms) as an N −N bimodule. And
the cyclic tensor product Vn+1 is isomorphic to Mn/[N,Mn] ' N ′ ∩Mn as
a vector space. tu

Under the above isomorphism, we can consider all the N−N bimodule
maps on M⊗N · · ·⊗N M (n+1 terms). These maps preserve the N - central
vectors Vn+1 and hence have their counterparts on N ′∩Mn. However there
is another operator, the rotation operator, which does not arise in this
manner. We define this operator, ρ̃n : Vn+1 → Vn+1 by

ρ̃n([x1, x2, · · · , xn+1]) = [x2, · · · , xn+1, x1],

where [x1, x2, · · · , xn+1] represents an equivalence class in M⊗N · · ·⊗N M .

This map is well defined because

[x2, · · · , xn+1, x1n] ≡ [nx2, · · ·xn+1, x1] (mod by [N,Mn]);

[x2, · · · , xn+1n, x1] ≡ [x2, · · · , xn+1, nx1],

where x1, x2, · · · , xn+1 ∈ M and n ∈ N . There is a natural multiplication
operators, ⊗N , on the graded cyclic tensor product spaces. The multipli-
cation operator on the relative commutants can be recovered via the above
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maps. Equipped with all the maps mentioned above, it should be possible
to build planar algebras within the frames of cyclic tensor product spaces.
The existence of rotation operators is an immediate advantage.
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