
HIDDEN STRUCTURE AND COMPUTATION - 2021 PRE-REU

FOURIER SERIES AND THE BASEL PROBLEM (2021-06-24)

1. The Basel problem

Exercise 1.0.1. Show that ∑∞n=1 1/n2 converges.

But what number does it converge to? Pietro Mengoli asked this in 1650, but it took until 1734
before it was solved by Leonhard Euler:

∞
∑
n=1

1/n2 = (... drumroll ...) π2/6

Today we’ll explain one way to make this computation using Fourier series.

1.1. Fourier series. If V is a Euclidean space with inner product ⟨, ⟩, recall that a set of vectors
v⃗1, . . . v⃗n are orthonormal if

⟨v⃗i, v⃗j⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j
0 if i ≠ j.

Example 1.1.1. The standard basis vectors e⃗1, . . . e⃗n are orthonormal vectors in Rn with the
standard Euclidean inner product ⟨v⃗, w⃗⟩ = v⃗ ⋅ w⃗.

Exercise 1.1.2. If V is a Euclidean space with inner product ⟨, ⟩ and f⃗1, . . . , f⃗n are an orthonormal
basis, show that for any v⃗ ∈ V ,

[v⃗]f⃗! =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⟨v⃗, f⃗1⟩
⟨v⃗, f⃗2⟩
. . .

⟨v⃗, f⃗n⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We now consider the Euclidean space C0([−π,π]) of continuous real valued functions on the

closed interval [−π,π] equipped with the inner product

⟨f(x), g(x)⟩ = 1

π
∫

π

−π
f(x)g(x)dx

Exercise 1.1.3. Use CoCalc to convince yourself that the functions

1√
2
, cos(x), sin(x), cos(2x), sin(2x), cos(3x), sin(3x), . . .

are orthonormal for this inner product. You will verify this rigorously in Exercise 1.1.8 if you get
there, but for now take it as a fact.

There are some subtleties in making this statement precise for an infinite dimensional vector
space, but these are essentially an orthonormal basis.

In particular, we have

Fact 1.1.4. For any f(x) ∈ C0([−π,π]), we have

f(x) = ⟨f(x), 1√
2
⟩ 1√

2
+∑

n>0
⟨f(x), cos(nx)⟩ cos(nx) +∑

n>0
⟨f(x), sin(nx)⟩ sin(nx)

This is the Fourier series expansion for f(x).
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Exercise 1.1.5. What does this fact have to do with Exercise 1.1.2?

Exercise 1.1.6. Compute

(1) ⟨x2, 1√
2
⟩

(2) ⟨x2, sin(nx)⟩ for n > 0. Hint: sin(−x) = − sin(x).
(3) ⟨x2, cos(nx)⟩ for n > 0. Hint: integration by parts twice.

Exercise 1.1.7. Combine the previous exercise and Fact 1.1.4 to obtain a Fourier series expansion
for x2. Then solve the Basel problem by evaluating at x = π.

Exercise 1.1.8. We now will verify that the functions from Exercise 1.1.3 are really orthonormal.
Recall the complex number i is a square root of −1, i.e. i2 = −1.

(1) Use the Taylor series for ex, sin(x), and cos(x) to verify the identity

eix = cos(x) + i sin(x)
(2) Show

∫
π

−π
einx =

⎧⎪⎪⎨⎪⎪⎩

0 for n ≠ 0
2π for n = 0.

Here to integrate a complex valued function you integrate the real and imaginary parts
separately.

(3) The following identity holds still for complex numbers z1 and z2:

ez1+z2 = ez1ez2 .
Use this to show that the functions 1√

2
, cos(nx) for n > 0, and sin(nx) for n > 0 are

orthonormal for the inner product above as verified experimentally in Exercise 1.1.3.
Hint: For m,n > 0 write e±imxe±inx in two different ways and use that cos(−y) = cos(y),
sin(−y) = − sin(y) to cancel out and get the terms you want in the real and imaginary places.

1.2. Challenge problem. Remember this is supposed to be hard! In particular, don’t feel bad
if you spend hours thinking about one and don’t solve it, but also don’t let this warning stop you
from trying!

Exercise (The density of squarefree integers and polynomials). Compute “the probability that a
randomly selected integer is squarefree.” Here an integer is squarefree if any prime appears in its
factorization at most once – for example, 35 = (5)(7) is squarefree, but 98 = (2)(72) is not.

(1) Find a way to make precise sense of the quantity in quotation marks.
(2) Come up with a heuristic answer. What does it have to do with the Basel problem?
(3) ! Check your guess numerically using CoCalc
(4) Turn the heuristic into a proof.
(5) What if we consider a random polynomial in Fp[x] instead of a random integer? Repeat

the steps above, but ignore the Basel problem.
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