HIDDEN STRUCTURE AND COMPUTATION - 2021 PRE-REU ABSTRACT VECTOR SPACES (2021-06-22)

1. Abstract vector spaces

Definition 1.0.1. A vector space V over a field \mathbb{K} (or, a \mathbb{K}-vector space) is a place where we can:
(1) Add two vectors \vec{v}_{1} and \vec{v}_{2} in V to get a third vector, $\vec{v}_{1}+\vec{v}_{2}$ in V.
(2) Multiply a vector $\vec{v} \in V$ by a scalar $\lambda \in \mathbb{K}$ to get a new vector $\lambda \vec{v} \in V$.

Addition should satisfy all the normal rules, and multiplication by a scalar distributes over addition of vectors

$$
\lambda\left(\vec{v}_{1}+\vec{v}_{2}\right)=\lambda \vec{v}_{1}+\lambda \vec{v}_{2} .
$$

In particular, we have a zero vector $\overrightarrow{0} \in V$ such that $\vec{v}+\overrightarrow{0}=\overrightarrow{0}+\vec{v}=\vec{v}$ for any vector $\vec{v} \in V$. Moreover, we have, for any $\vec{v} \in V$,
(1) $1 \vec{v}=\vec{v}$
(2) $0 \vec{v}=\overrightarrow{0}$

Example 1.0.2.

(1) The set of height n column vectors \mathbb{K}^{n} is a \mathbb{K}-vector space.
(2) More generally, the set of all $m \times n$ matrices with entries in \mathbb{K} is a vector space over \mathbb{K}. The column vectors \mathbb{K}^{n} are the same as $n \times 1$ matrices over \mathbb{K}.
(3) The set $\mathbb{K}[x]$ of polynomials in the variable x with coefficients in \mathbb{K} is a \mathbb{K}-vector space.
(4) The set of infinite sequences $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ of real numbers is a vector space over \mathbb{R} :

$$
\begin{aligned}
\left(a_{1}, a_{2}, a_{3}, \ldots\right)+\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, \ldots\right) & =\left(a_{1}+a_{1}^{\prime}, a_{2}+a_{2}^{\prime}, a_{3}+a_{3}^{\prime}, \ldots\right), \\
\lambda\left(a_{1}, a_{2}, a_{3}, \ldots\right) & =\left(\lambda a_{1}, \lambda a_{2}, \lambda a_{3}, \ldots\right) .
\end{aligned}
$$

(5) The set $C^{0}([0,1])$ of continuous real-valued functions on the closed interval $[0,1]$ is a vector space over \mathbb{R} :

$$
(f+g)(x)=f(x)+g(x), \quad(\lambda f)(x)=\lambda f(x) .
$$

(6) The field \mathbb{C} is also a vector space over \mathbb{R}.
(7) The fields \mathbb{C} and \mathbb{R} are also vector spaces over \mathbb{Q}.

1.1. Subspaces.

Definition 1.1.1. If V is a vector space and $W \subset V$, then W is a subspace if W contains the zero vector is closed under addition and scalar multiplication. A subspace of a vector space is itself a vector space!

Example 1.1.2.

(1) The set of all column vectors $\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]^{t}$ such $\sum_{i=1}^{n} a_{i}=0$ is a subspace of \mathbb{K}^{n}.
(2) If \vec{v} is a vector in \mathbb{K}^{n}, the set of all multiples $\lambda \vec{v}$ for $\lambda \in \mathbb{K}$ is a subspace.
(3) The set $\mathbb{K}[x]_{\leq n}$ of all polynomials with coefficients in \mathbb{K} of degree at most n is a subspace of the \mathbb{K}-vector space $\mathbb{K}[x]$
(4) If we view \mathbb{C} and \mathbb{R} as \mathbb{Q}-vector spaces, then \mathbb{R} is a subspace of \mathbb{C}.

Definition 1.1.3. If S is a set of vectors in a vector space V, the span of S, Span S, is the set of all linear combinations of the vectors in S. It is a subspace of V.

Example 1.1.4. If $S=\left\{1, x^{2}, x^{4}, x^{6}, x^{8}, \ldots\right\} \subset \mathbb{K}[x]$, then the span of S is the subspace of polynomials with terms of only even degree.

Definition 1.1.5. A set of vectors S is called linearly dependent if there are vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in S$ and scalars a_{1}, \ldots, a_{k} not all zero such that

$$
a_{1} \vec{v}_{1}+\ldots+a_{k} \vec{v}_{k}=\overrightarrow{0} .
$$

If no such combination exists, the vectors in S are called linearly independent.

1.2. Linear transformations.

Definition 1.2.1. A map $T: V \rightarrow W$ between \mathbb{K} vector spaces V and W is a linear transformation if
(1) $T\left(\vec{v}_{1}+\vec{v}_{2}\right)=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)$ for all $\vec{v}_{1}, \vec{v}_{2} \in V$.
(2) $T(\lambda \vec{v})=\lambda T(\vec{v})$ for all $\vec{v} \in V, \lambda \in \mathbb{K}$.

Example 1.2.2. Suppose $f(x) \in \mathbb{R}[x]$. Then multiplication by f is a linear transformation

$$
T: \mathbb{R}[x] \rightarrow \mathbb{R}[x], g(x) \mapsto g(x) f(x) .
$$

Definition 1.2.3. For $T: V \rightarrow W$ a linear transformation,
(1) The kernel of T, written $\operatorname{ker} T$, is the set of all vectors $\vec{v} \in V$ such that $T(\vec{v})=\overrightarrow{0}$. It is a subspace of V.
(2) The image of T, written Image T, is the set of

$$
\{T(\vec{v}) \mid \vec{v} \in V\} \subset W .
$$

It is a subspace of W.
Definition 1.2.4. If V is a vector space and $T: V \rightarrow V$ is a linear transformation, a non-zero vector $\vec{v} \in V$ is an eigenvector for T with eigenvalue $\lambda \in \mathbb{K}$ if $T(\vec{v})=\lambda \vec{v}$. The eigenvalues of T are the $\lambda \in \mathbb{K}$ such that T admits an eigenvector with eigenvalue λ.

Exercise 1.2.5. Consider the left-shift operator T on the vector space of sequences of real numbers

$$
T\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{2}, a_{3}, a_{4}, \ldots\right) .
$$

1. What are the eigenvalues of T ? For each eigenvalue, what are the eigenvectors?
2. What are the eigenvalues of T if I instead consider it as a linear transformation on the vector space of convergent sequences of real numbers?

Exercise 1.2.6. Let $C^{\infty}(\mathbb{R})$ be the vector space of infinitely differentiable real valued functions on the real line. We define a linear transformation T of $C^{\infty}(\mathbb{R})$ by differentiation: $T(f)=\frac{d f}{d x}$. What are the eigenvalues of T ?

1.3. Bases and dimension.

Definition 1.3.1. A basis of a vector space V is a linearly independent set of vectors S in V such that $\operatorname{Span}(S)=V$.
Fact 1.3.2. Any vector spaces admits a basis, and that any two bases can be put in bijection (this is a generalization to possibly infinite sets of having the same size)
Definition 1.3.3. The dimension of a \mathbb{K}-vector space V is the cardinality of a basis. If you don't know what cardinality means, don't worry about it for now: We say that V is finite dimensional if it has a basis consisting of finitely many vectors, and in that case, the dimension is the number of vectors in any basis. We write the dimension as $\operatorname{dim} V$ or $\operatorname{dim}_{\mathbb{K}} V$.

Definition 1.3.4. If V is a finite dimensional vector space and $\vec{f}_{1}, \ldots, \vec{f}_{n}$ is a basis (so $n=\operatorname{dim} V$), then we write

$$
[\vec{v}]_{f_{\bullet}}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \text { where } \vec{v}=a_{1} \vec{f}_{1}+\ldots a_{n} \vec{f}_{n}
$$

Definition 1.3.5. If $T: V \rightarrow W$ is a map of finite dimensional vector spaces, $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is a basis of $V, \vec{w}_{1}, \ldots, \vec{w}_{n}$ is a basis of W, we write

$$
\vec{w}_{\bullet}[T]_{\vec{v}_{\bullet}}
$$

for the $m \times n$ matrix $(m=\operatorname{dim} W, n=\operatorname{dim} V)$

$$
\vec{w}_{\bullet}[T]_{\vec{v}_{\bullet}}=\left[\begin{array}{llll}
{\left[T\left(\vec{v}_{1}\right)\right]_{\vec{w}_{\bullet}}} & {\left[\begin{array}{lll}
\left.T\left(\vec{v}_{2}\right)\right]_{\vec{w}_{\bullet}} & \cdots & {\left[T\left(\vec{v}_{n}\right)\right]_{\vec{w}_{\bullet}}}
\end{array}\right]}
\end{array}\right.
$$

If $T: V \rightarrow V$, then as before we write

$$
[T]_{\vec{v}_{\bullet}}=\vec{v}_{\bullet}[T]_{\vec{v}_{\bullet}}
$$

Fact 1.3.6. For any $\vec{v} \in V$,

$$
\vec{w}_{\bullet}[T]_{\vec{v}_{\bullet}}[\vec{v}]_{\vec{v}_{\bullet}}=[T(\vec{v})]_{\vec{w}_{\bullet}} .
$$

Definition 1.3.7. A linear transformation $T: V \rightarrow V$ diagonalizable if there is a basis of V consisting of eigenvectors for T.

Fact 1.3.8 (Rank + Nullity). If V and W are finite dimensional vector spaces, then

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Image} T+\operatorname{dim} \operatorname{ker} T
$$

Fact 1.3 .9 (Ranks of matrices revisited). For A an $m \times n$ matrix with entries in a field \mathbb{K}, the following quantities are equal:
(1) The rank of A
(2) The number of leading ones in the reduced row echelon form of A
(3) The dimension of the span of the columns of A.
(4) The dimension of the span of the rows of A.
(5) $n-\operatorname{dim} \operatorname{ker} A$.

2. PROBLEMS

2.1. Vector spaces, subspaces, and linear transformations.

Exercise 2.1.1.

(1) Show that the set of polynomials with real coefficients that have a root at $x=5$ is a subspace of $\mathbb{R}[x]$.
(2) Show that the set of all convergent sequences of real numbers is a subspace of the vector space of all sequences of real numbers.
(3) The set $C^{1}([0,1])$ of differentiable real-valued functions on the closed interval $[0,1]$ is a subspace of the real vector space $C^{0}([0,1])$.

Exercise 2.1.2. Consider the vector space $\mathbb{R}[x]_{<n}$ of polynomials of degree less than n. For any $a \in \mathbb{R}$, show that

$$
1,(x-a),(x-a)^{2}, \ldots,(x-a)^{n-1}
$$

are a basis. Given $f(x) \in \mathbb{R}[x]_{\leq n}$, use calculus to compute

$$
[f(x)]_{\left\{1,(x-a),(x-a)^{2}, \ldots,(x-a)^{n-1}\right\}}
$$

Exercise 2.1.3.
(1) Show that $\sin (x)$ and $\cos (x)$ are linearly independent vectors in the \mathbb{R}-vector space of infinitely differentiable real-valued functions on the real line.
(2) Show that they are both eigenvectors with eigenvalue -1 for the linear transformation.

$$
T(f)=\frac{d^{2} f}{(d x)^{2}}
$$

(3) The -1-eigenspace is the set of all eigenvectors with eigenvalue -1 plus the zero vector. Show this is a subspace, and that it is is preserved by the linear transformation $\frac{d}{d x}$.
(4) It can be shown that $\cos (x)$ and $\sin (X)$ are a basis for this eigenspace, that is, that any other eigenvector with eigenvalue -1 is of the form

$$
a \cos (x)+b \sin (x)
$$

for real numbers a and b. Given this, compute the matrix of $\frac{d}{d x}$ in the basis $\sin (x), \cos (x)$.
Exercise 2.1.4. Find a basis for \mathbb{C} as an \mathbb{R}-vector space.

Exercise 2.1.5.

1. Show that the elements 1 and $\sqrt{2}$ in \mathbb{R}, viewed as a \mathbb{Q}-vector space, are linearly independent.
2. * Show that $1, \sqrt{2}$, and $\sqrt{3}$ are linearly independent over \mathbb{Q}. Generalize this as far as you can.

Exercise 2.1.6. Show that $T(\overrightarrow{0})=\overrightarrow{0}$ for any linear transformation T.
Exercise 2.1.7. Suppose A is an $m \times n$ matrix with entries in \mathbb{K}. Then, we obtain a map

$$
T: \mathbb{K}^{n} \rightarrow \mathbb{K}^{m}, T(\vec{v})=A \vec{v}
$$

(1) Show that T is a linear transformation.
(2) Show that any linear transformation from \mathbb{K}^{n} to \mathbb{K}^{m} is obtained from a unique $m \times n$ matrix in this way.

Exercise 2.1.8. Consider the map

$$
\frac{d}{d x}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]
$$

given by differentiation.
(1) Show $\frac{d}{d x}$ is a linear transformation.
(2) What is the kernel of $\frac{d}{d x}$? What is its image?
(3) We can think of the vector space $\mathbb{R}[x]$ as being the space of infinite column vectors where all but finitely many entries are nonzero:

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \leftrightarrow\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\ldots \\
a_{n} \\
0 \\
0 \\
\ldots
\end{array}\right] .
$$

Compute

$$
\frac{d}{d x}\left(\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
\ldots
\end{array}\right]\right)
$$

in this notation.
(4) Show that the space $\mathbb{R}[x]_{<n}$ of polynomials of degree $<n$ is a subspace of $\mathbb{R}[x]$. It is identified with \mathbb{R}^{n} by the above recipe.
(5) Show that if $f \in \mathbb{R}[x]_{<n}$, then $\frac{d}{d x}^{n}(f)=0$. (This notation means apply the linear transformation $\frac{d}{d x}$ iteratively n times: first we get $\frac{d}{d x}(f)$, then $\frac{d}{d x}\left(\frac{d}{d x}(f)\right)$, and so on).
Exercise 2.1.9. Let V be the vector space of all convergent infinite sequences of real numbers.
(1) Show that the map

$$
\lim :\left(a_{0}, a_{1}, \ldots\right) \mapsto \lim _{n \rightarrow \infty} a_{n}
$$

is a linear transformation from V to \mathbb{R} (here we think of \mathbb{R} as a vector space over itself).
(2) Show that for any $\vec{v} \in V$, there is a unique expression

$$
\vec{v}=\vec{s}+\vec{c}
$$

where \vec{s} is in the kernel of \lim and \vec{t} is a constant sequence (that is \vec{c} is of the form (a, a, a, \ldots) for some real number a).

Exercise 2.1.10. Let V be the vector space of infinite sequences of real numbers

$$
\left(a_{0}, a_{1}, a_{2}, \ldots\right)
$$

We have the left and right shift operators:

$$
L\left(\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right)=\left(a_{1}, a_{2}, \ldots\right) \text { and } R\left(\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right)=\left(0, a_{0}, a_{1}, \ldots\right) .
$$

(1) What are the eigenvalues and eigenvectors of L and R ?
(2) What are the eigenvalues and eigenvectors if we restrict L and R to the subspace of convergent sequences?

Exercise 2.1.11. If A is an $m \times n$ matrix, explain why $\operatorname{dim} \operatorname{ker} A$ is the number of free variables in the system of equations

$$
A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\overrightarrow{0} .
$$

Exercise 2.1.12. If V_{1} and V_{2} are two vector spaces over \mathbb{K}, write $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ for the set of all linear transformations from V_{1} to V_{2}. Show that $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ is a vector space over \mathbb{K} (how are addition and scalar multiplication defined?). If $V_{1}=\mathbb{K}^{n}$ and $V_{2}=\mathbb{K}^{m}$, give a description of this vector space using objects we have already studied.

Exercise 2.1.13. For $T: V \rightarrow W$ a linear transformation, $\vec{v}_{\bullet}, \vec{v}_{\bullet}^{\prime}$ two bases of V, and $\vec{w}_{\bullet}, \vec{w}_{\bullet}^{\prime}$ two bases of W :
A. Explain why

$$
\vec{w}_{\bullet}^{\prime}[T]_{\vec{v}_{\bullet}^{\prime}}={\overrightarrow{w_{0}^{\prime}}}\left[\operatorname{Id}_{W}\right]_{\vec{w}_{\bullet}} \vec{w}_{\bullet}[T]_{\vec{v}_{\bullet}} \cdot \overrightarrow{v_{\bullet}}\left[\operatorname{Id}_{V}\right]_{\vec{v}_{\bullet}^{\prime}} .
$$

B. Compare this to the change of basis formula discussed previously for $T: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$.

2.2. The Eventown theorem.

Exercise 2.2.1. Justify Fact 1.3 .8 using the following steps:
A. Show that if $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are a basis for $\operatorname{ker} T$ and $\vec{w}_{1}, \ldots, \vec{w}_{\ell}$ are vectors in V such that $T\left(\vec{w}_{1}, \ldots, T\left(\vec{w}_{\ell}\right)\right.$ are basis for Image T then together

$$
\vec{v}_{1}, \ldots, \vec{v}_{k}, \vec{w}_{1}, \vec{w}_{\ell}
$$

form a basis for V.
Hint: Show separately that they span V and that they are linearly independent.

B. Conclude.

Exercise 2.2.2. Justify Fact 1.3.9. Hint: The span of the columns of a matrix A is equal to the image of the corresponding linear transformation, so you can use Fact 1.3.8.

Exercise 2.2.3. If $S \subset \mathbb{K}^{n}$ is a subset, we write S^{\perp} for the set of vectors $\vec{v} \in \mathbb{K}^{n}$ such that $\vec{s} \cdot \vec{v}=0$ for every $\vec{s} \in S$. A set of vectors $S \in \mathbb{K}^{n}$ is isotropic if $S \subset S^{\perp}$.
A. Show that S^{\perp} is a subspace of \mathbb{K}^{n}.
B. Show that $S^{\perp}=(\operatorname{Span} S)^{\perp}$.
C. Show that if S is an isotropic set of vectors in \mathbb{K}^{n} then $\operatorname{Span} S$ is an isotropic subspace.
D. If S is a subspace of \mathbb{K}^{n}, show that $\operatorname{dim} S+\operatorname{dim} S^{\perp}=n$.

Hint: Construct a $\operatorname{dim} W \times n$ matrix whose rank is $\operatorname{dim} W$ and whose kernel is W^{\perp}, then apply rank+nullity.
E. Show that an isotropic subspace of \mathbb{K}^{n} has dimension at most $\lfloor n / 2\rfloor$.
F. \star Show that any isotropic subspace of \mathbb{F}_{2}^{n} is contained in an isotropic subspace of dimension $\lfloor n / 2\rfloor$.
Exercise 2.2.4. Recall the rules of Eventown: every club has an even number of members, and any two clubs share an even number of members. We will now prove:
Theorem (The Eventown Theorem). If Eventown has n residents, then any maximal system of clubs consists of exactly $2^{\lfloor n / 2\rfloor}$ clubs.
A. Show that the membership vectors of a valid set of clubs in Eventown is an isotropic set in \mathbb{F}_{2}^{n} and vice versa.
B. Conclude using the results of Exercise 2.2.3.

