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1. Abstract vector spaces

Definition 1.0.1. A vector space V over a field K (or, a K-vector space) is a place where we can:

(1) Add two vectors v⃗1 and v⃗2 in V to get a third vector, v⃗1 + v⃗2 in V .
(2) Multiply a vector v⃗ ∈ V by a scalar λ ∈ K to get a new vector λv⃗ ∈ V .

Addition should satisfy all the normal rules, and multiplication by a scalar distributes over addition
of vectors

λ(v⃗1 + v⃗2) = λv⃗1 + λv⃗2.
In particular, we have a zero vector 0⃗ ∈ V such that v⃗+ 0⃗ = 0⃗+ v⃗ = v⃗ for any vector v⃗ ∈ V . Moreover,
we have, for any v⃗ ∈ V ,

(1) 1v⃗ = v⃗
(2) 0v⃗ = 0⃗

Example 1.0.2.

(1) The set of height n column vectors Kn is a K-vector space.
(2) More generally, the set of all m×n matrices with entries in K is a vector space over K. The

column vectors Kn are the same as n × 1 matrices over K.
(3) The set K[x] of polynomials in the variable x with coefficients in K is a K-vector space.
(4) The set of infinite sequences (a1, a2, a3, . . .) of real numbers is a vector space over R:

(a1, a2, a3, . . .) + (a′1, a′2, a′3, . . .) = (a1 + a′1, a2 + a′2, a3 + a′3, . . .),
λ(a1, a2, a3, . . .) = (λa1,λa2,λa3, . . .).

(5) The set C0([0,1]) of continuous real-valued functions on the closed interval [0,1] is a vector
space over R:

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x).
(6) The field C is also a vector space over R.
(7) The fields C and R are also vector spaces over Q.

1.1. Subspaces.

Definition 1.1.1. If V is a vector space and W ⊂ V , then W is a subspace if W contains the zero
vector is closed under addition and scalar multiplication. A subspace of a vector space is itself a
vector space!

Example 1.1.2.

(1) The set of all column vectors [a1 a2 . . . an]
t
such ∑n

i=1 ai = 0 is a subspace of Kn.
(2) If v⃗ is a vector in Kn, the set of all multiples λv⃗ for λ ∈ K is a subspace.
(3) The set K[x]≤n of all polynomials with coefficients in K of degree at most n is a subspace

of the K-vector space K[x]
(4) If we view C and R as Q-vector spaces, then R is a subspace of C.

Definition 1.1.3. If S is a set of vectors in a vector space V , the span of S, SpanS, is the set of
all linear combinations of the vectors in S. It is a subspace of V .
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Example 1.1.4. If S = {1, x2, x4, x6, x8, . . .} ⊂ K[x], then the span of S is the subspace of polyno-
mials with terms of only even degree.

Definition 1.1.5. A set of vectors S is called linearly dependent if there are vectors v⃗1, . . . , v⃗k ∈ S
and scalars a1, . . . , ak not all zero such that

a1v⃗1 + . . . + akv⃗k = 0⃗.
If no such combination exists, the vectors in S are called linearly independent.

1.2. Linear transformations.

Definition 1.2.1. A map T ∶ V →W between K vector spaces V and W is a linear transformation
if

(1) T (v⃗1 + v⃗2) = T (v⃗1) + T (v⃗2) for all v⃗1, v⃗2 ∈ V .
(2) T (λv⃗) = λT (v⃗) for all v⃗ ∈ V, λ ∈ K.

Example 1.2.2. Suppose f(x) ∈ R[x]. Then multiplication by f is a linear transformation

T ∶ R[x]→ R[x], g(x)↦ g(x)f(x).

Definition 1.2.3. For T ∶ V →W a linear transformation,

(1) The kernel of T , written kerT , is the set of all vectors v⃗ ∈ V such that T (v⃗) = 0⃗. It is a
subspace of V .

(2) The image of T , written ImageT , is the set of

{T (v⃗) ∣ v⃗ ∈ V } ⊂W.

It is a subspace of W .

Definition 1.2.4. If V is a vector space and T ∶ V → V is a linear transformation, a non-zero
vector v⃗ ∈ V is an eigenvector for T with eigenvalue λ ∈ K if T (v⃗) = λv⃗. The eigenvalues of T are
the λ ∈ K such that T admits an eigenvector with eigenvalue λ.

Exercise 1.2.5. Consider the left-shift operator T on the vector space of sequences of real numbers

T (a1, a2, a3, . . .) = (a2, a3, a4, . . .).
1. What are the eigenvalues of T? For each eigenvalue, what are the eigenvectors?
2. What are the eigenvalues of T if I instead consider it as a linear transformation on the vector
space of convergent sequences of real numbers?

Exercise 1.2.6. Let C∞(R) be the vector space of infinitely differentiable real valued functions on

the real line. We define a linear transformation T of C∞(R) by differentiation: T (f) = df
dx . What

are the eigenvalues of T?

1.3. Bases and dimension.

Definition 1.3.1. A basis of a vector space V is a linearly independent set of vectors S in V such
that Span(S) = V .

Fact 1.3.2. Any vector spaces admits a basis, and that any two bases can be put in bijection (this
is a generalization to possibly infinite sets of having the same size)

Definition 1.3.3. The dimension of a K-vector space V is the cardinality of a basis. If you don’t
know what cardinality means, don’t worry about it for now: We say that V is finite dimensional if
it has a basis consisting of finitely many vectors, and in that case, the dimension is the number of
vectors in any basis. We write the dimension as dimV or dimK V .
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Definition 1.3.4. If V is a finite dimensional vector space and f⃗1, . . . , f⃗n is a basis (so n = dimV ),
then we write

[v⃗]f⃗● =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
⋮
an

⎤⎥⎥⎥⎥⎥⎥⎥⎦

where v⃗ = a1f⃗1 + . . . anf⃗n.

Definition 1.3.5. If T ∶ V →W is a map of finite dimensional vector spaces, v⃗1, . . . , v⃗n is a basis
of V , w⃗1, . . . , w⃗n is a basis of W , we write

w⃗●[T ]v⃗●
for the m × n matrix (m = dimW , n = dimV )

w⃗●[T ]v⃗● = [[T (v⃗1)]w⃗● [T (v⃗2)]w⃗● . . . [T (v⃗n)]w⃗●]
If T ∶ V → V , then as before we write

[T ]v⃗● = v⃗●[T ]v⃗●
Fact 1.3.6. For any v⃗ ∈ V ,

w⃗●[T ]v⃗●[v⃗]v⃗● = [T (v⃗)]w⃗● .

Definition 1.3.7. A linear transformation T ∶ V → V diagonalizable if there is a basis of V
consisting of eigenvectors for T .

Fact 1.3.8 (Rank + Nullity). If V and W are finite dimensional vector spaces, then

dimV = dim ImageT + dimkerT.

Fact 1.3.9 (Ranks of matrices revisited). For A an m × n matrix with entries in a field K, the
following quantities are equal:

(1) The rank of A
(2) The number of leading ones in the reduced row echelon form of A
(3) The dimension of the span of the columns of A.
(4) The dimension of the span of the rows of A.
(5) n − dimkerA.

2. Problems

2.1. Vector spaces, subspaces, and linear transformations.

Exercise 2.1.1.

(1) Show that the set of polynomials with real coefficients that have a root at x = 5 is a subspace
of R[x].

(2) Show that the set of all convergent sequences of real numbers is a subspace of the vector
space of all sequences of real numbers.

(3) The set C1([0,1]) of differentiable real-valued functions on the closed interval [0,1] is a
subspace of the real vector space C0([0,1]).

Exercise 2.1.2. Consider the vector space R[x]<n of polynomials of degree less than n. For any
a ∈ R, show that

1, (x − a), (x − a)2, . . . , (x − a)n−1

are a basis. Given f(x) ∈ R[x]≤n, use calculus to compute

[f(x)]{1,(x−a),(x−a)2,...,(x−a)n−1}
Exercise 2.1.3.
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(1) Show that sin(x) and cos(x) are linearly independent vectors in the R-vector space of
infinitely differentiable real-valued functions on the real line.

(2) Show that they are both eigenvectors with eigenvalue −1 for the linear transformation.

T (f) = d2f

(dx)2

(3) The −1-eigenspace is the set of all eigenvectors with eigenvalue −1 plus the zero vector.

Show this is a subspace, and that it is is preserved by the linear transformation d
dx .

(4) It can be shown that cos(x) and sin(X) are a basis for this eigenspace, that is, that any
other eigenvector with eigenvalue −1 is of the form

a cos(x) + b sin(x)
for real numbers a and b. Given this, compute the matrix of d

dx in the basis sin(x), cos(x).

Exercise 2.1.4. Find a basis for C as an R-vector space.

Exercise 2.1.5.
1. Show that the elements 1 and

√
2 in R, viewed as a Q-vector space, are linearly independent.

2. ⋆ Show that 1,
√
2, and

√
3 are linearly independent over Q. Generalize this as far as you can.

Exercise 2.1.6. Show that T (0⃗) = 0⃗ for any linear transformation T .

Exercise 2.1.7. Suppose A is an m × n matrix with entries in K. Then, we obtain a map

T ∶ Kn → Km, T (v⃗) = Av⃗
(1) Show that T is a linear transformation.
(2) Show that any linear transformation from Kn to Km is obtained from a unique m×n matrix

in this way.

Exercise 2.1.8. Consider the map
d

dx
∶ R[x]→ R[x].

given by differentiation.

(1) Show d
dx is a linear transformation.

(2) What is the kernel of d
dx? What is its image?

(3) We can think of the vector space R[x] as being the space of infinite column vectors where
all but finitely many entries are nonzero:

a0 + a1x + a2x2 + . . . + anxn ↔

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
. . .
an
0
0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Compute

d

dx

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

in this notation.
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(4) Show that the space R[x]<n of polynomials of degree < n is a subspace of R[x]. It is
identified with Rn by the above recipe.

(5) Show that if f ∈ R[x]<n, then d
dx

n(f) = 0. (This notation means apply the linear transfor-

mation d
dx iteratively n times: first we get d

dx(f), then
d
dx
( d
dx(f)), and so on).

Exercise 2.1.9. Let V be the vector space of all convergent infinite sequences of real numbers.

(1) Show that the map
lim ∶ (a0, a1, . . .)↦ lim

n→∞
an

is a linear transformation from V to R (here we think of R as a vector space over itself).
(2) Show that for any v⃗ ∈ V , there is a unique expression

v⃗ = s⃗ + c⃗
where s⃗ is in the kernel of lim and t⃗ is a constant sequence (that is c⃗ is of the form (a, a, a, . . .)
for some real number a).

Exercise 2.1.10. Let V be the vector space of infinite sequences of real numbers

(a0, a1, a2, . . .)
We have the left and right shift operators:

L((a0, a1, a2, . . .)) = (a1, a2, . . .) and R((a0, a1, a2, . . .)) = (0, a0, a1, . . .).
(1) What are the eigenvalues and eigenvectors of L and R?
(2) What are the eigenvalues and eigenvectors if we restrict L and R to the subspace of con-

vergent sequences?

Exercise 2.1.11. If A is an m×n matrix, explain why dimkerA is the number of free variables in
the system of equations

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0⃗.

Exercise 2.1.12. If V1 and V2 are two vector spaces over K, write Hom(V1, V2) for the set of all
linear transformations from V1 to V2. Show that Hom(V1, V2) is a vector space over K (how are
addition and scalar multiplication defined?). If V1 = Kn and V2 = Km, give a description of this
vector space using objects we have already studied.

Exercise 2.1.13. For T ∶ V → W a linear transformation, v⃗●, v⃗
′
● two bases of V , and w⃗●, w⃗

′
● two

bases of W :

A. Explain why

w⃗′●[T ]v⃗′● = w⃗′●[IdW ]w⃗● w⃗●[T ]v⃗● v⃗●[IdV ]v⃗′● .
B. Compare this to the change of basis formula discussed previously for T ∶ Kn → Kn.

2.2. The Eventown theorem.

Exercise 2.2.1. Justify Fact 1.3.8 using the following steps:

A. Show that if v⃗1, . . . , v⃗k are a basis for kerT and w⃗1, . . . , w⃗ℓ are vectors in V such that
T (w⃗1, . . . , T (w⃗ℓ) are basis for ImageT then together

v⃗1, . . . , v⃗k, w⃗1, w⃗ℓ

form a basis for V .
Hint: Show separately that they span V and that they are linearly independent.
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B. Conclude.

Exercise 2.2.2. Justify Fact 1.3.9. Hint: The span of the columns of a matrix A is equal to the
image of the corresponding linear transformation, so you can use Fact 1.3.8.

Exercise 2.2.3. If S ⊂ Kn is a subset, we write S⊥ for the set of vectors v⃗ ∈ Kn such that s⃗ ⋅ v⃗ = 0
for every s⃗ ∈ S. A set of vectors S ∈ Kn is isotropic if S ⊂ S⊥.

A. Show that S⊥ is a subspace of Kn.
B. Show that S⊥ = (SpanS)⊥.
C. Show that if S is an isotropic set of vectors in Kn then SpanS is an isotropic subspace.
D. If S is a subspace of Kn, show that dimS + dimS⊥ = n.

Hint: Construct a dimW × n matrix whose rank is dimW and whose kernel is W ⊥, then
apply rank+nullity.

E. Show that an isotropic subspace of Kn has dimension at most ⌊n/2⌋.
F. ⋆ Show that any isotropic subspace of Fn

2 is contained in an isotropic subspace of dimension
⌊n/2⌋.

Exercise 2.2.4. Recall the rules of Eventown: every club has an even number of members, and
any two clubs share an even number of members. We will now prove:

Theorem (The Eventown Theorem). If Eventown has n residents, then any maximal system of

clubs consists of exactly 2⌊n/2⌋ clubs.

A. Show that the membership vectors of a valid set of clubs in Eventown is an isotropic set in
Fn
2 and vice versa.

B. Conclude using the results of Exercise 2.2.3.
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