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Abstract. We show that the completed Hecke algebra of p-adic modular
forms is isomorphic to the completed Hecke algebra of continuous p-adic au-
tomorphic forms for the units of the quaternion algebra ramified at p and ∞.
This gives an affirmative answer to a question posed by Serre in a 1987 letter
to Tate. The proof is geometric, and lifts a mod p argument due to Serre: we
evaluate modular forms by identifying a quaternionic double-coset with a fiber
of the Hodge-Tate period map, and extend functions off of the double-coset
using fake Hasse invariants. In particular, this gives a new proof, independent
of the classical Jacquet-Langlands correspondence, that Galois representations
can be attached to classical and p-adic quaternionic eigenforms.
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1. Introduction

Let p be a prime, and let D/Q be the quaternion algebra ramified at p and ∞.

Let A denote the adèles of Q, Af the finite adèles, and A(p)
f the finite prime-to-p

adèles. Let Kp ⊂ D×(A(p)
f ) be a compact open subgroup. For R a topological ring

(e.g. C, Fp, Qp, or Cp), we consider the space of continuous p-adic automorphic
forms on D× with coefficients in R and prime-to-p level Kp,

AKp

R := Cont(D×(Q)\D×(A)/Kp, R).

For R totally disconnected (e.g. Fp, Qp, or Cp), the archimedean component can
be removed, and we have an identification

AKp

R = Cont(D×(Q)\D×(Af )/K
p, R).

Note that D×(Q)\D×(Af )/K
p is a profinite set. Moreover, by choosing coset

representatives, it can be identified with a finite disjoint union of compact open
subgroups of D×(Qp), so that it is essentially a p-adic object.

The space AKp

R admits an action of the abstract double-coset Hecke algebra

Tabs := Z[Kp\D×(A(p)
f )/Kp],

and a commuting action of D×(Qp). In this work we, we study the spectral decom-

position of AKp

R under the action of Tabs.
The classical Jacquet-Langlands correspondence [15], proved using analytic tech-

niques, implies that, up to twisting, the eigensystems for Tabs acting on AKp

C are a
strict subset of those appearing in classical complex modular forms (on the quater-
nionic side, one only sees the eigensystem attached to a cuspidal modular form if
the corresponding automorphic representation of GL2 is discrete series at p).

On the other hand, arguing with the geometry of mod pmodular curves, Serre [24]
showed that the eigensystems arising in AKp

Fp
are the same as those appearing in

the space of mod p modular forms (cf. Theorem 1.1.1 below for a slight refinement
of Serre’s result). In particular, the gaps in the Jacquet-Langlands correspondence
over C disappear when working mod p.

The main result of this work is a natural lift of Serre’s result to Qp: we use
the geometry of the perfectoid modular curve at infinite level to show that the
completed Hecke algebra of AKp

Qp
is isomorphic to the completed Hecke algebra of

p-adic modular forms (cf. Theorem A below for a precise statement).
Theorem A is compatible with the classical Jacquet-Langlands correspondence:

the eigensystems appearing in classical complex quaternionic automorphic forms

can be identified with the eigensystems appearing in AKp

Qp
such that the corre-

sponding eigenspace contains a vector which, up to a twist, transforms via an
algebraic representation of D×(Qp) after restriction to a sufficiently small com-
pact open subgroup. Thus, Theorem A can be interpreted as saying that there
is a p-adic Jacquet-Langlands correspondence that fills in the gaps in the classical
Jacquet-Langlands correspondence. As our proof of the p-adic correspondence is
independent of the classical correspondence, we also obtain a new proof that Galois
representations can be attached to quaternionic automorphic forms (cf. Corollary B
below for a precise statement).
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Both Theorems 1.1.1 and A are purely spectral Jacquet-Langlands correspon-
dences – in the present article we do not make any attempt to describe the D×(Qp)-
representation appearing in an eigenspace. Nevertheless, the methods employed in
the proofs of Theorem 1.1.1 and A can be used provide significant information
about these local representations, and we return to this in another work [12] (cf.
1.4 below for further discussion).

1.1. Serre’s spectral mod p Jacquet-Langlands correspondence. Before dis-
cussing our results and techniques further, we take a brief detour to recall a precise
statement of Serre’s [24] mod p correspondence.

If we fix an isomorphism

D×(A(p)
f ) ∼= GL2

!
A(p)

f

"
,

then we obtain an action of the Hecke algebra Tabs on the space MKp

Fp
of mod p

modular forms of prime-to-p level Kp. In a 1987 letter to Tate, Serre [24] proved a
mod p Jacquet-Langlands correspondence comparing the spectral decompositions
of AKp

Fp
and MKp

Fp
. We state below a slight strengthening of his result, which follows

from essentially the same proof given in loc. cit. First, some notation:
Suppose T′ ⊂ Tabs ⊗ Fp is a commutative sub-algebra and χ : T′ → Fp is

a character. Then, if T′ acts on an Fp-vector space V , we may consider the χ-
eigenspace V [χ]. If we write mχ := kerχ, we may also consider the generalized
χ-eigenspace Vmχ (that is, the subset of elements killed by a power of mχ).

Theorem 1.1.1 (Serre). Let T′ ⊂ Tabs be a commutative sub-algebra. Then, there
is a finite collection of characters χi : T′ → Fp with kernels mi such that:

(1) For each i,
!
AKp

Fp

"

mi

and
!
MKp

Fp

"

mi

are non-zero; in particular,

AKp

Fp
[χi] ∕= 0 and MKp

Fp
[χi] ∕= 0, and

(2) there are direct sum decompositions

AKp

Fp
=

#

i

!
AKp

Fp

"

mχi

and MKp

Fp
=

#

i

!
MKp

Fp

"

mχi

.

In other words, the Hecke eigensystems appearing in mod p quaternionic auto-
morphic forms are precisely those appearing in mod p modular forms. This stands
in contrast to the classical Jacquet-Langlands correspondence, where the eigen-
systems appearing in quaternionic forms are a strict subset of those appearing in
modular forms. The following example gives a concrete illustration:

Example 1.1.2. The discriminant form, represented by the Ramanujan series

∆(q) = q
$

n≥
(1− qn)24 =

%
τ(n)qn,

is a weight 12 cuspidal eigenform whose corresponding automorphic representation
is principal series at every prime p. Thus, the corresponding Hecke eigensystem,
encoded by the coefficients τ(ℓ) for ℓ prime, does not appear in the space of classical
automorphic forms on D× for any prime p (recall p appears in the definition of D×).

By contrast, Theorem 1.1.1 shows that the coefficients τ(ℓ) mod p for ℓ ∕= p
are remembered by a mod p quaternionic automorphic form on D×. A similar
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phenomena occurs in our p-adic correspondence, which remembers the numbers
τ(ℓ) on the nose!

1.2. A spectral p-adic Jacquet-Langlands correspondence.

1.2.1. Serre’s question. Serre ended his letter to Tate with a list of questions in-
spired by the mod p Jacquet-Langlands correspondence. One of these (cf. [24,
paragraph (26)]), transcribed below, suggests an analogous study relating AKp

Qp
to

p-adic modular forms.

(26) Analogues p-adiques. Au lieu de regarder les fonctions lo-
calement constantes sur D×

A /D
×
Q á valeurs dans C, il serait plus

amusant de regarder celles à valeurs dans Qp. Si l’on décompose
A en Qp × A′, on leur imposerait d’être localement constantes par
rapport à la variable dans DA′ et d’être continues (ou analytiques,
ou davantage) par rapport à la variable dans Dp... Y aurait-il
des représentations galoisiennes p-adiques associées a de telles fonc-
tions, supposées fonctions propres des opérateurs de Hecke? Peut-
on interpréter les constructions de Hida (et Mazur) dans un tel
style? Je n’en ai aucune idée.

Our main result, Theorem A below, shows that the answers to Serre’s questions
are, largely, yes. In particular, Theorem A implies that Galois representations can
be attached to p-adic quaternionic eigenforms (Corollary B below).

1.2.2. Completed actions. Before stating Theorem A, we introduce some notation
for discussing operators on p-adic Banach spaces. Let K be a complete extension
of Qp equipped with an absolute value | · | extending the p-adic absolute value on
Qp. A Banach space over K is a K-vector space complete with respect to a norm
|| · || satisfying the ultrametric inequality and such that ||av|| = |a| · ||v|| for all
a ∈ K, v ∈ V . A linear operator f : V → V is bounded if there exists C > 0 such
that ||f(v)|| ≤ C||v|| for all v ∈ V . A linear operator is continuous for the norm
topology if and only if it is bounded. The operator norm of a bounded operator f
is given by

||f || = sup
v ∕=0

||f(v)||/||v||.

We say that a bounded operator f is uniform if ||f || ≤ 1 (this last piece of termi-
nology is non-standard).

If A is an algebra acting on a K-Banach space V by linear transformations we
say that the action is uniform if each a ∈ A acts by a uniform operator on V . If A
acts uniformly on V then we write AV for the image of A in Endcont(V ), and A∧

V

for the closure of AV for the topology of pointwise convergence. Uniformity implies
that A∧

V is a sub-algebra of Endcont(V ).

1.2.3. A homeomorphism of completed Hecke algebras. The space AKp

Qp
of p-adic

quaternionic automorphic forms is a Qp-Banach space with respect to the sup norm,
and the action of Tabs is uniform with respect to this norm. We can thus form the
completed Hecke algebra T′∧

AKp

Qp
.

As in the mod p case, we would like to compare the Hecke action on AKp

Qp
to a

Hecke action on a space of modular forms; in this case, we will do so by comparing
completed Hecke algebras. To that end: Serre [26] constructed natural spaces of
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p-adic modular forms by completing spaces of classical modular forms for the p-
adic topology on q-expansions (these spaces were then interpreted geometrically by
Katz [19]). In particular, one obtains a natural Qp-Banach space MKp

p−adic of p-adic
modular forms of prime-to-p level Kp equipped with a uniform action of Tabs.

Theorem A. For any sub-algebra T′ ⊂ Tabs, the identity map T′ → T′ extends to
a canonical homeomorphism of topological Zp-algebras

T′∧
AKp

Qp
= T′∧

MKp

p−adic
.

Theorem A implies Theorem 1.1.1 above, and gives a natural lift to characteristic
zero suitable, e.g., for the construction of Galois representations. Moreover, our
proof is in some sense a lift of Serre’s proof via the mod p geometry of modular
curves to a proof in characteristic zero via the p-adic geometry of infinite level
modular curves.

Remark 1.2.4. The completed Hecke algebras do not change if we replace Qp with
a finite extension, or even Cp (this invariance under base change plays an important
role in our proof). Thus, although Serre in his letter quoted above suggests the
study of AKp

Qp
, it is natural in our setup to work over Qp. In particular, an eigenform

in AKp

Qp
will still give rise to a Qp-valued character of T′∧

AKp

Qp
.

1.2.5. Completed cohomology. By a result of Emerton [6] (building on work of
Hida), T′∧

MKp

p−adic
is equal to the completed Hecke algebra of T′ acting on the com-

pleted cohomology of modular curves. On the other hand, AKp

Qp
is the completed

cohomology at level Kp for D×. Hence we also obtain a homeomorphism between
the completed Hecke algebras for the completed cohomology of GL2 and D×.

1.2.6. Galois representations. Let Ttame ⊂ Tabs be the tame Hecke algebra of level
Kp, i.e., the commutative sub-algebra generated by the Hecke operators at ℓ for

primes ℓ ∕= p at which Kp factors as Kp,ℓKℓ for Kp,ℓ ⊂ D×(A(pl)
f ) and Kℓ ⊂

D×(Ql) a maximal compact subgroup. For each such ℓ we write Tℓ for the standard
unramified Hecke operator.

Using the well-known corresponding fact for T′∧
MKp

p−adic
, we deduce

Corollary B. If χ : T∧
tame,AKp

Qp

→ Cp is a continuous character then there exists a

unique semisimple continuous representation

ρ : Gal(Q/Q) → GL2(Cp)

unramified at ℓ as above and such that Tr(ρ(Frobℓ)) = χ(Tℓ).

One can obtain such a χ from a quaternionic eigenform as in Remark 1.2.4, and
thus Corollary B attaches Galois representations to these eigenforms.

1.2.7. Work of Emerton. Corollary B can also be deduced from the classical Jacquet-
Langlands correspondence. In fact, a version of Theorem A after localizing at a
maximal idea was first shown by Emerton [7, 3.3.2] by reversing this argument: the
classical correspondence gives rise to a surjective map of completed Hecke algebras

T′∧
MKp

p−adic
→ T′∧

AKp

Qp
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(which is enough to obtain Corollary B), and then strong results in the deforma-
tion theory of Galois representations can be used to deduce that this map is an
isomorphism after localizing at a maximal ideal m (under minor hypotheses on m).

By contrast, our proof is based entirely on the p-adic geometry of modular curves.
Thus, we obtain a new proof of Corollary B that is independent of the classical
Jacquet-Langlands correspondence, and our proof of Theorem A does not use any
R = T theorems or other difficult results about Galois deformations.

1.3. Sketch of proof.

1.3.1. Proof of Theorem 1.1.1. Serre’s proof of the mod p correspondence proceeds
in two steps: First, one gives a Hecke-equivariant identification of the super-singular
locus with a quaternionic double coset in order to transfer Hecke eigensystems from
modular forms to the quaternion algebra. The evaluation map is not injective, but,
dividing by a suitable power of the Hasse invariant ensures that every eigensystem
can be transferred. That every quaternionic eigensystem can be recovered in this
way follows from ampleness of the modular sheaf.

1.3.2. Proof of Theorem A. To prove the p-adic correspondence, we first give a
Hecke-equivariant identification of a super-singular fiber of the Hodge-Tate period
map on the infinite level modular curve with a quaternionic double-coset. This
allows us to evaluate classical modular forms and transfer Hecke eigensystems from
modular forms to the quaternion algebra. In this case, the evaluation map from
classical modular forms is injective, but it is not surjective. Nonetheless, ampleness
of the modular sheaf combined with Scholze’s technique of fake Hasse invariants
can be used to show the image is dense, which is enough to establish the result.

1.3.3. The supersingular Igusa variety. The relation between these proofs is clari-
fied by highlighting the important role of the supersingular Igusa variety1, that is,
the moduli space of supersingular elliptic curves equipped with a trivialization of
their formal group. After some choices, this Igusa variety can be identified with
a quaternionic coset (which, as a profinite set, admits a natural scheme structure
over Fp). Thus functions on the Igusa variety are mod p quaternionic automorphic
forms. Moreover, the Igusa variety admits a canonical lift to a p-adic formal scheme
(whose generic fiber over Cp is the simplest type of perfectoid space – a profinite
set), and p-adic quaternionic forms are functions on this lift.

The mod p supersingular locus admits a punctual uniformization by the supersin-
gular Igusa variety, and this uniformization allows us to transfer classical modular
forms mod p to mod p quaternionic forms. As observed by Caraiani-Scholze [2],
this punctual uniformization mod p lifts via Serre-Tate theory to a punctual uni-
formization of a fiber of the Hodge-Tate period map, allowing us to transfer classical
modular forms to p-adic quaternionic modular forms. This uniformization and re-
sulting transfer depend on the auxiliary choice of a lift of a formal group and a
trivialization of its Tate module, and these choices can be made so that the p-adic
transfer is literally a lift of the modulo p transfer.

As the uniformization maps in both the mod p and p-adic setting are defined us-
ing a moduli interpretation, they are well-behaved with respect to Hecke operators;
on the other hand, since their images have simple geometric interpretations, one

1The role of this space is a bit obscured in Serre’s presentation [24], which may partially explain
why a p-adic generalization did not appear earlier.
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has enough geometric tools available to prove that the induced map of completed
Hecke algebras is an isomorphism.

1.4. Eigenspaces and the local p-adic Jacquet-Langlands correspondence.
One failing of Theorem A as stated is that it says nothing about the eigenspace
in quaternionic automorphic forms attached to a character of T′∧

AKp

Qp
valued in

an extension of Qp. Indeed, because completed Hecke algebras are formed by
compiling congruences of eigensystems, which may not be reflected in congruences
of eigenvectors, one does not even know whether such an eigenspace is non-empty.
On the other hand, one expects that it is always non-empty, and that the D×(Qp)
representation appearing is essentially that constructed in the local correspondences
of Knight [20] and Scholze [22].

Using the evaluation map from the proof of Theorem A, one can show this
eigenspace is non-empty at least for eigensystems attached to classical (or even
overconvergent) modular forms. Moreover, using Gross’ [9] theory of algebraic
automorphic forms and the clasical Jacquet-Langlands correspondence, one can
completely describe the locally algebraic vectors, and show that our construction
produces vectors which are not locally algebraic. Some results of this nature are
discussed in the author’s thesis [14] and were included in an earlier draft of the
present work.

In fact, these results can be considerably improved by replacing the punctual
uniformization used in the proofs of Theorems 1.1.1 and A with the full formal/p-
adic uniformization of the supersingular locus. From this perspective, one obtains
a natural set of model representations from distributions on Lubin-Tate space. A
classical or overconvergent eigenform gives rise to a nontrivial map from a model
representation to the corresponding eigenspace in quaternionic automorphic forms;
the transfer maps considered in the present work are obtained by evaluating these
more general maps at certain dirac distributions. This construction and related
results will appear in [12].

1.5. Outline. In Section 2 we prove the version of Serre’s mod p Jacquet-Langlands
correspondence stated above as Theorem 1.1.1. The proof we give is essentially
that of Serre, but we emphasize the role of the supersingular Igusa variety and
uniformization. In particular, we introduce here the supersingular Igusa variety
and carefully explain its connection with quaternionic cosets; this will play a key
role also in the proof of Theorem A.

In Section 3 we prove Theorem A. After recalling some results about perfectoid
modular curves and the Hodge-Tate period map from [21, 2], we construct our p-adic
transfer map and show it is injective (a simple argument using that modular curves
are one-dimensional). The other key property we need is density of the image,
which we establish with the help of Scholze’s fake Hasse invariants. We note that
this density argument has been considerably simplified compared to the original
version appearing in [14]; this simplification is made possible by the recent result
“Zariski closed = strongly Zariski closed” of Bhatt-Scholze [1]. These properties of
the evaluation map established, it remains only to prove some general lemmata for
comparing completed Hecke algebras in order to deduce Theorem A.

1.6. Acknowledgements. This article grew out of the author’s PhD thesis [14],
and we thank Matt Emerton, our thesis advisor, for his profound influence. We also
thank Rebecca Bellovin, Ana Caraiani, Andrea Dotto, Tianqi Fan, David Hansen,
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Christian Johannson, Kiran Kedlaya, Erick Knight, Daniel Le, Keerthi Madapusi-
Pera, Jay Pottharst, Peter Scholze, Joel Specter, Matthias Strauch, Jan Vonk,
Jared Weinstein, and Yiwen Zhou for helpful conversations about this work.

1.7. Notation and conventions. We fix an algebraic closure Qp of Qp and write

Cp for its completion. We denote by Q̆p the completion of the maximal unramified

extension of Qp in Qp, and by Z̆p ⊂ Q̆p the completion of the ring of integers in

the maximal unramified extension. We write Fp for Z̆p/p, an algebraically closed

extension of Fp = Zp/p; note that we have a canonical identification W (Fp) = Z̆p.
Give a topological space T , we denote by T the constant sheaf with value T ,

that is, the functor on schemes

T (S) = Cont(|S|, T )
where |S| denotes the underlying topological space of S. When T is a profinite set,
it is represented by SpecCont(T,Z), where Z is equipped with the discrete topology
(so that the continuous functions are just locally constant).

2. The supersingular Igusa variety and the mod p correspondence

In this section we give a proof of Theorem 1.1.1, roughly following Serre [24].
The main difference between our presentation and that of loc. cit. is that here we
emphasize from the beginning the role of the (big, supersingular) Igusa variety in
the uniformization of the supersingular locus. In particular, we give a careful proof
of the identification between the Igusa variety and the profinite setD×(Q)\D×(Af ),
which will also be needed for our p-adic results.

2.1. Mod p modular curves. For Kp ⊂ GL2(A(p)
f ) a sufficiently small compact

open subgroup, we write YKp for the modular curve over Fp parameterizing elliptic
curves up to prime-to-p isogeny with Kp-level structure. We write XKp for its
compactification and

Y = limYKp , X = limXKp .

The modular curve Y parameterizes pairs (E,ϕA(p)
f

), where E is an elliptic curve

up to prime-to-p isogeny and

ϕA(p)
f

: A(p)
f

2 ∼−→
&

lim
(p,n)=1

E[n]

'
⊗Q

is a trivialization of the prime-to-p adelic Tate module of E. The group GL2

!
A(p)

f

"

acts on Y by composition with ϕA(p)
f

.

2.1.1. Modular forms. There is a universal elliptic curve up to prime-to-p-isogeny
π : E → Y . We consider the modular sheaf ω := π∗ΩE/Y , which is naturally

GL2(A(p)
f )-equivariant. The GL2(A(p)

f ) action on Y extends uniquely to an action
on X, and we extend ω equivariantly to X by taking sections with holomorphic
q-expansions over cusps.

For each k, H0(X,ωk) is an admissible Fp representation of GL2(A(p)
f ), and for

Kp ⊂ GL2(A(p)
f ) a sufficiently small compact open subgroup as above,

H0(X,ωk)K
p

= H0(XKp ,ωk).
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2.1.2. The Hasse invariant. The Hasse invariant,H ∈ H0(X,ωp−1), is a GL2(A(p)
f )-

equivariant section with vanishing locus equal to the supersingular locus Xss. The
supersingular locus is contained in Y , and we write Y ss = Xss, Xord = X\Xss,
Y ord = Y \Y ss.

2.1.3. Hecke algebras and generalized eigenspaces. If L is a field and V is a finite
dimensional vector space over L, then for any commutative L-algebra T acting on
V , we have a decomposition into generalized eigenspaces

V =
#

Vm

where m runs over maximal ideals of T with residue field a finite extension of K and
Vm is the sub-module of m-torsion elements. In particular, if Vm ∕= 0, the eigenspace
V [m] consisting of elements annihilated by m is non-empty.

The same result applies more generally to V a colimit of finite dimensional vector
spaces with T -action. In particular, ifW is a colimit of admissible representations of
a locally profinite groupG,K is a compact open subset ofG, and T is a commutative
subalgebra of the abstract Hecke algebra L[K\G/K], then the action of T on the
invariants WK admits a decomposition into generalized eigenspaces.

This formalism gives a decomposition ofH0(XKp ,ωk) into generalized eigenspaces
for the action of any commutative subalgebra

T′ ⊂ Fp[K
p\GL2(A(p)

f /Kp] = Tabs
Kp ⊗ Fp,

and similarly for other related spaces to be introduced below.

2.2. Mod p modular forms. The ring of mod p modular forms is the GL2(A(p)
f )-

equivariant Z/(p− 1)Z-graded ring

MFp
:=

#

k∈Z/(p−1)Z

H0(Xord,ωk) ∼=

(

)
#

k≥0

H0(X,ωk)

*

+ / (H − 1)

where here to give a multiplication on the left-hand side we use H to identify ωk

with ωk+(p−1) over Xord; the two sides are isomorphic because multiplying by a
sufficiently large power of H kills any poles along the supersingular locus.

Remark 2.2.1. To obtain a GL2(A(p)
f )-action inducing the standard action of

Hecke operators onKp-invariants, one should consider sections of ΩX(cusps)⊗ ωk−2

rather than ωk. The Kodaira-Spencer isomorphism gives an identification

ΩX(cusps) ∼= ω2,

however, the natural GL2(A(p)
f )-actions differ through a twist by the unramified

determinant character (because Serre duality, which is not isogeny invariant, is
used in the definition of the isomorphism). This serves only to replace each Hecke
operator with a multiple by an invertible element (since we do not include Hecke
operators at p!), so it will not change the resulting Hecke algebra.

We prefer the action used above because if we equip MFp
with the twisted action

then the ring multiplication is no longer equivariant. Indeed, it is most natural to

consider the space of mod p modular forms with the GL2(A(p)
f )-action that gives

rise to the standard Hecke action as a GL2(A(p)
f )-equivariant graded free module of

rank 1 over the ring of mod p modular forms we have defined here.
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Remark 2.2.2. There are at least two other natural constructions of MFp
:

(1) It is the span of the images of H0(X,ωk) over all k under the total q-
expansion map (we emphasize that one must take at least one cusp in each
connected component). Mod p modular forms were first studied in this
context, e.g. by Serre [26].

(2) It is the space of functions on the first level of the ordinary Igusa tower

Igord1 over Xord (cf. e.g. [8]); this is a (Z/pZ)×-torsor whose restriction to

Yord parameterizes trivializations µp
∼−→ ,E[p]. The Z/(p − 1)Z grading is

just the decomposition according to characters of (Z/pZ)×, and modular
forms are embedded as functions by evaluation along the pullback of dt

t to
ω !E[p] = ωE .

The latter perspective is the same that we use over the supersingular locus to relate
modular forms to quaternionic automorphic forms.

2.2.3. Spectral decomposition of MFp
. The GL2(A(p)

f ) representation MFp
is not

admissible, but it admits an increasing exhaustive filtration FiMFp
by admissible

subrepresentations, where Fi consists of those sections with poles of order bounded
by i along Xss. To see these are admissible, note that multiplication by Hi gives a

GL2(A(p)
f )-equivariant injection

(2.2.1) FiMFp
↩→

p−2#

k=0

H0(X,ωk+i(p−1)).

We deduce that if T′ is a commutative sub-algebra of Tabs
Kp,Fp

, then MKp

Fp
decom-

poses as a direct sum of generalized eigenspaces

(2.2.2) MKp

Fp
=

#!
MKp

Fp

"

m

for maximal ideals m of T′. Moreover, we find

Lemma 2.2.4. For m a maximal ideal of T′,
!
MKp

Fp

"

m
∕= 0 ⇐⇒

#

k≥0

-
H0(XKp ,ωk)

.
m
∕= 0.

Proof. If
!
MKp

Fp

"

m
∕= 0, then

!
FiM

Kp

Fp

"

m
∕= 0 for i sufficiently large, and thus

by (2.2.1),
-
H0(X,ωk+i(p−1))

.
m

∕= 0. The other direction follows similarly, as

H0(XKp ,ωk) injects GL2(A(p)
f )-equivariantly into MFp

by restriction to Xord. □

2.3. The supersingular Igusa variety. Let b be the element

&
0 p
1 0

'
and let G0

be the p-divisible group corresponding to the covariant Dieudonné module Z̆2
p with

Frobenius F acting by bσ.
The supersingular Igusa variety of Caraiani-Scholze [2], IgssFp

, represents the func-

tor sending an Fp-algebra R to the set of

(E,ϕp,ϕA(p)
f

)

where E/SpecR is an elliptic curve up to isogeny, ϕp : E[p∞] → G0 is a quasi-

isogeny, and ϕA(p)
f

is a trivialization VA(p)
f

E
∼−→

!
A(p)

f

"2

.
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We write Dp := End(Xb)⊗Qp, a ramified quaternion algebra over Qp. There is

a natural action of D×
p ×GL2(A(p)

f ) on IgssFp
by composition with ϕp and ϕA(p)

f

.

2.3.1. Automorphisms. To study the Igusa variety, it will be useful to must compute
the quasi-isogenies of E0,S and G0,S over an arbitrary base S. We write QIsog(E0)

(resp. QIsog(G0)) for the functor sending S/Fp to the group of self quasi-isogenies
of E0 ×Fp

S (resp. G0 ×Fp
S).

Because D×(Q) = QIsog(E0)(Fp) and D×
p = QIsog(G0)(Fp), we obtain natural

injections

(2.3.1) D×(Q) ↩→ QIsog(E0), D
×
p ↩→ QIsog(G0).

Lemma 2.3.2. The natural injections (2.3.1) are isomorphisms.

Proof. It suffices to verify this on S-points for S = SpecR. For E0, we may moreover
assume R is of finite type over Fp, and then that R is reduced using that quasi-
isogenies lift along nilpotent ideals containing p. Then, the result follows from the
computation over algebraically closed fields.

For G0, we cannot argue in the same way as there is no a priori reason for en-
domorphisms of G0,R to be be defined over a finite type subring (consider, e.g.,
the endomorphisms of µp∞ ×Qp/Zp over OCp/p). Nonetheless, the statement that
QIsog(G0) = Dp is established in a more general context in the proof of [2, Propo-

sition 4.2.11]; the key point is that on Fp-algebras, by [2, Lemma 4.1.7, Corollary
4.1.10],

R -→ End(G0,R)

is the Tate module of an étale p-divisible group over Fp, and thus equal to the

constant sheaf on the Fp-points of that Tate module. □
2.3.3. Punctual uniformization. We obtain a map

(2.3.2) unifG0
: IgssFp

→ Y

as follows: any point x ∈ IgssFp
(R) can be represented by a triple (E0,ϕp,ϕA(p)

f

) such

that ϕp induces an isomorphism E0[p
∞] → G0, and such a triple is determined up

to prime-to-p isogeny of E0. We map x to the point

(E0,ϕA(p)
f

) ∈ Y (R).

We write Op := End(G0), a maximal order in Dp. Arguing as in the proof of
Lemma 2.3.2, we find O×

p represents the automorphisms of G0.

Lemma 2.3.4. The map unifG0 is is a trivializable O×
p -torsor over Y ss.

Proof. The map factors through Y ss because the Hasse invariant can be computed
in terms of the p-divisible group G0, and one finds that it is zero. It is also clear
from our identification Aut(G0) = O×

p that the map is a quasi-torsor; to conclude

it thus suffices to produce a section.
We write E for the universal elliptic curve up to prime-to-p isogeny over Y ss.

Then E[p∞] is isomorphic to G0 × Y ss: E is pulled back from any finite level, and
at finite level Y ss is just a finite union of points. One can choose an isomorphism at
each point because each curve parameterized is supersingular and G0 is the unique
height two connected p-divisible group over Fp up-to-isomorphism. The choice of
these isomorphisms provides a section, and we conclude. □
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2.3.5. Igusa variety as coset. We now fix a point

x0 = (E0,ϕp,0,ϕA(p)
f ,0

) ∈ Igss(Fp).

We write D := End(E0) ⊗ Q, a quaternion algebra over Q ramified at p and ∞.

The actions of D on E0[p
∞] and VA(p)

f

E, transported by ϕp,0 and ϕ
(p)
0 , induce an

identification

D×(Af ) = D×(Qp)×D×(A(p)
f ) = D×

p ×GL2(A(p)
f ).

In particular, we obtain a map D×(Q) → D×(Af ).
The action on the point x0 induces an orbit map

(2.3.3) D×
p ×GL2(A(p)

f ) → IgssFp
, g -→ xg.

We will show

Theorem 2.3.6. The orbit map for the point x0 factors through a

D×(Af ) = D×(Qp)×GL2(A(p)
f )-equivariant isomorphism

D×(Q)\D×(Af ) = D×(Q)\
!
D×

p ×GL2

!
A(p)

f

""
∼−→ IgssFp

.

Before proving Theorem 2.3.6, it will be helpful to recall the following basic
structural result for quaternionic double cosets. We write O = End(E0), a maximal
order in D, and consider the finite class set of right fractional ideals in O

D×(Q)\D×(Af )/(O ⊗ ,Z)× = D×(Q)\D×
p ×GL2(A(p)

f )/O×
p ×GL2(,Z(p)).

We may fix a finite set of representatives for the class set I and corresponding
representatives γI ∈ D×(Af ), I ∈ I for the double cosets. The stabilizer of I for
left multiplication in D×(Q) is the units in a maximal order OI , and we find

D×(Q)\D×(Af ) ∼=
/

I∈I

O×
I \γI(O ⊗ ,Z)× =

/

I∈I

O×
I \Isom(O ⊗ ,Z, I ⊗ ,Z)

where the the isomorphisms on the right are of right O ⊗ ,Z-modules. Because

each group O×
I is finite, if we replace O⊗ ,Z with a sufficiently small compact open

subgroup K ⊂ O ⊗ ,Z×, we obtain a finite set of representatives γI,i such that

D×(Q)\D×(Af ) ∼=
/

I∈I,i

γI,iK

In other words, we obtain a topological splitting of the locally profinite set D×(Af )
as a product of a discrete set and a profinite set,

(2.3.4) D×(Af ) ∼= D×(Q)×D×(Q)\D×(Af )

compatible with the left action of D×(Q) and the right action of K.

Proof of Theorem 2.3.6. By our computation of QIsog(E0), we deduce that the
orbit map factors as an injection on S points

D×(Q)(S)\D×(Af )(S) → IgssFp
(S)

From (2.3.4) we deduce

D×(Q)\D×(Af )(S) = D×(Q)(S)\D×(Af )(S),



P-ADIC J-L AND A QUESTION OF SERRE 13

and thus the orbit map factors through an injection

D×(Q)\D×(Af ) ↩→ IgssFp
.

It remains to show the map is surjective. To do so, it suffices to show that the
universal elliptic curve up to isogeny over IgssFp

is E0 × IgssFp
. But the universal

elliptic curve is the pullback from Y ss along unifG0 , and the statement follows as
in the proof of Lemma 2.3.4 by reduction to a finite set of points at finite level and
the fact that any two supersingular curves over Fp are isogenous. □

Corollary 2.3.7. The map unifG0
factors through an isomorphism

D×(Q)\D×(Af )/O×
p

∼−→ Y ss.

Proof. In the decomposition 2.3.4, one can choose K such that K = O×
p K

p for Kp

a compact open subgroup in D×(A(p)
f ). One thus obtains a topological splitting

D×(Q)\D×(Af ) ∼=
-
D×(Q)\D×(Af )/O×

p

.
×O×

p

compatible with the action of O×
p . The result then follows from Lemma 2.3.4. □

Remark 2.3.8. We have avoided the use of any Grothendieck topology because
our torsors are all trivializable. In particular, this sidesteps the following ques-
tion: for X a topological space and Γ a topological group acting on X, for which
Grothendieck topologies does X/Γ = X/Γ? Indeed, when X → X/Γ is a trivializ-
able Γ-torsor, this is already true at the level of presheaves.

2.3.9. Prime-to-p level structure. If we fix a compact open subgroup Kp, we may
consider the variant Igss

Kp,Fp
where ϕA(p)

f

is considered only up to a Kp-orbit. We

obtain

Theorem 2.3.10. The map of Theorem 2.3.6 induces D×
p -equivariant isomor-

phisms

D×(Q)\
!
D×

p ×GL2

!
A(p)

f

""
/Kp ∼−→ Igss

Kp,Fp

which compile to a D×
p ×GL2(A(p)

f )-equivariant isomorphism of towers
&
D×(Q)\

!
D×

p ×GL2

!
A(p)

f

""
/Kp

'

Kp

∼−→
!
Igss

Kp,Fp

"

Kp
.

Remark 2.3.11. There is no issue here in forming quotients on either side, as there
are sections from these finite prime-to-p level versions to the infinite prime-to-p level
versions.

2.3.12. Evaluation of modular forms. Over Y we have the modular line bundle ω
and its powers ωk. We write ωG0 := Lie(G0)

∗ with the natural action of O×
p . If we

pullback to Igss, then we obtain isomorphisms ωk
G0

⊗Fp
OIgss

∼−→ unif∗G0
ωk. More-

over, these isomorphism are equivariant for the natural actions of O×
p ×GL2(A(p)

f )

on both sides. In particular, we obtain a GL2(A(p)
f )-equivariant isomorphism

H0(Y ss,ωk)
∼−→ HomO×

p
(Lie(G0)

k, H0(Igss,O)).

Note that, by definition, we have an identification of LieG0 with Fp
2
/〈(1, 0)〉,

and of Op with the σ-centralizer of b in M2(Z̆p). In particular, the image of (0, 1)
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gives a basis element of LieG0, and O×
p acts on LieG0 = Fp through an explicit

character ε whose kernel is Np, the elements congruent to 1 modulo the maximal

ideal of Op. Combining with Theorem 2.3.6, we obtain a GL2(A(p)
f )-equivariant

isomorphism

(2.3.5) H0(Y ss,ωk)
∼−→ HomO×

p

!
εk,Cont

!
D×(Q)\Dp ×GL2(A(p)

f )/Np,Fp

""
.

We write

ANpK
p

Fp
:= Cont

!
D×(Q)\Dp ×GL2(A(p)

f )/NpK
p,Fp

"
.

Then, evaluating homomorphisms in the right-hand side of (2.3.5) on 1 ∈ Fp and
passing to Kp-invariants, we obtain Serre’s map, a Hecke equivariant isomorphism

(2.3.6) H0(Y ss
Kp ,ωk)

∼−→ ANpK
p

Fp
[εk].

2.4. Spectral decomposition of AKp

Fp
. If Kp is a compact open subgroup of

D×(Qp), then AKp

Fp
is an admissible representation of GL2(A(p)

f ) = D×(A(p)
f ), and

these subrepresentations exhaust AFp
as Kp varies. Thus, as explained in 2.1.3, if

Kp ⊂ GL2(A(p)
f ) is a compact open subgroup and T′ ⊂ Tabs

Kp ⊗Fp is a commutative

sub-algebra, AKp

Fp
admits a decomposition into generalized eigenspaces

(2.4.1) AKp

Fp
=

#

m

!
AKp

Fp

"

m

for the action of T′.
Using the results above, we find

Lemma 2.4.1. For m a maximal ideal of T′,
!
AKp

Fp

"

m
∕= 0 ⇐⇒

!
ANpK

p

Fp

"

m
∕= 0 ⇐⇒

#

k≥0

-
H0(XKp ,ωk)

.
m
∕= 0.

Proof. Suppose
0

k≥0

-
H0(XKp ,ωk)

.
m
∕= 0. For each k ≥ 0, we have a GL2(A(p)

f )-
equivariant exact sequence

0 → H0(X,ωk−(p−1))
·H−−→ H0(X,ωk)

restriction−−−−−−→ H0(Y ss,ωk).

Passing to Kp-invariants and localizing at m, we obtain

(2.4.2) 0 → H0(XKp ,ωk−(p−1))m
·H−−→ H0(XKp ,ωk)m

restriction−−−−−−→ H0(Y ss
Kp ,ωk)m.

By induction on k, we deduce that if H0(X,ωk)m ∕= 0 then H0(Y ss
Kp ,ωk′

)m ∕= 0 for

some 0 ≤ k′ ≤ k, and, applying Serre’s isomorphism (2.3.6), that
!
AKp

Fp

"

m
∕= 0.

Suppose
!
AKp

Fp

"

m
∕= 0. Then, because Np is a pro-p group and

!
AKp

Fp

"

m
⊂ AKp

Fp

is an admissible characteristic p representation of D×
p , it admits a nonzero Np-fixed

vector, and thus
!
ANpK

p

Fp

"

m
∕= 0.

Finally, suppose
!
AKp

Fp

"

m
∕= 0. Then, as

ANpK
p

Fp
=

#

k∈Z/(p2−1)Z

ANpK
p

Fp
[εk],
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we deduce that for some some k ≥ 0, ANpK
p

Fp
[εk]m ∕= 0. Because ω is ample on

XKp and εk only depends on k mod p2 − 1, we may choose this value of k large
enough that H1(XKp ,ωk) = 0. Then, the sequence (2.4.2) extends to a short exact
sequence; in particular, restriction induces a surjection

H0(XKp ,ωk)m ↠ H0(Y ss
Kp ,ωk)m.

Applying Serre’s isomorphism (2.3.6) we obtain H0(Y ss
Kp ,ωk)m ∕= 0, and thus

H0(XKp ,ωk)m ∕= 0.
□

Remark 2.4.2. If we compare Lemma 2.4.1 and Lemma 2.2.4, then the missing
third space in the statement of Lemma 2.2.4 is the space of functions on the (par-
tially compactified, big, ordinary) Igusa variety of Caraiani-Scholze [2, 3], which
parameterizes isomorphisms E[p∞] → µp∞ × Qp/Zp. One can again use a group
theoretic argument to show that the Hecke eigensystems here are the same as those
appearing in Igord1,Kp – in classical terms, one uses Frobenius to reduce to the small

Igusa variety of Katz, then reduces to Igord1,Kp by taking invariants under the pro-p
group 1 + pZp.

2.4.3. Consequences. Combining Lemmas 2.2.4 and 2.4.1, we obtain Theorem 1.1.1
of the introduction; only a finite number of maximal ideals can appear in the
decompositions because ANpK

p

is a finite dimensional Fp-vector space. We note
that this also proves a theorem of Jochnowitz [16] stating that there are only finitely
many eigensystems appearing in mod p modular forms.

3. The spectral p-adic Jacquet-Langlands correspondence

In this section we prove Theorem A: After recalling some preliminaries on per-
fectoid modular curve, modular forms, and p-adic modular forms in 3.1 and 3.2, in
3.3 we recall the relation between the perfectoid Igusa variety and the Hodge-Tate
period map. In 3.4 we use this relation to construct an evaluation map from clas-
sical modular forms to ACp . The key properties of this evaluation map are that
it is injective and has dense image; these are established in Theorem 3.4.1. To
finish the proof, we must then take a brief detour in 3.5 to establish some basic
results on completed Hecke algebras. We conclude in Theorem 3.6.1 by giving the
isomorphism of completed Hecke algebras of Theorem A along with some other
well-known isomorphisms.

3.1. Perfectoid modular curves. For K ⊂ GL2(Af ) a sufficiently small com-
pact open subgroup, we write YK for the modular curve over Cp parameterizing
elliptic curves up to isogeny equipped with K-level structure, i.e. a K-orbit of
trivializations A2

f → VfE (cf. [4] for a comparison of the up-to-isogeny and up-to-

isomorphism moduli problems). We write XK for its compactification.
We view both Y and X as adic spaces over Spa(Cp,OCp), and we consider the

infinite level perfectoid modular curves as in [21]

Y ∼ limYK , X ∼ limXK .

In loc. cit. one takes the limit with fixed level away from p, but there is no harm

in further taking the limit over prime-to-p level. The action of GL2(A(p)
f ) on the
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tower of YK by change of level (resp. its unique extension to the tower of XK)
induces an action on Y and X.

3.1.1. Modular forms. For any K as above there is a universal elliptic curve up
to isogeny π : E → YK . We consider the modular sheaf ω := π∗ΩE/YK

, and its
extension toX given by taking sections with holomorphic q-expansions at the cusps,
which we denote also by ω. These assemble to a GL2(Af )-equivariant family of line
bundles on the tower of XK .

Pulling back ω to infinite level gives a GL2(Af )-equivariant line bundle on X,
which we also denote ω. For K a sufficiently small compact open as above, we
have H0(X,ωk)K = H0(XK ,ωk) (the classical space of modular forms over Cp) –
indeed, it suffices to verify a similar identity locally in the analytic topology on YK ,
where it follows from the sheaf property of the completed structure sheaf on the
pro-étale site of YK .

We writeMk,Cp
:= colimKH0(XK ,ωk), an admissible representation of GL2(Af ).

By the above discussion, pullback to X identifies Mk,Cp
with H0(X,ωk)sm, the set

of smooth vectors for the GL2(Af )-action on H0(X,ωk).

Remark 3.1.2. As in the mod p case, to obtain a GL2(Af )-action inducing the
standard Hecke action, one should replace ωk with Ω(cusps) ⊗ ωk−2. Again, this
because the Kodaira spencer isomorphism

ω2 = Ω(cusps)

introduces a twist by the unramified determinant character. This twisting factor is
trivial on any compact open and serves only to replace each Hecke operator with a
multiple. In particular, after passing to Zp, the multiples appearing in the prime-
to-p Hecke action become invertible, and thus will not change the completed Hecke
algebra. In particular, it is reasonable to include the twist only “when convenient,”
that is, when comparing with singular/étale cohomology.

3.1.3. The Hodge-Tate period map. In [21], Scholze constructs the Hodge-Tate pe-
riod map,

πHT : X → P1
Cp
.

Over Y , it is the classifying map for the line

LieE(1) ⊂ VpE ⊗ ,O ∼= O2

given by the Hodge-Tate filtration for the universal elliptic curve and the trivial-
ization of its relative Tate module.

The map πHT is GL2(Af )-equivariant, and there is a natural isomorphism of
GL2(Af )-equivariant line bundles

π∗
HTO(1) = ω ⊗Qp(−1).

We fix a trivialization of Qp(−1) by choosing a compatible system of roots of
unity in Cp in order to identify

π∗
HTO(1) = ω

as GL2(Af )-equivariant bundles.

Remark 3.1.4. Qp(−1) can also be trivialized on the perfectoid modular curve
at infinite level over Qp (rather than Cp) by using the Weil pairing. However, this
trivialization is not GL2(Af )-equivariant – instead it introduces a twist.
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3.2. p-adic modular forms. If we fix a set of cusps c1, . . . , cm, one in each con-
nected component of XGL2(Zp)Kp,Q̆p

, then we obtain q-expansion injections

M
GL2(Zp)K

p

k,Q̆p
→

m$

i=1

Z̆p[[q]][1/p]

Following Serre [26], we define the space of p-adic modular forms of level Kp,

VKp

Q̆p
, to be the Q̆p-Banach space given by completing the joint image of these

q-expansion maps over all k for the natural Banach topology on Z̆p[[q]][1/p]. The
prime-to-p abstract Hecke algebra Tabs acts uniformly on q-expansions in this topol-
ogy, and thus the action extends to VKp

Q̆p
. There is a surjective Hecke equivariant

reduction map from the unit ball in p-adic modular forms to mod p modular forms.

Remark 3.2.1. Just as mod p modular forms can be realized as functions on the
first level of the ordinary Igusa tower, Katz has shown that p-adic modular forms
can be constructed as the space of functions that are holomorphic at the cusps on

the Katz-Igusa formal scheme parameterizing isomorphisms ,E → 1Gm. Indeed, this
is essentially [18, Theorem 2.1], except that Katz works in the setting of connected
modular curves at full prime-to-p level Γ(N).

3.3. The perfectoid supersingular Igusa variety. Recall that in 2.3 we fixed
a model connected height two p-divisible group G0 over Fp. The perfectoid super-
singular Igusa variety IgssCp

as in [2, Section 4] is the perfectoid space over Cp whose

points on an affinoid perfectoid (R,R+) over Cp are identified with triples

(E,ϕp,ϕ
(p))

where E/(R+/p) is an elliptic curve up to quasi-isogeny,

ϕp : E[p∞] → G0

is a quasi-isogeny, and ϕ(p) is a trivialization of VA(p)
f

E.

It is the adic generic fiber (in the sense of [23]) of the base change to OCp
of the

Witt lift of IgssFp
(a p-adic formal scheme). By Theorem 2.3.6, we deduce that it is

equivariantly isomorphic to the profinite set

D×(Q)\D×(Af )

viewed as a perfectoid space; in other words,

IgssCp
∼= Spa(ACp ,AOCp

).

3.3.1. Uniformization of fibers of πHT. We fix now a p-divisible group G/OCp , a
quasi-isogeny

ρG : GOCp

∼−→ G0,OCp/p
,

and a trivialization ϕp,η : TpG(OCp
)

∼−→ Z2
p. By the Scholze-Weinstein classification

[23], the pair (G,ϕp,η) is equivalent to a point x ∈ P1(Cp)\P1(Qp). As it will be
convenient later, we chose our data so that x is in the affinoid ball B1 : |X/Y | ≤ 1.

The lifting data ρG determines a point x∞ ∈ 2MLT,∞(Cp) of the perfectoid Lubin-

Tate space lying in π−1
HT,loc(x).

From this data we obtain a map

unifx∞ : IgssCp
→ X
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On points in an affinoid perfectoid (R,R+), it sends (E,ϕp,ϕ
(p)) to the generic

fiber of the lift of E to R+ determined through Serre-Tate lifting theory (cf. [17,
Section 1]) by

ρ−1
G ◦ ϕp : E[p∞] → GR+/p,

equipped with the level structure determined by ϕp,η and the unique lift of ϕ(p).

By construction, unifx∞ factors through the closed subset π−1
HT(x) ⊂ X∞,Cp . The

latter is a Zariski closed subset of a perfectoid space, and thus admits a canonical
structure of a perfectoid space through which unifx∞ factors (because the domain
is also a perfectoid space).

In addition to the obvious GL2(A(p)
f )-equivariance, the map unifx∞ also satisfies

an equivariance at p: if we write Tx for the group of non-zero quasi-isogenies of G,
then ϕp,η identifies Tx with the stabilizer of x in GL2(Qp), and ρG identifes Tx with

a subgroup of D×
p . In particular, Tx acts on π−1

HT(x) as well as IgssCp
, and unifx∞

is equivariant for these actions. The group Tx is equal to either Q×
p or F× for a

quadratic extension F/Qp; the latter occurs exactly when x ∈ P1(F )− P1(Qp).

Theorem 3.3.2. The map unifx∞ induces a Tx × GL2(A(p)
f )-equivariant isomor-

phism of perfectoid spaces

unifx∞ : D×(Q)\D×(Af ) ∼= IgssCp

∼−→ π−1
HT(x).

Proof. The map unifx∞ is the restriction to IgssCp
× x∞ of a map

unif : IgssCp
×Spa(Cp,OCp )

2MLT,∞,Cp → X

defined similarly. There is a local Hodge-Tate period map

πHT,loc : 2MLT,∞,Cp → P1
Cp
,

and by [2, Lemma 4.3.20] (cf. also [2, Definition 4.3.17]), the diagram

IgKp,Cp
×Spa(Cp,OCp )

2MLT,∞,Cp
!!

unif

""

2MLT,∞,Cp

πHT,loc

""
X∞Kp,Cp

πHT !! P1

is Cartesian on perfectoid spaces. Thus, because πHT,loc(x∞) = x, we find that
unifx∞ induces an isomorphism between the functors of points of IgKp,Cp

and

π−1
HT(x) on perfectoid spaces. Because both are perfectoid spaces, and a perfec-

toid space is determined by its functor of points on perfectoid spaces, we conclude
unifx∞ is an isomorphism. □

3.4. Evaluation of modular forms. Any basis for the fiber of O(1) at x ∈ P1(Cp)

induces a GL2(A(p)
f )-equivariant trivialization of ω|π−1

HT(x). In particular, if we take

as basis the section Y |x, we obtain a GL2(A(p)
f )-equivariant map from classical

modular forms

evalx∞ :
#

k≥0

Mk,Cp → ACp

!
= H0(IgCp

,O)
"
.
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Theorem 3.4.1. The map evalx∞ is injective and has dense image. Moreover, for

any compact open Kp ⊂ GL2(A(p)
f ) the restriction

evalK
p

x∞
:
#

k≥0

MKp

k,Cp
→ AKp

Cp

is also injective with dense image.

Proof. We first show injectivity: because z ∈ Z×
p ⊂ Tx acts as multiplication by zk

on our fixed trivialization Y |x, we deduce that for any compact openKp ⊂ GL2(Qp),

the image of M
Kp

k,Cp
transforms under zk for the action of z ∈ Kp ∩ Z×

p . Thus, the

image of Mk,Cp lands in the subspace ACp [k] of vectors on which the action of
the central Z×

p is differentiable with derivative k. In particular, there can be no
cancellation between the different degrees k.

To show the map is injective on each Mk,Cp , we first observe that for K = KpK
p

a compact open subgroup of GL2(Af ), the image of π−1
HT(x) in XK(Cp) intersects

every connected component of XK,Cp in an infinite set – indeed, the map factors as
an injection from D×(Q)\D×(Af )/(Kp ∩ Tx) · Kp, and the connected component
of the image in XK,Cp is recorded by the map

g = gp × (gℓ)ℓ ∕=p -→ Nrd gp · |Nrd gp|p ·
$

ℓ ∕=p

|detgℓ|ℓ

with values in Z×
p modulo the image of K.

If s is a non-zero section of a line bundle on XK,Cp then there is at least one
connected component where it has only finitely many zeroes. Thus, any section of
ωk over XK which vanishes upon restriction to π−1

HT(x) is identically zero, and we
conclude the map is injective.

We now show the map has dense image. By assumption, x is contained in the
affinoid

B1 : |X|/|Y | ≤ 1 ⊂ P1,

and the results of [21] give that U := π−1
HT(B1) is affinoid perfectoid. By [1, Remark

7.5] (Zariski closed implies strongly Zariski closed; cf. also [21, Definition II.2.6]),
we find that the map

H0(U,O+)
∼−→ H0(π−1

HT(x),O
+) = AOCp

is almost surjective; in particular, the image contains pAOCp
.

Thus, given f ∈ p · AOCp
, we can lift it to f̃ ∈ H0(U,O+). By the method of

fake Hasse invariants (cf. [21, Proof of Theorem 4.3.1, pp. 1028-1031]), we find
that for any n > 0 there is a k sufficiently large and K sufficiently small such that
Y kf̃ is approximated mod pn on U by an element of α ∈ MK

k,Cp
: concretely, this

means

α/Y k ∈ H0(U,O+)

and is equal to f̃ mod pn. Thus, the image of α under evalx∞ is equal to f
mod pn, and we conclude the image is dense. The same argument can be run using
everywhere the perfectoid space with fixed prime-to-p level Kp, giving the result
also on Kp-invariants.

□
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3.5. Completed Hecke algebras. In order to deduce Theorem A from Theorem
3.4.1, we must first take a detour to develop some tools for comparing completed
Hecke algebras. To clarify the statements, we abstract to the setting of general
algebra actions on p-adic Banach spaces; we refer the reader to the introduction of
[25] for basic definitions and results on Banach spaces over non-archimedean fields.

3.5.1. Completing actions.

Definition 3.5.2. An action of a (not necessarily commutative) ring A by bounded
operators on a Banach space V is uniform if for all a ∈ A and v ∈ V ,

||a · v|| ≤ ||v||.

Definition 3.5.3. If A is a ring, K is a non-archimedean field, and (Wi) is family
of Banach spaces equipped with uniform actions of A, the completion2 of A with

respect to (Wi)i∈I is the closure ,A of the image of A in
$

i∈I

Endcont(Wi)

where each Endcont(Wi) is equipped with the strong operator topology (the topol-
ogy of pointwise convergence for the Banach topology on Wi) and the product is
equipped with the product topology.

Remark 3.5.4. We highlight that the definition of ,A does not depend on the
specific norm on each Wi, only on the underlying topology.

We give two equivalent characterizations of the elements of ,A:

Lemma 3.5.5. In the setting of Definition 3.5.3:

(Nets):
3

i fi ⊂ ,A if and only if there exists a net aj ∈ A such that for any
i ∈ I and any w ∈ Wi,

lim aj · w = fi(w).

(Congruences): For each i ∈ I, fix a choice W ◦
i of a lattice in Wi preserved

by A (e.g., the elements of norm ≤ 1). Then,
3

i fi ∈ ,A if and only
if fi preserves W ◦

i for each i, and for any finite subset S ⊂ I and any
topologically nilpotent π ∈ K, there exists a ∈ A such that for each i ∈ S,
a and fi have the same image in

End(W ◦
i /π).

Proof. The characterization (Nets) is immediate from the definition of the strong
operator topology as the topology of pointwise convergence of nets and the char-
acterization of the product topology as the topology of term-wise convergence of
nets.

The characterization (Congruences) then follows by considering nets on the di-
rected set of finite subsets of I times N (where N is interpreted as the power of
some fixed uniformizer) to show that (Congruences) implies (Nets). □

2in the literature on Hecke algebras this is sometimes referred to as the weak completion; we
avoid this terminology because of a conflict with terminology in functional analysis, where this is
the completion for the strong operator topology.
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Using either the characterization in terms of nets plus uniformity of the action,

or the characterization in terms of congruences, we find that ,A is again a ring. It
is equipped with a natural structure as an A-algebra.

Remark 3.5.6. By (Congruences), we can also construct ,A as the closure of the
image of A in $

End(W ◦
i /π)

where the product is over all possible choices of i ∈ I, a lattice W ◦
i ⊂ Wi, and a

topologically nilpotent π, and each term has the discrete topology.

3.5.7. Relating completions. The following lemma says that completion is insensi-
tive to base extension. This is useful for us as our comparisons of Hecke-modules
take place over large extensions of Qp, whereas one is typically interested in Hecke
algebras over Zp.

Lemma 3.5.8. Let K ⊂ K ′ be an extension of complete non-archimedean fields,
and let A be a (not-necessarily commutative) ring. Suppose (Wi) is a family of or-
thonormalizable Banach spaces over K equipped with uniform actions of A. Then
the identity map A → A extends to a topological isomorphism between the comple-
tion of A acting on (Wi) and the completion of A acting on (Wi,⊗KK ′).

Proof. We note that for a bounded net φj of bounded operators on a orthonor-
malizable Banach space, φj → f in the strong operator topology if and only if
φj(e) → f(e) for any element e of a fixed orthonormal basis.

In particular, because an orthonormal basis for Wi is also an orthonormal basis
for Wi ⊗K K ′, we find that the completion for (Wi) injects into the completion for
(Wi,⊗KK ′). More over, since Wi is closed inside of Wi,⊗KK ′ and preserved by A,
we find that for any net aj ∈ T′ and element e in the orthonormal basis, limj aj(e)

is in Wi if it exists. Thus, an element in the completion for (Wi,⊗KK ′) comes from
an element in the completion for (Wi). □

The following lemma is our main technical tool for comparing completed Hecke
algebras. It says that the completion is determined by any family of invariant
subspaces whose sum is dense.

Lemma 3.5.9. Let K be a non-archimedean field, and let A be a (not-necessarily
commutative) ring. Suppose V is an orthonormalizable K-Banach space equipped
with a uniform action of A, and (Wi)i∈I is a family of topological vector spaces over
K equipped with A-actions and continuous A-equivariant topological immersions

ψi : Wi ↩→ V.

If
4

Imψi is dense in V , then the identity map on A induces an isomorphism
between the weak completion of A acting on (Wi)i∈I and the weak completion of A
acting on V .

Remark 3.5.10. In this setup, the action of A on Wi is automatically uniform
for the restriction to Wi of the norm on V , which, by hypothesis, induces the same
topology.

Proof. Denote by ,AV ⊂ End(V ) the strong completion of A acting on V , and
,AW ⊂

3
End(Wi) the strong completion of A acting on (Wi)i∈I .
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We first show there is a map ,AV → ,AW extending the identity map A → A:

Let φ ∈ ,AV , and let φj be a net in the image of A approaching φ. For w ∈ Wi

(considered as closed subspace of V via ψi),

φ(w) = lim
j

φj(w).

For each j, φj(w) is contained in Wi by the A-equivariance of ψi, and thus, since
Wi is closed, φ(w) ∈ Wi. Thus, φ preserves Wi. Using this, we obtain a map

,AV →
$

i

End(Wi)

extending the map A →
3

i End(Wi). Furthermore, it follows immediately that the

image lies in ,AW .
The map is injective by the density of

4
Wi ⊂ V . We show now that it is

surjective. By the density of
4

Imψi, we may choose an orthonormal basis for V
contained in the image of ⊕Wi. A bounded net of operators in End(V ) converges if

and only if it converges on each element of an orthonormal basis. Now, if φ ∈ ,AW

is the limit of a net φj in the image of A, then we see that φj(e) converges for each
element e of the orthonormal basis, and thus φj also converges in End(V ), and its
limit maps to φ, as desired.

Thus the map ,AV → ,AW is bijective. By similar arguments, the weak topologies
agree, and thus the map is a topological isomorphism. □

3.6. Comparison of completed Hecke algebras. We now prove Theorem A:

Let Kp ⊂ GL2(A(p)
f ) = D×(A(p)

f ) be a compact open subset, let

Tabs
Kp = Zp[K

p\GL2(A(p)
f )/Kp],

and let T′ ⊂ Tabs be a commutative Zp-subalgebra. Combining Theorem 3.4.1 and

Lemma 3.5.9, we conclude that the completion of T′ acting on (M
KpK

p

k,Cp
)Kp,k is

equal to the completion of T′ acting on AKp

Cp
. Note that all of these are naturally

the base extensions of Hecke modules defined over Qp, and invoking Lemma 3.5.8,
we find that we can replace Cp with Qp on both sides (to apply the result, note

that AKp

Qp
admits an orthonormal basis by lifting any algebraic basis of AKp

Fp
).

On the other hand, combining the definition of the space of p-adic modular forms
VKp

Q̆p
(cf. 3.2) and Lemma 3.5.9, we find that the completion of T′ acting on VKp

Q̆p
is

equal to the completion of T′ acting on (M
GL2(Zp)K

p

k,Q̆p
)k, and again by Lemma 3.5.8

we may replace Q̆p with Qp in the latter.
Thus, to deduce Theorem A, that is, that the completed Hecke algebra for the

action of T′ on AKp

Qp
is equal to the completed Hecke algebra for the action of T′

on VKp

Q̆p
, we must show that the completed Hecke algebra for modular forms of all

weights k and fixed p-level GL2(Zp) is equal to the completed Hecke algebra for
modular forms of all weights k and varying p-level. This is basically a well-known
result of Hida [10, Equation (1.7)], however, we are not aware of a full proof in the
literature, or even a statement written down in suitable generality for the present
application. Thus we include a proof here, arguing with completed cohomology as
explained by Emerton [6, Remarks 5.4.2 and 5.4.3].
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Theorem 3.6.1. The identity map T′ → T′ extends to a homeomorphism of the
completed Hecke algebras T′ acting on the following:

(1)
!
M

KpK
p

k

"

k,Kp

for k varying over all non-negative integers and Kp varying

over all compact open subgroups of GL2(Qp),

(2)
!
M

GL2(Zp)K
p

k

"

k
for k varying over all non-negative integers, and

(3)
!
M

KpK
p

2

"
, for Kp varying over all compact open subgroups of GL2(Qp).

(4) The completed cohomology of the modular curve at level Kp (cf. [5]).

,H1
Kp :=

5
lim←−
m

lim−→
Kp

Hi(YKpKp(C),Z/pmZ)

6
[1/p]

(5) The space of quaternionic automorphic forms AKp

Qp

(6) The space of p-adic modular forms VKp

Q̆p
.

Proof. We have already established the identities of completed Hecke algebras
(1)=(5) and (2)=(6). We will conclude by identifying (4)=(1), (4)=(2), and (4)=(3).

Let pr : EK → YK(C) be the univeral elliptic curve over YK(C) and let Symk

be the kth symmetric power of R1pr∗Z, a GL2(Af )-equivariant local system on the

tower (YK(C))K . From our fixed isomorphism Qp
∼= C, we obtain for each k ≥ 2

and Kp a Tabs-equivariant injection

(3.6.1) M
KpK

p

k,Qp
↩→ H1(YKpKp(C), Symk−2)⊗ Cp

given by composing the maps

M
KpK

p

k,Qp
↩→ M

KpK
p

k,C ↩→ H1(YKpKp(C), Symk−2)⊗ C

↩→ H1(YKpKp(C), Symk−2)⊗ Cp,

where the second arrow comes from the classical Eichler-Shimura isomorphism and
the last arrow comes from composition of the isomorphism Qp

∼= C with Qp ↩→ Cp.
It follows from the Eichler-Shimura isomorphism that (3.6.1) induces an isomor-

phism on the image of T′ in the respective endomorphism rings. If we denote 1T′
aux

the completed Hecke algebra for T′ acting on the family
!
H1(YKpKp(C), Symk−2)⊗ Cp

"

Kp,k
,

then we deduce that 1T′
aux is isomorphic to the completed Hecke algebra for (1). By

Lemma 3.5.8, 1T′
aux is also the completed Hecke algebra for T′ acting on

!
H1(YKpKp(C), Symk−2)⊗Qp

"

Kp,k
.

As in [5, 6]3

H1(YKpKp(C), Symk−2)⊗Qp ↩→ HomKp(Sym
k−2Q2

p,
2H1

Kp).

3Note that our normalizations for actions are different, so that we obtain a Symk−2 in the
source of the Hom whereas in [5, 6] there is a (Symk−2)∗ (cf. [6, last paragraph of Section 2].)
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Thus, if we fix for each k ≥ 2 a non-zero vector in (Symk−2Q2
p), then pairing with

these vectors gives Hecke-equivariant injections

H1(YKpKp(C), Symk−2)⊗Qp ↩→ ,H1
Kp

whose joint image is dense (indeed, it is already so if we fix k = 2), and thus we

deduce from Lemma 3.5.9 that 1T′
aux is isomorphic to the completed Hecke algebra

for (4), establishing (1)=(4). Then, running the same argument using only weight
two modular forms, we find (2)=(4).

Arguing similarly and using the density of GL2(Zp)-algebraic vectors in ,H1
Kp

(specifically of the ones which transform locally as Symk−2Q2
p for some k; we do

not need to also allow for arbitrary twists by a determinant), we obtain (3)=(4). □

Remark 3.6.2. From our perspective (cf. Remark 2.4.2), instead of p-adic modular
forms it is more natural to consider the larger space of p-adic automorphic forms
given by functions on the Caraiani-Scholze Igusa formal scheme over the ordinary
locus, which parameterizes isomorphisms

E[p∞]
∼−→ µp∞ ×Qp/Zp

Indeed: an argument identical to the one given in this section for the supersingular
Igusa variety but starting with the point

x = [0 : 1] ∈ P1(Qp)

shows that the completed Hecke algebra of this space of p-adic automorphic forms
is the same as the one appearing in Theorem 3.6.1.

Moreover, this space of p-adic automorphic forms admits an action of a very

large unipotent group at p, and using this action one can produce a GL2(A(p)
f )-

equivariant projection operator (a type of Kirillov functor) to Katz p-adic modular
forms which can in turn be used to deduce an isomorphism of completed Hecke
algebras – we explain this statement and related results in [11] (cf. also [13]). In
this way one obtains a proof of Theorem A that does not pass through singular/étale
cohomology to show that level and weight families of classical modular forms give
rise to the same completed Hecke algebra.
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