If L/K is a field extension
\[\alpha_1, \ldots, \alpha_n \in L \]
$K(\alpha_1, \ldots, \alpha_n)$ is the smallest subfield of L containing $K, \alpha_1, \ldots, \alpha_n$.

Note: $K(\alpha_1, \alpha_2, \ldots, \alpha_n) = K(\alpha_i)(\alpha_{2i-1}, \ldots, \alpha_{2n})$
\[= (K(\alpha_1))(\alpha_2)(\alpha_3)(\alpha_4, \ldots, \alpha_n). \]

In a set $\alpha_i \in L \; i \in I$.
Then $K(\alpha_i \mid i \in I)$.

If $L = K(\alpha_1, \ldots, \alpha_n)$ for $\alpha_1, \ldots, \alpha_n \in L$, then L is finitely generated over K.

If $[L:K] < \infty$, L is a finite extension of K.

Example $K(x)/K$ is not finite.
But it is finitely generated.
Field of rational functions in the variable x over K.

L/K is algebraic if every $\alpha \in L$
\[\text{is algebraic over } K. \]
(Transcendental otherwise).

Theorem L/K is finite if $[L:K] < \infty$.

if and only if L/K is finitely generated and algebraic.

Main lemma: If L/K is finite, then L/K is algebraic.

Other main lemma: If $M/L/K$ then $[M:K] = [M:L][L:K]$.

Proof Let $\alpha \in L$ and $d = [L:K]$.

$$1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^d$$

$d+1$ vectors in d-dimensional space.

There is a non-trivial linear dependence:

$$a_0 \cdot 1 + a_1 \alpha + a_2 \alpha^2 + \cdots + a_d \alpha^d = 0$$

$a_i \in K$.

$$f(\alpha) = a_0 + a_1 \alpha + a_2 \alpha^2 + \cdots + a_d \alpha^d$$

This is a non-zero polynomial w.r.t. α in K.

$$f(\alpha) = 0$$

So α is algebraic.

Theorem: If K is a field and f is a non-constant polynomial over K
Then \(\exists \) an extension \(L/K \) s.t. \(f \) has a root in \(L \).

Proof: \(K[y] \) is a PID

Take an irreducible factor \(g(x) \) of \(f(x) \).

\[L = \frac{K[y]}{g(y)} \] is a field

Claim: \(\bar{y} \) for the image of \(y \) in \(L \), then \(\bar{y} \) is a root of \(f(x) \) and \(LC(y) \)

Need to check \(f(\bar{y}) = 0 \) in \(L \)

\(f(x) = g(x)h(x) \).

\[f(\bar{y}) = g(\bar{y})h(\bar{y}) \]

\(h \) suffice to show \(g(\bar{y}) \) is zero.

\[g(\bar{y}) \in L = \frac{K[y]}{g(y)} \]

\[a(n) \overset{df}{=} \lambda(n) \text{ and } \mu(n) \]
Uniqueness statement: If L_1/K, L_2/K are both roots of an irreducible $f(x) \in K[x]$, then there is an isomorphism of extensions of K

$$L_1 \cong L_2$$

The unique isomorphism sends a to b.

Example $\phi(e^{2\pi i/3}) = e^{2\pi i/3}$.

This isomorphism is not typically unique, but here it is explicitly term of the extra data.
Remark: If \(F \in K[x] \) and \(L_1/K \), \(L_2/K \) are extensions. Then any \(\psi : L_1 \to L_2 \) s.t. \(\psi|_K = \text{Id} \), sends roots of \(f \) in \(L_1 \) to roots of \(f \) in \(L_2 \).

If \(\alpha \in L_1 \) is a root of \(f \):

\[
f = a_0 + a_1x + \ldots + a_dx^d
\]

\(a_i \in K \).

\[
\psi(f(\alpha)) = \psi(a_0 + a_1\alpha + \ldots + a_d\alpha^d)
\]

\[
= \psi(a_0) + \psi(a_1)\psi(\alpha) + \ldots + \psi(a_d)\psi^d(\alpha)
\]

\[
= a_0 + a_1\psi(\alpha) + \ldots + a_d\psi^d(\alpha)
\]

\[
= f(\psi(\alpha))
\]

\(\implies f(\alpha) = 0 \quad f(\psi(\alpha)) = \psi(f(\alpha)) = \psi(0) = 0 \).
Bootstrap: Splitting field.

If $F \subseteq K(x)$ then an extension L/K is a splitting field for F if

1. F factors into degree 1 polynomials in $L(X)$.

2. If $\alpha_1, \ldots, \alpha_s$ are the roots of F, $\text{deg}(F)$.

Then $L = K(\alpha_1, \ldots, \alpha_s)$.

Theorem: Splitting fields exist and any 2 are isomorphic as extensions of K.

Proof: For existence - suffices to construct an extension satisfying (1) then take subext. generated by roots.

Do by induction on degree.

Note: If L/K is a splitting field for F then $[L:K] \leq \text{deg}(F)$.
Given a field K, is there an extension L/K s.t. any polynomial splits into linear factors in L?

Theorem/Defn: There exist such an extension which is unique, up to isomorphism, such an L is called an algebraic closure of K.

Proof
1) Construct an extension where all polynomials split.
2) Show that the subfield of elements algebraic over K is a field.
3) Build up uniquely from splitting field uniqueness.

Part 2: Claim if L/K then
\[L^{\alpha,B} \leq L \]
\[\{ \alpha \in L \mid \alpha \text{ is algebraic} \} \]
i.e. a subfield.

Need to check, e.g., if \(\alpha, \beta \) are algebraic then so is \(\alpha + \beta \leq^{-1} \alpha \beta = \alpha. \)

Note if \(f(\alpha) = 0 \) \(g(\beta) = 0 \)

It's not clear if \(h \) \(h(\alpha + \beta) = 0. \)

\[\alpha + \beta \in K(\alpha, \beta) \]

\[K \leq K(\alpha) \leq K(\alpha, \beta) \]

\[\text{finite extn.} \quad \text{finite extn.} \]

so \(K(\alpha, \beta)/K \) is finite

\[(K(\alpha, \beta):K) \leq (K(\alpha):K) (K(\alpha, \beta):K(\alpha)) \]

Finite \(\Rightarrow \) algebraic.
Example: Every polynomial in \(\mathbb{C}[X] \) splits by Liouville's Theorem.

- \(\mathbb{C}/\mathbb{Q} \) is a field extension \(\overline{\mathbb{Q}} := \mathbb{C} \) is an algebraic closure of \(\mathbb{Q} \).