SAS: $\text{GL}_2(\mathbb{F}_3) \times \mathbb{F}_3^2 \times \mathbb{F}_3^2$

(i.e. pairs of column vectors $\begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \end{pmatrix}$)

Q: How many orbits are there for this action?

First orbit: $\begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \end{pmatrix}$ s.t. $\vec{v}_1 \neq \vec{v}_2$

are linearly independent.

If (\vec{v}_1, \vec{v}_2) are lin. ind.,

• (\vec{w}_1, \vec{w}_2) are lin. ind.

Then there exists a linear transformation sending \vec{v}_1 to \vec{w}_1 and \vec{v}_2 to \vec{w}_2

and its inverse.

Second orbit: $\{ (0, \vec{v}) \}$

1 of these $\rightarrow (\vec{v}, \lambda \vec{v})$ for $\vec{v} \neq \vec{0}$ and $\lambda \in \mathbb{F}_3$

(1 of these $\rightarrow (0, \vec{v})$ for $\vec{v} \neq \vec{0}$, $\vec{v} \cdot (\vec{v}, \lambda \vec{v}) = (\vec{v}, \lambda \vec{v})$)
How many elements are in the conjugacy class of $E_{1,0}^0$ in $GL_2(\mathbb{F}_5)$?

30.

Linear algebra answer: M conjugate to $E_{1,0}^0$ if

$$M \text{ has eigenvalues } 1, i, -1, \text{ each with multiplicity } 1.$$

To give M, just need to give the 1-dim subspaces

$$V_1 \subseteq \mathbb{F}_5^2 \quad V_{-1} \subseteq \mathbb{F}_5^2$$

such that $Mv = v$ for $v \in V_1$ and $Mv = -v$ for $v \in V_{-1}$.

$$\Rightarrow 5^{+1} \quad V_1 \neq V_{-1}.$$

6 1-dim subspaces of \mathbb{F}_5^2

\Rightarrow 6 choices for $V_1 \times 5$ choices for V_{-1}

$= 30$.
Group Theory reason: 1 orbit of $\mathbb{Z}_4^{1.0}$ under conjugation, $|\text{stab} \, [0.1]| = \frac{|\text{stab} \, [1.0]|}{1}$

$\text{stab} \, [0.1] = \left[\begin{smallmatrix} 0 & 0 \\ 0 & \alpha \end{smallmatrix} \right] \alpha \in \mathbb{F}_5$

has order $\alpha^2 = 16$.

$|\text{GL}_2(\mathbb{F}_5)| = (5^2-1)(5^2-5) = 4 \cdot 6 \cdot 5 \cdot 1$

1. Every group of order $121 = 11^2$ is abelian.

 TRUE. (In class we saw this).

2. Every group of order 573.19 is abelian.

 FALSE: $\mathbb{Z}/19\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

 True $\mathbb{Z}/3\mathbb{Z} \rightarrow (\mathbb{Z}/19\mathbb{Z})^x \cong \mathbb{Z}/18\mathbb{Z}$

 non-trivial map

3. Every group of order $91 = 7.13$ is cyclic.

 TRUE $\eta_3 = 1$, $\eta_7 = 1$.

6.5

11

30
4. Every subgroup of Q_8 is normal.
 TRUE. (In an exercise).

5. The dihedral group D_{30} is solvable.
 TRUE — rotations are a normal subgroup of index 2.

6. There is a simple group of order 60.
 TRUE: A_5.

7. There is a simple group of order 168.
 TRUE: $GL_3(\mathbb{F}_2)$. (In class).

8. There is a simple group of order 88 = 8.11
 FALSE: A_{11}.

9. There is a simple group of order 360 = $2^3 \cdot 3^2 \cdot 5$.
 TRUE: A_6.

10. There is a simple group of order 256 = 2^8.
 FALSE: Groups prime power order are solvable.

 SA

1. How many Sylow 7-subgroups in a simple group of order $169 = 2^3 \cdot 7$.
 \[n_7 = 1 \text{ or } 9 \]
 but can't be 1 because simple.
2. How many conjugacy classes in S_5?

- $\{e\}$
- $(12)(34)$
- 2-cycles, 2×2-cycles
- 3-cycles, $A_4 2$-cycle + 3 cycle $(12)(345)$
- 4-cycles
- 5-cycles

3. How many elements are in the center of D_{14}?

1. $\mathbb{Z}(D_{14}) = \{e\}$.

180° rotation isn't a symmetry if a mirror runs when n is odd.