
6320-001 - SPRING 2021 - WEEKS 11-12 (3/30, 4/01, 4/06, 4/08)

1. The next two weeks in 6320

3/30 – Galois extensions and the fundamental theorem of Galois theory.
4/01 – Cyclotomic fields.
4/06 – Galois groups of polynomials.
4/08 – Solvability in radicals.

The basic results and definitions in Galois theory:
If L is a field and S ⊂ Aut(L) is a subset, we write

LS ∶= {ℓ ∈ L ∣ σ(ℓ) = ℓ∀σ ∈ S}.
It is simple to check that it is a subfield, called the fixed field of the collection of automorphisms S.
We will use this especially when S is a subgroup of Aut(L).

If L is a field and M ⊂ L is a subset, we write

Fix(M) ∶= {σ ∈ Aut(L) ∣ σ(m) =m∀m ∈M}.
It is simple to check that it is a subgroup; it consists of all automorphisms of L that act trivially
(i.e., restrict to the identity) on M . We will use this especially when M is a subfield.

Theorem (Galois extensions and the fundamental theorem of Galois theory).
For L/K a finite extension, ∣Aut(L/K)∣ ≤ [L ∶K], and the following are equivalent:

(1) [L ∶K] = ∣Aut(L/K)∣.
(2) K = LAut(L/K),
(3) L/K is separable and normal: that is, if α ∈ L, the minimal polynomial mα(x) ∈ K[x] of α

over K has degmα distinct roots in L.
(4) L/K is a splitting field of a separable polynomial in K[x],

When these equivalent conditions hold, L/K is called a Galois extension. Moreover, if L/K is a
Galois extension then there is an inclusion reversing bijection

{Intermediary field extensions L ⊇M ⊇K} ↔ {Subgroups {e} ≤H ≤ Aut(L/K)}
M ↦ Fix(M)
LH ↤ H.

Furthermore, for any intermediary extension L ⊇M ⊇K,

(1) ∣Fix(M)∣ = [L ∶M] and [Aut(L/K) ∶ Fix(M)] = [M ∶K].
(2) L/M is Galois and Aut(L/M) = Fix(M),
(3) M/K is Galois if and only if Fix(M) is a normal subgroup, in which case

Aut(M/K) = Aut(L/K)/Fix(M).
Finally, if M1 ↔H1, M2 ↔H2, then

M1M2 ↔H1 ∩H2 and M1 ∩M2 ↔ ⟨H1,H2⟩.

For a Galois extension L/K, we sometimes write Gal(L/K) in place of Aut(L/K) and refer to it
as the Galois group of the extension. If f(x) ∈ K[x] is a polynomial, the Galois group of f means
the Galois group of a splitting field of f .

We record a particularly useful computational corollary :
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Corollary 1.1.

(1) If L/K is a Galois extension, and α ∈ L then the roots of the minimal polynomial mα(x) ∈
K[x] of α over K are the orbit Gal(L/K) ⋅ α.

(2) If f ∈K[x] is separable then the irreducible factors of f are in bijection with the orbits of the
Galois group of f on the roots of f in the splitting field, with each orbit corresponding to the
roots of an irreducible factor.

Proof. Left to the reader. □
We also note a corollary when this is combined with the primitive element theorem proved in the

problem on your Week 10 homework:

Corollary 1.2. If L = K(α1, . . . ,αm) for αi ∈ L separable algebraic over K, then L is a simple
extension of K, i.e. L =K(α) for some α ∈ L.

Proof. Left to the reader (hint: embed L in the splitting field of a separable polynomial over K). □
The following lemma, which is the main ingredient in the proof, is also very useful on its own:

Lemma 1. If L is a field and G ⊂ Aut(L) is a finite subgroup then [L ∶ LG] = ∣G∣.

In particular, this implies that L/LG is Galois with group G. The proof of Lemma 1 uses inde-
pendence of characters to establish ∣G∣ ≤ [L ∶ LG] and a primitive version of descent for the other
inequality; it is elaborated in one of the problems below. We recall the statement of independence
of characters, which was covered in Week 6, here:

1.1. Independence of characters. If G is a group and L is a field, recall that a character of G
with values in L is a group homomorphism G → L×. We can view a character as an element of the
set Maps(G,L) of all functions on G with values in L, which is an L-vector space.

Theorem (Independence of characters). If X is a set of distinct characters of G with values in L,
then X is a linearly independent set when viewed as a subset of the L-vector space Maps(G,L).

Proof. We sketch the proof: It suffices to consider X finite, for which we can argue by induction.
The base case is clear since any character maps 1 ∈ G to 1 ∈ L. Suppose it is known for ∣X ∣ < n, and
consider distinct characters χ1, . . . ,χn. Suppose there is a linear dependence

a1χ1 + . . . + anχn = 0.
By the inductive hypothesis, the ai are all non-zero, so we may assume an = 1. Because χ1 ≠ χn,
there exists h ∈ G such that χ1(h) ≠ χn(h). Obtain a second dependence by using the change of
variables g ↦ hg on G and simplifying, then subtract off a multiple from the first dependence to
obtain a nontrivial dependence between χ1, . . . ,χn−1, a contradiction. □

2. Comments and suggested reading

Dummit and Foote, 13.3, 13.6, chapter 14.

3. Homework

Due Tuesday, April 13, at 11:59pm on Gradescope
All solutions must be typeset using TeX and submitted via Gradescope; handwritten or late submis-
sions will not be accepted. All exercises and problems submitted must start with the statement of the
exercise or problem.

You may work in groups, but you must write up your final solutions individually. Any instances of
academic misconduct will be taken very seriously.
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Justify your answers carefully!

3.1. Exercises. Complete and turn in ALL exercises:
Grading scale (for each part of an exercise):
3 points – A correct, clearly written solution
2 points – Right idea, but a minor mistake or not clearly argued
1 point – Some progress but multiple minor mistakes or a major mistake
0 points – Nothing written, totally incorrect, or no substantive progress made towards a solution.

Exercise 1.

(1) Show that Q(31/3)/Q is not Galois (here 31/3 for the unique cube root of 3 in R).
(2) Show that K = Q(

√
1 +
√
3)/Q is not Galois (here

√
3 is the positive real square root of 3

and
√
1 +
√
3 is the positive real square root of 1 +

√
3).

(3) Show that Fp(t)[x]/(xp − t) is not a Galois extension of Fp(t).

Exercise 2. Let σ ∈ Aut(C(t)/C) be the unique automorphism fixing C and sending t to −t. Use

Lemma 1 to show C(t)⟨σ⟩ = C(t2).

Exercise 3. Suppose n is a positive integer and K is a field that contains n distinct nth roots of
unity. Write µn ⊂K× for the subgroup of nth roots of unity, which is abstractly isomorphic to Z/nZ.

(1) Fix 0 ≠ a ∈ K and let L be a splitting field of xn − a. Find a natural injective group
homomorphism Gal(L/K)↪ µn. This identifies Gal(L/K) with the subgroup of dth roots of
unity µd for some d∣n, d = [L ∶K].

(2) Let α be a root of xn − a in L. For or d = [L ∶ K] as above, show that αd ∈ K, and that the
minimal polynomial of α is xd − αd. Hint: Compare the coefficients of xd − 1 = ∏ζ∈µd

(x − ζ)
and mα(x) =∏σ∈Gal(L/K)(x − σ(α)).

(3) Factor xn − a into irreducible polynomials in K[X].

Exercise 4. Show that xp
n −x ∈ Fp[x] factors as the product of every monic irreducible polynomial

of degree dividing n in Fp[x].

Exercise 5. Compute the Galois group of x4 − 16x2 + 4 over Q.

Exercise 6. Let L/K be a Galois extension and suppose f is an irreducible polynomial of degree 5
in K[x]. If f(x) has no roots in L, prove that it is irreducible in L[x]. Hint: consider the action of
Gal(L/K) on the factorization of f in L[x].

Exercise 7. Let f(x) be a degree 5 polynomial in Q[x] whose Galois group is not solvable. Let L
be a splitting field of f over Q.

(1) Prove that there is a most one field K with Q ⊂K ⊂ L and [K ∶ Q] = 2.
(2) If α and β are irrational elements in L such that α2 and β2 are rational, prove that αβ is

rational.
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3.2. Problems. Attempt as many as you have time for, but only turn in one (of your choice).
Grading scale (for the problem you turn in):
10 points - A correct, complete, and clearly written solution.
8 points - Right idea, but one or two minor mistakes or not clearly argued.
5 points - Some progress but several minor mistakes or a major mistake.
0 points - Nothing written, totally incorrect, or no substantive progress made.
Revision policy: If you score at least 5 points on the problem you turn in then you will be allowed
to submit one revision to your solution before the final exam (May 3, 10:30am). If the revision is
correct, complete, and clearly written then your mark will change to 9 points. This policy only applies
to the problem you submit, not to the exercises in the previous section.

Problem 1 (Symmetric functions)
Let K be a field and let K(x1, . . . , xn) be the ring of rational functions in n variables over K, i.e.

K(x1, . . . , xn) = FracK[x1, . . . , xn].
There is a copy of the symmetric group Sn inside of Aut(K(x1, . . . , xn)/K) acting by permutation
of the variables. In this problem, we determine the subfield K(x1, . . . , xn)Sn of symmetric functions.

(1) We define the elementary symmetric polynomials by

e0 = 1
e1 = ∑

1≤i≤n
xi (= x1 + x2 + . . . + xn)

e2 = ∑
1≤i1<i2≤n

xixj

. . .

en = . . . (= x1 ⋅ . . . xn)

Show that K(e1, . . . , en) ⊂K(x1, . . . , xn)Sn .
(2) Find a monic polynomial f of degree n with coefficients inK(e1, . . . , en) such thatK(x1, . . . , xn)

is the splitting field of f .
(3) Use (2) to deduce that [K(x1, . . . , xn) ∶K(e1, . . . , en)] ≤ n!
(4) Conclude that K(e1, . . . , en) =K(x1, . . . , xn)Sn using Lemma 1.
(5) OPTIONAL - NOT GRADED (because I’m not sure what you covered about integral ring

extensions last semester!)
Deduce that K[x1, . . . , xn]Sn =K[e1, . . . , en].
Hint: use that K[e1, . . . , en] is integrally closed in K(e1, . . . , en).

Remark: This shows any polynomial that is preserved by all permutations of the variables can
be expressed as a polynomial in the elementary symmetric polynomials (e.g. x21 + x22 = e21 − 2e2), a
fundamental result in invariant theory.
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Problem 2 (Constructibility of the regular n-gon)
Read: DF 14.3 and/or the posted excerpt from Courant-Robbins

Definition. A real number α ∈ R is constructible if a segment of length α can be produced from a
segment of length 1 using only a straight-edge and compass.

In the reading, you saw that a straight-edge and compass can be used to perform field operations
(addition, subtraction, multiplication, and division). You also saw that they can be used to extract
square roots. In a precise sense, this is all that is possible:

Theorem. A number α ∈ R is constructible if and only if there is a a chain of extensions

Q =K0 ⊂K1 ⊂ ... ⊂Kn ⊂ R
such that α ∈Kn and [Ki ∶Ki−1] = 2.

We admit this theorem without proof for the remainder of the problem.

Example 3.1.

√
7 +
√

5 +
√
3/2 is constructible.

Remark 1. In particular, the constructible numbers form a subfield of R, and one can show that it is
an infinite Galois extension ofQ. In this generalization of Galois theory, the Galois group is a profinite
group (a limit of finite groups – another common example is the p-adic integers Zp = lim←;Z/pnZ). We

won’t use this statement below.

A regular n-gon is constructible if it can be drawn using only a straight edge and compass (starting
with a segment of length 1). For example: the regular 3-gon (equilateral triangle), and regular 4-gon
(square) are constructible (you can probably figure out the constructions on your own!). In the rest
of this problem, we show

Theorem (Gauss, Wantzel). The regular n-gon is constructible if and only if

n = 2k ⋅ p1 ⋅ . . . ⋅ pm
for k ≥ 0 and pi distinct Fermat primes (that is pi = 2li + 1).

Remark 2. One can show that if 2ℓ + 1 is prime then ℓ is itself a power of 2. Fermat conjectured
that

22
s

+ 1
is prime for all s ≥ 0. This is true for the first few terms: 3, 5, 17, 257, 65537. Euler showed the next
term, 4294967297, is composite by staying up late at night doing long division. In fact, there are no
other known Fermat primes besides the five listed above – we know the factorization of at least the
next few terms in the sequence (they are composite), but we do not know if there are more Fermat
primes afterwards!

We proceed to a proof of the theorem in three parts:

(1) Observation: the regular n-gon is constructible if and only if cos(2π/n) is a constructible
number. You do not need to write anything, but make sure you understand this.

(2) When is the order (Z/nZ)× a power of 2?
(3) Express cos(2π/n) using roots of unity.
(4) Prove the theorem. Hint: use the Galois theory of cyclotomic extensions.
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Problem 3 (Proof of Lemma 1)

(1) If L/K is an extension, then we may consider L as a K-vector space; we write EndK(L) for
the set of K-vector space endomorphisms of L. We may consider EndK(L) as an L-vector
space via (ℓ ⋅ f)(x) = ℓf(x). If L/K is finite,
(a) Show that EndK(L) has dimension [L ∶K] as an L-vector space.
(b) Using independence of characters, conclude that [L ∶ K] ≥ ∣Aut(L/K)∣. Hint: if σ ∈

Aut(L/K), then σ∣L× ∶ L× → L× is a character of the group L× with values in L!
(2) Let L be a field, let G ⊂ Aut(L) be a subgroup, and let K = LG.

(a) If V is a K-vector space, then L⊗K V is an L-vector space by left multiplication. The
action of G on L induces a K-linear action on L⊗K V :

g(ℓ⊗ v) = g(ℓ)⊗ v.

Show that if W ⊂ L ⊗K V is a non-zero L−subspace such that g(W ) ⊂W for all g ∈ G,
then W ∩1⊗V contains a non-zero vector. Hint: take a nonzero tensor of minimal rank
in W ; if the rank is not one, use the G-action to produce a tensor of smaller rank.

(b) If we view L as a K-vector space, then L⊗KL is an L vector space via left multiplication
as in (a). Consider the L-linear map

L⊗K L→Maps(G,L)
ℓ1 ⊗ ℓ2 ↦ (g ↦ ℓ1 ⋅ g(ℓ2)) .

Show that this map is injective by showing the kernel is preserved by G and then using
(a) to obtain a contradiction if it is non-zero.

(c) Conclude that [L ∶K] ≤ ∣G∣.
(3) Combine (1) and (2) to prove Lemma 1.

Remark. Part 2.(a) can be refined to show that W = L⊗ (W ∩1⊗V ). In other words, K-subspaces
of V are in natural bijection with G-stable L-subspaces of L⊗K V . This is the fundamental example
of Galois descent, an important technique in modern algebra that often lets us replace the study of
an object (e.g., an algebraic variety) over an arbitrary field with the study of Galois-stable objects
over an algebraically closed field.
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