6370-001 - FALL 2021 - WEEK 6 (9/28, 9/30)

Exercise 0. Compute the units in \mathcal{O}_K for $K = \mathbb{Q}(\sqrt{m})$, m < 0 squarefree.

Exercise 1 (Marcus 5-33, 34). Let m > 0 be squarefree, and let $K = \mathbb{Q}(\sqrt{m})$.

- (1) Suppose $m \equiv 2 \text{ or } 3 \mod 4$. Consider the numbers $mb^2 \pm 1$, $b \in \mathbb{Z}$, and take the smallest positive b such that one of these is a square a^2 for $a \in \mathbb{Z}$ (why does the unit theorem imply such a b exists?). Prove that $a + b\sqrt{m}$ is the fundamental unit in O_K .
- (2) Establish a similar criteria for $m \equiv 1 \mod 4$.
- (3) Compute the fundamental unit in \mathcal{O}_K for all $2 \le m \le 30$ except 19 and 22.

Exercise 2 (Milne 5-2 plus some more). Read the very short section "Example: real quadratic fields," in Chapter 5 of Milne. Then,

- (1) Use this on a few examples from the previous exercise to convince yourself it's right.
- (2) Use this to find a fundamental unit when m = 19, 22, 67. Use Pari to check your answer.
- (3) Prove that the continued fraction expansion for an irrational number is periodic if and only if it generates a degree 2 extension of Q.
- (4) Why does this algorithm work? (see Borevich and Shafarevich Number Theory, Ch 2 §7.3).

Exercise 3.

- (1) Fix a positive integer m and a positive real number M. Show there are only finitely many elements $\alpha \in \mathbb{C}$ such that
 - (a) α is integral over \mathbb{Z} with minimal polynomial of degree $\leq m$
 - (b) all of conjugates of α have absolute value $\leq M$ (here we mean all of the other roots of the minimal polynomial over \mathbb{Q} , not just the complex conjugate, which is the other root of the minimal polynomial over \mathbb{R}).
- (2) Show that if $\alpha \in \mathbb{C}$ is integral over \mathbb{Z} and all conjugates of α have absolute value ≤ 1 then α is a root of unity (this was also on last week's exercises, stated in a slightly different way).
- (3) (Milne 5-1) Is the set of algebraic integers $\alpha \in \mathbb{C}$ with minimal polynomial of degree $\leq m$ and $|\alpha| < M$ is finite?

Exercise 4. Let $A = \mathbb{F}_q[t]$ and consider the absolute value $|f(t)| = 2^{\deg f}$ (where we say $\deg 0 = \infty$).

- (1) Explain how to extend this absolute value to $K = \operatorname{Frac}(A) = \mathbb{F}_q(t)$.
- (2) Show that the completion of K for the metric induced by this absolute value is $\mathbb{F}_q((s))$, where s = 1/t.

(3) We first enumerate some facts which will be justified (to some extent) later in the course **Fact 1**: This absolute value extends uniquely to any algebraic closure $\overline{\mathbb{F}_q((s))}$. **Fact 2**: $\mathbb{C}_{\infty} := \overline{\mathbb{F}_q((s))}^{\wedge}$, the completion for the metric induced by this extended absolute value, is algebraically closed (Krasner's lemma) and complete.

 \mathbb{C}_{∞} is a complete algebraically closed extension of $\mathbb{F}_q(t)$ that plays the same role as \mathbb{C} in the theory of number fields if we think of $\mathbb{F}_q[t]$ as being analogous to \mathbb{Z} ! If m is a positive integer and M is a positive real number, show there are only finitely many elements of \mathbb{C}_{∞} that are integral over $\mathbb{F}_q[t]$ with minimal polynomial of degree $\leq m$ and all of whose conjugates have absolute value $\leq M$.

- (4) Deduce that if $\alpha \in \mathbb{C}_{\infty}$ is integral over $\mathbb{F}_q[t]$ and all of its conjugates have absolute value ≤ 1 , then α is a root of unity.
- (5) What would happen in the previous question if we replaced \mathbb{F}_q with \mathbb{C} (i.e. started with $\mathbb{C}[t]$ instead of $\mathbb{F}_q[t]$)? If you know a little bit of the algebraic geometry of curves, then explain the answer geometrically.

Exercise 5. Suppose K is a totally real field (i.e. a number field such that every embedding $K \hookrightarrow \mathbb{C}$ factors through \mathbb{R}). Let α be an element of K such that $\iota(\alpha) < 0$ for every embedding $\iota : K \hookrightarrow \mathbb{R}$, and let $L = K(\sqrt{\alpha})$ [a number field of this form is called a *CM field*].

- (1) Show [L:K] = 2 (i.e. show α is not a square in K).
- (2) Show the ranks of \mathcal{O}_L^{\times} and \mathcal{O}_K^{\times} are the same.
- (3) Show that $\mu(L)\mathcal{O}_K^{\times}$ is of index at most 2 in \mathcal{O}_L^{\times} . *Hint: consider the homomorphism from* \mathcal{O}_L^{\times} *to* $\mu(L)/\mu(L)^2$, $\eta \mapsto \overline{\eta}/\eta$.

Exercise 6. For K a number field, the *narrow* class group $\operatorname{Cl}^+(\mathcal{O}_K)$ is the quotient of the group of fractional ideals by the group of principal fractional ideals (a) generated by elements $a \in K^{\times}$ such that $\iota(a) > 0$ for all $\iota: K \hookrightarrow \mathbb{R}$. We write $h_K^+ = |\operatorname{Cl}^+(\mathcal{O}_K)|$.

- (1) Show that $h_K^+ \leq 2^r h_K$, where r is the number of real embeddings.
- (2) Deduce the narrow class number of an imaginary quadratic field is equal to its class number.
- (3) Describe in terms of a fundamental unit when the narrow class number of a real quadratic field will be equal to the class number.
- (4) The class numbers of $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{5})$ are 1. What are their narrow class numbers?
- (5) The following is one of the main results of class field theory:

Fact. The narrow class number of K is equal to the degree of the largest abelian extension L/K such that every prime \mathfrak{p} of \mathcal{O}_K is unramified in L. Actually, the narrow class group is canonically isomorphic to the Galois group of this extension!

Assuming this fact, what is the maximal extension of $\mathbb{Q}(\sqrt{5})$ satisfying this property? How about $\mathbb{Q}(\sqrt{-5})$ (recall Week 5 - Exercise 5)? How about $\mathbb{Q}(\sqrt{3})$?

Exercise 7 (Milne 4-5). Here's another closely related fact from class field theory:

Fact. The class number of K is equal to the degree of the largest abelian extension L/K such that every prime \mathfrak{p} of \mathcal{O}_K is unramified in L and every real embedding of K extends to a real embedding of L. Actually, the class group is canonically isomorphic to the Galois group of this extension! This extension L is called the *Hilbert class field* of K.

- (1) Assuming the first part of this fact, give another explanation of why the narrow class group of a imaginary quadratic field is the same as its class group.
- (2) We also have the additional

Fact. Every ideal in \mathcal{O}_K becomes a principal in \mathcal{O}_L for L/K the Hilbert class field.

(3) Without assuming this fact, prove that there is some extension L of K such that every ideal in \mathcal{O}_K becomes principal in \mathcal{O}_L (Hint: use the finiteness of the class number).