Exam II - Formula Sheet

1. \(\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1 - x^2}} \)

2. \(\frac{d}{dx} \arctan(x) = \frac{1}{1 + x^2} \)

3. \(\sum_{k=1}^{\infty} ar^{k-1} = \sum_{k=0}^{\infty} ar^k = \frac{a}{1 - r} \)

4. The Taylor series for \(f(x) \) is given by

\[
 f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \frac{f^{(4)}(a)}{4!}(x-a)^4 + \cdots
\]

Theorem 1 (Integral Test). Let \(f \) be a continuous, positive, nonincreasing function on the interval \([1, \infty)\) and suppose that \(a_k = f(k) \) for all positive integers \(k \). Then the infinite series

\[
 \sum_{k=1}^{\infty} a_k
\]

converges if and only if the improper integral

\[
 \int_{1}^{\infty} f(x) \, dx
\]

converges.

Theorem 2 (Alternating Series Test). Let

\[
 a_1 - a_2 + a_3 - a_4 + \cdots
\]

be an alternating series with \(a_n > a_{n+1} > 0 \). If \(\lim_{n \to \infty} a_n = 0 \), then the series converges.

Theorem 3 (Limit Comparison Test). Suppose that \(a_n \geq 0, b_n > 0 \), and

\[
 \lim_{n \to \infty} \frac{a_n}{b_n} = L.
\]

If \(0 < L < \infty \), then \(\Sigma a_n \) and \(\Sigma b_n \) converge or diverge together. If \(L = 0 \) and \(\Sigma b_n \) converges, then \(\Sigma a_n \) converges.
Theorem 4 (Absolute Ratio Test). Let $\sum u_n$ be a series of nonzero terms and suppose that

$$\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \rho$$

If $\rho < 1$, the series converges absolutely. If $\rho > 1$, the series diverges. If $\rho = 1$, the test is inconclusive.