Computation of Invariants for Harish-Chandra Modules of $SU(p, q)$ by Combining Algebraic and Geometric Methods.

Matthew Housley
housley@math.utah.edu

November 6th, 2010
Slides and notes are available at

\[\text{www.math.utah.edu/\textasciitilde housley \rightarrow talks.}\]
Definition: Lie Group

- G is a differentiable manifold with a group operation.
Definition: Lie Group

- G is a differentiable manifold with a group operation.
- Smooth multiplication.
Definition: Lie Group

- G is a differentiable manifold with a group operation.
- Smooth multiplication.
- Smooth inverse.
Definition: Lie Group

- G is a differentiable manifold with a group operation.
- Smooth multiplication.
- Smooth inverse.
- Complex and real flavors.
Symmetry

Lie groups: smooth symmetries.
Symmetry

Examples:

- $\text{GL}(n, \mathbb{C})$ is the set of all invertible complex linear transformations on \mathbb{C}^n. (Complex)
- $\text{GL}(n, \mathbb{R})$ is the set of all invertible real linear transformations on \mathbb{R}^n. (Real)
- $\text{SO}(n)$ is the set of orientation preserving isometries of the $(n-1)$-sphere. (Real)
- E.g., $\text{SO}(3)$ is the set of rotations of the 2-sphere.
- Has applications to quantum mechanics.
Symmetry

Examples:

- $GL(n, \mathbb{C})$ is the set of all invertible complex linear transformations on \mathbb{C}^n. (Complex)
Examples:

- \(GL(n, \mathbb{C}) \) is the set of all invertible complex linear transformations on \(\mathbb{C}^n \). (Complex)

- \(GL(n, \mathbb{R}) \) is the set of all invertible real linear transformations on \(\mathbb{R}^n \). (Real)
Symmetry

Examples:

- $GL(n, \mathbb{C})$ is the set of all invertible complex linear transformations on \mathbb{C}^n. (Complex)
- $GL(n, \mathbb{R})$ is the set of all invertible real linear transformations on \mathbb{R}^n. (Real)
- $SO(n)$ is the set of orientation preserving isometries of the $(n - 1)$-sphere. (Real)
Symmetry

Examples:

- $GL(n, \mathbb{C})$ is the set of all invertible complex linear transformations on \mathbb{C}^n. (Complex)
- $GL(n, \mathbb{R})$ is the set of all invertible real linear transformations on \mathbb{R}^n. (Real)
- $SO(n)$ is the set of orientation preserving isometries of the $(n-1)$-sphere. (Real)
- E.g. $SO(3)$ is the set of rotations of the 2-sphere.

[Has applications to quantum mechanics.]
Symmetry

Examples:

- $\text{GL}(n, \mathbb{C})$ is the set of all invertible complex linear transformations on \mathbb{C}^n. (Complex)
- $\text{GL}(n, \mathbb{R})$ is the set of all invertible real linear transformations on \mathbb{R}^n. (Real)
- $\text{SO}(n)$ is the set of orientation preserving isometries of the $(n-1)$-sphere. (Real)
- E.g. $\text{SO}(3)$ is the set of rotations of the 2-sphere.
 - Has applications to quantum mechanics.
Symmetry

Examples:

- $SU(p, q)$ is the set of invertible complex linear transformations of \mathbb{C}^{p+q} that preserve the hermitian form given by

$$\langle v, w \rangle = v^* \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix} w.$$

(real)
The above examples are reductive.
The above examples are reductive.

Roughly speaking: no interesting normal subgroups.
The above examples are *reductive*.

Roughly speaking: no interesting normal subgroups.

We’ll assume this from now on.
Start with a Lie group G. Define \mathfrak{g} to be the tangent space to G at id.

![Diagram showing a sphere and a tangent plane]
The group operation of G induces an operation $[-, -]$ on g. g is a *Lie algebra* under this operation.
The group operation of G induces an operation $[−,−]$ on g. g is a Lie algebra under this operation.

Roughly speaking: g approximates G near the identity.
The group operation of \(G \) induces an operation \([−, −]\) on \(g \). \(g \) is a *Lie algebra* under this operation.

Roughly speaking: \(g \) approximates \(G \) near the identity.

\([−, −]\) is bilinear.
The group operation of G induces an operation $[−, −]$ on \mathfrak{g}. \mathfrak{g} is a *Lie algebra* under this operation.

Roughly speaking: \mathfrak{g} approximates G near the identity.

$[−, −]$ is bilinear.

$[x, y] = −[y, x]$.
The group operation of G induces an operation $[−,−]$ on \mathfrak{g}. \mathfrak{g} is a \textit{Lie algebra} under this operation.

Roughly speaking: \mathfrak{g} approximates G near the identity.

$[−,−]$ is bilinear.

$[x, y] = −[y, x]$.

$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0$.
The group operation of G induces an operation $[−, −]$ on g. g is a *Lie algebra* under this operation.

Roughly speaking: g approximates G near the identity.

$[−, −]$ is bilinear.

$[x, y] = −[y, x]$.

$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0$.

Can be derived from the Lie bracket of differential geometry.
The group operation of G induces an operation $[−, −]$ on g. g is a Lie algebra under this operation.

Roughly speaking: g approximates G near the identity.

$[−, −]$ is bilinear.

$[x, y] = −[y, x]$.

$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0$.

Can be derived from the Lie bracket of differential geometry.

The structures of G and g are closely related.
Let V be a (complex) vector space.
Representations

- Let V be a (complex) vector space.
- Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.
Let V be a (complex) vector space.
Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.
 - Reductive: more or less the whole group acts on V.

Finite dimensional representations arise naturally.
Standard representation for matrix groups.
Adjoint representation: G acts on g.
Subs: restriction to an invariant subspace.
Quotients.
Generating new representations. (Tensor products, exterior powers, etc.)
Let V be a (complex) vector space.

Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.

- Reductive: more or less the whole group acts on V.

Finite dimensional representations arise naturally.
Representations

- Let V be a (complex) vector space.
- Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.
 - Reductive: more or less the whole group acts on V.
- Finite dimensional representations arise naturally.
 - Standard representation for matrix groups.
Let V be a (complex) vector space.

Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.

- Reductive: more or less the whole group acts on V.

Finite dimensional representations arise naturally.

- Standard representation for matrix groups.
- Adjoint representation: G acts on \mathfrak{g}.
Let V be a (complex) vector space.

Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.

- Reductive: more or less the whole group acts on V.

Finite dimensional representations arise naturally.

- Standard representation for matrix groups.
- Adjoint representation: G acts on \mathfrak{g}.
- Subs: restriction to an invariant subspace.
Let V be a (complex) vector space.

Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.

- Reductive: more or less the whole group acts on V.

Finite dimensional representations arise naturally.

- Standard representation for matrix groups.
- Adjoint representation: G acts on \mathfrak{g}.
- Subs: restriction to an invariant subspace.
- Quotients.
Let V be a (complex) vector space.

Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.

- Reductive: more or less the whole group acts on V.

Finite dimensional representations arise naturally.

- Standard representation for matrix groups.
- Adjoint representation: G acts on \mathfrak{g}.
- Subs: restriction to an invariant subspace.
- Quotients.
- Generating new representations. (Tensor products, exterior powers, etc.)
Representations

- Let V be a (complex) vector space.
- Given a smooth group homomorphism from G to $GL(V)$, we call V a representation of G.
 - Reductive: more or less the whole group acts on V.
- Finite dimensional representations arise naturally.
 - Standard representation for matrix groups.
 - Adjoint representation: G acts on \mathfrak{g}.
 - Subs: restriction to an invariant subspace.
 - Quotients.
 - Generating new representations. (Tensor products, exterior powers, etc.)
- Finite dimensional representations of real and complex Lie groups are well understood.
V is an irreducible representation of G if it contains no proper nonzero subrepresentations of G.
Irreducibility

- V is an irreducible representation of G if it contains no proper nonzero subrepresentations of G.
- Analogous to prime numbers, finite simple groups, etc.
Irreducibility

- V is an irreducible representation of G if it contains no proper nonzero subrepresentations of G.
- Analogous to prime numbers, finite simple groups, etc.
- Roughly: irreducible representations are simplest actions of the symmetries in G.
If V is a G representation, it becomes a g representation via differentiation.
Lie Algebra Representations

- If V is a G representation, it becomes a \mathfrak{g} representation via differentiation.
- We complexify \mathfrak{g} to $\mathfrak{g}_\mathbb{C}$.
Lie Algebra Representations

- If V is a G representation, it becomes a g representation via differentiation.
- We complexify g to g_C.
- Irreducible representations of g_C are important in classifying irreducible representations of G.
Infinite Dimensional Motivations

- Start with a manifold M with a measure.
Infinite Dimensional Motivations

- Start with a manifold \(M \) with a measure.
- Find a real Lie group \(G \) that acts on \(M \) and preserves the measure.
Infinite Dimensional Motivations

- Start with a manifold M with a measure.
- Find a real Lie group G that acts on M and preserves the measure.
 - Irreducible representations of complex Lie groups are finite dimensional.
Infinite Dimensional Motivations

- Start with a manifold \(M \) with a measure.
- Find a real Lie group \(G \) that acts on \(M \) and preserves the measure.
 - Irreducible representations of complex Lie groups are finite dimensional.
- Consider the action of \(G \) on \(L^2(M) \).
Harish-Chandra Modules

- Harish-Chandra modules: algebraizations of infinite dimensional representations.
Harish-Chandra Modules

- Harish-Chandra modules: algebraizations of infinite dimensional representations.
- We’ll ignore this distinction.
Harish-Chandra Modules

- Harish-Chandra modules: algebraizations of infinite dimensional representations.
- We’ll ignore this distinction.
- We can study infinite dimensional representations using algebraic and algebro-geometric techniques.
Geometric Invariants

Two geometric invariants to consider:

- Associated variety $AV(X)$: a variety contained in g_C.
- Associated cycle $AC(X)$: finer invariant that attaches an integer (multiplicity) to each component of $AV(X)$.

We'd like to calculate the multiplicities.
Geometric Invariants

Two geometric invariants to consider:

▶ Associated variety $AV(X)$: a variety contained in $\mathfrak{g}_\mathbb{C}$.
Two geometric invariants to consider:

- Associated variety $AV(X)$: a variety contained in g_C.
- Associated cycle $AC(X)$: finer invariant that attaches an integer (multiplicity) to each component of $AV(X)$.
Two geometric invariants to consider:

- Associated variety $\text{AV}(X)$: a variety contained in $g_\mathbb{C}$.
- Associated cycle $\text{AC}(X)$: finer invariant that attaches an integer (multiplicity) to each component of $\text{AV}(X)$.
- We’d like to calculate the multiplicities.
$SU(p, q)$

- For this group, associated variety for irreducible X is an irreducible variety.
For this group, associated variety for irreducible X is an irreducible variety.

We only need to compute one multiplicity to get $AC(X)$.

$SU(p, q)$
More Symmetry: the Weyl Group

- The Weyl group W is a finite set of internal symmetries of G.
More Symmetry: the Weyl Group

- The Weyl group W is a finite set of internal symmetries of G.
- $W = N_G(T)/Z_G(T)$.
The Weyl group \(W \) is a finite set of internal symmetries of \(G \).

\[W = N_G(T)/Z_G(T). \]

The Weyl group for \(SU(p, q) \) is the symmetric group \(S_{p+q} \).
Let X be an infinite dimensional representation of $SU(p, q)$.
Let X be an infinite dimensional representation of $SU(p, q)$. X is contained in a finite cell $C = \{X_1, X_2, \ldots, X_k\}$ of representations that all have the same associated variety.
Cells

- Let X be an infinite dimensional representation of $SU(p, q)$.
- X is contained in a finite cell $C = \{X_1, X_2, \ldots, X_k\}$ of representations that all have the same associated variety.
- Take the formal \mathbb{Z}-span of the elements of C.
Let X be an infinite dimensional representation of $SU(p, q)$.

- X is contained in a finite cell $\mathcal{C} = \{X_1, X_2, \ldots, X_k\}$ of representations that all have the same associated variety.

- Take the formal \mathbb{Z}-span of the elements of \mathcal{C}.

- $\text{span}_{\mathbb{Z}} \mathcal{C}$ becomes an irreducible representation of the Weyl group S_{p+q}.
Let X be an infinite dimensional representation of $SU(p, q)$.

X is contained in a finite cell $C = \{X_1, X_2, \ldots, X_k\}$ of representations that all have the same associated variety.

Take the formal \mathbb{Z}-span of the elements of C.

$\text{span}_\mathbb{Z} C$ becomes an irreducible representation of the Weyl group S_{p+q}.

Let m_{X_i} denote the multiplicity in the associated variety of X_i.
Let X be an infinite dimensional representation of $SU(p, q)$.

X is contained in a finite cell $C = \{X_1, X_2, \ldots, X_k\}$ of representations that all have the same associated variety.

Take the formal \mathbb{Z}-span of the elements of C.

$\text{span}_{\mathbb{Z}} C$ becomes an irreducible representation of the Weyl group S_{p+q}.

Let m_{X_i} denote the multiplicity in the associated variety of X_i.

The representation relates the multiplicities m_{X_i} for the various X_i in C.
Cells

- Let X be an infinite dimensional representation of $SU(p, q)$.
- X is contained in a finite cell $C = \{X_1, X_2, \ldots, X_k\}$ of representations that all have the same associated variety.
- Take the formal \mathbb{Z}-span of the elements of C.
- $\text{span}_{\mathbb{Z}} C$ becomes an irreducible representation of the Weyl group S_{p+q}.
- Let m_{X_i} denote the multiplicity in the associated variety of X_i.
- The representation relates the multiplicities m_{X_i} for the various X_i in C.
- If we know m_{X_j} for some X_j we can calculate m_{X_i} for the other X_i in the cell C.
Strategy

- For $SU(p, q)$ and any cell C of representations, we can always find an $X_i \in C$ so that m_{X_i} can be computed by geometric means.
Strategy

▶ For $SU(p, q)$ and any cell C of representations, we can always find an $X_i \in C$ so that m_{X_i} can be computed by geometric means. (Springer fiber.)
Strategy

- For $SU(p, q)$ and any cell C of representations, we can always find an $X_i \in C$ so that m_{X_i} can be computed by geometric means. (Springer fiber.)
- Compute the S_{p+q} representation on $\text{span}_\mathbb{Z} C$.
Strategy

- For $SU(p, q)$ and any cell C of representations, we can always find an $X_i \in C$ so that m_{X_i} can be computed by geometric means. (Springer fiber.)
- Compute the S_{p+q} representation on $\text{span}_\mathbb{Z} C$.
- Compute m_{X_i} for other X_i in C.
Problem

It can be difficult to compute the S_{p+q} representation on $\text{span}_\mathbb{Z} C$.
Symmetric Group Representations

▶ Let $n = p + q$.
Let $n = p + q$.

Basis: $\{e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n\}$.
Let $n = p + q$.

Basis: $\{e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n\}$.

Let S_n act in the “obvious” way.
Symmetric Group Representations

- Let $n = p + q$.
- Basis: $\{e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n\}$.
- Let S_n act in the “obvious” way.

For example, acting by (12):

$e_1 - e_2 \rightarrow e_2 - e_1$ and $e_3 - e_1 \rightarrow e_3 - e_2$.
Symmetric Group Representations

- Let $n = p + q$.
- Basis: $\{e_1 - e_2, e_2 - e_3, \ldots, e_{n-1} - e_n\}$.
- Let S_n act in the “obvious” way.

For example, acting by (12):

$e_1 - e_2 \rightarrow e_2 - e_1$ and $e_3 - e_1 \rightarrow e_3 - e_2$.

This is the standard representation V of S_n.
More Representations of S_n

Irreducible representations of S_n are parametrized by Young diagrams with n boxes.
More Representations of S_n

Irreducible representations of S_n are parametrized by Young diagrams with n boxes.
More Representations of S_n

Irreducible representations of S_n are parametrized by Young diagrams with n boxes.

Construction: take subspaces of tensor powers of the standard representation.
Hook Type Representations

Hook type diagram: upside down L.
Hook type diagram: upside down L.

Two rows with one box on the bottom row: standard representation.
Hook Type Representations

General hook type with $m + 1$ rows: $\wedge^m V$, where V is the standard representations.
Hook Type Representations

General hook type with $m + 1$ rows: $\wedge^m V$, where V is the standard representations.
Example: (12) action on $(e_1 - e_2) \wedge (e_2 - e_3)$ for $\wedge^2 V$:

\[
\begin{align*}
(e_2 - e_1) \wedge (e_1 - e_3) &= (e_2 - e_1) \wedge (e_2 - e_3) \\
&= - (e_1 - e_2) \wedge (e_1 - e_3) \wedge (e_2 - e_3) \\
&= - (e_1 - e_2) \wedge (e_1 - e_3) - (e_2 - e_3) \wedge (e_1 - e_3) \\
&= - (e_1 - e_2) \wedge (e_1 - e_3) - (e_2 - e_3) \wedge (e_1 - e_3) \\
&= - (e_1 - e_2) \wedge (e_1 - e_3) - (e_2 - e_3) \wedge (e_1 - e_3) \\
&= - (e_1 - e_2) \wedge (e_1 - e_3) - (e_2 - e_3) \wedge (e_1 - e_3)
\end{align*}
\]
Hook Type Representations

General hook type with $m + 1$ rows: $\bigwedge^m V$, where V is the standard representation.
Example: (12) action on $(e_1 - e_2) \wedge (e_2 - e_3)$ for $\bigwedge^2 V$:

\[(e_2 - e_1) \wedge (e_1 - e_3)\]
Hook Type Representations

General hook type with $m + 1$ rows: $\wedge^m V$, where V is the standard representations.

Example: (12) action on $(e_1 - e_2) \wedge (e_2 - e_3)$ for $\wedge^2 V$:

\[
(e_2 - e_1) \wedge (e_1 - e_3) = -(e_1 - e_2) \wedge (e_1 - e_2 + e_2 - e_3)
\]
Hook Type Representations

General hook type with $m + 1$ rows: $\bigwedge^m V$, where V is the standard representations.

Example: (12) action on $(e_1 - e_2) \wedge (e_2 - e_3)$ for $\bigwedge^2 V$:

$$
\begin{align*}
(e_2 - e_1) \wedge (e_1 - e_3) &= -(e_1 - e_2) \wedge (e_1 - e_2 + e_2 - e_3) \\
&= -(e_1 - e_2) \wedge (e_1 - e_2) - (e_1 - e_2) \wedge (e_2 - e_3)
\end{align*}
$$
Hook Type Representations

General hook type with $m + 1$ rows: $\wedge^m V$, where V is the standard representations.

Example: (12) action on $(e_1 - e_2) \wedge (e_2 - e_3)$ for $\wedge^2 V$:

\[
(e_2 - e_1) \wedge (e_1 - e_3)
= -(e_1 - e_2) \wedge (e_1 - e_2 + e_2 - e_3)
= -(e_1 - e_2) \wedge (e_1 - e_2) - (e_1 - e_2) \wedge (e_2 - e_3)
= -(e_1 - e_2) \wedge (e_2 - e_3).
\]
Strategy

- Find a hook type cell C.

...
Strategy

- Find a hook type cell C.
- Find one X_j in the cell such that computation of m_{X_j} is easy.
Strategy

- Find a hook type cell C.
- Find one X_j in the cell such that computation of m_{X_j} is easy.
- Find m_{X_i} for other X_i in C by using the S_n representation on $\text{span}_\mathbb{Z} C$.

Result

We get a formula for m_{X_i} where X_i is any infinite dimensional representation in a hook type cell:
We get a formula for mX_i where X_i is any infinite dimensional representation in a hook type cell:

$$mX_i = A_m \frac{1}{\prod |\tau_k|!} \sum_{\sigma \in S_{\tau}} \text{sgn}(\sigma)\sigma \cdot \left(\sum_{\sigma' \in S_m} \text{sgn}(\sigma')\sigma' \cdot \left(\prod_{i=1\ldots m} \chi_{\tau(i)}^{m-i+1} \right) \right)$$

where

$$A_m = \frac{1}{m! \cdot (m-1)! \cdots 1}.$$
Details are available at www.math.utah.edu/~housley → research.

housley@math.utah.edu