1. Suppose f is holomorphic on a nonempty open set U. Show that one of these statements is true: (a) f is a polynomial. (b) There is a $z \in U$ such that $f^{(n)}(z) \neq 0$ for all n.
2. Let \(f \) be an entire function such that \(|f(z)| \leq K|z|^n \) where \(K \) is a positive real constant and \(n \) is a positive integer. Show that \(I \) is a polynomial of degree at most \(n \).
3. Suppose f and g are two entire functions such that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. What is the relationship between f and g?