# MATH 1180 <br> MATHEMATICS FOR LIFE SCIENTISTS <br> Computer Assignment VII <br> Due March 2, 2004 

## PROBLEMS

Warm up Maple for today's problems with the commands
> iread(histplot);
> iread(draw);
> with(stats);
> iread(iter);

- 1. Suppose that the p.d.f. for the time $X$ a molecule leaves a cell is equal to

$$
f(x)=2.5 e^{-2.5 x}
$$

for $x \geq 0$.
a. Use integration to compute the c.d.f. $F(x)$.
b. Plot $f$ and $F$ on one graph for $0 \leq x \leq 2$.
c. Compute the probability that the time lies between 1 and 1.5 and mark the associated area on your graph of $f$.
d. Compute the probability that the time is less than 0.6 and indicate this on your graphs of $f$ and $F$.
e. Find the median.
f. Use integration to find the expectation. Does it match the median?

- 2. The updating function for the position of a molecule is given by

```
> h := x -> bern(0.7)*x+bern(0.3)*(1-x);
```

where $x=1$ represents inside and $x=0$ outside. To get the random number generator to produce the same sequence of numbers more than once, set its "seed" with the command

```
> _seed := 5;
```

(or use any other positive integral value instead of 5). Set "_seed" to your chosen value and use "iterplot" to plot a solution of length 50 starting at $x=1$. Reset "_seed" to your chosen value and use the command "iterprint" as follows to see the numbers

```
> iterprint(h,50,1);
```

Based on your data, compute $\operatorname{Pr}\left(x_{t+1}=1\right), \operatorname{Pr}\left(x_{t+1}=1 \mid x_{t}=1\right)$ and $\operatorname{Pr}\left(x_{t+1}=1 \mid x_{t}=\right.$ $0)$. Compare these results with what you would expect based on the updating function.

