5.7 Solutions in the phase-plane

MATHEMATICAL TECHNIQUES

- \spadesuit Suppose the following functions are solutions of some differential equation. Graph these as functions of time and as phase-plane trajectories for $0 \le t \le 2$. Mark the position at t = 0, t = 1 and t = 2.
 - $\bullet\, {\tt EXERCISE}\,\, {\bf 5.7.1}$

$$x(t) = t, y(t) = 3t.$$

• EXERCISE **5.7.2**

$$a(t)=2e^{-t},\,b(t)=e^{-2t}.$$

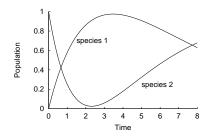
 \bullet EXERCISE **5.7.3**

$$f(t) = 1 + t, g(t) = e^{-t}.$$

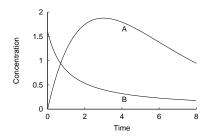
• EXERCISE 5.7.4

$$x(t) = t - 2t^2 + t^3, y(t) = 4 - t^2.$$

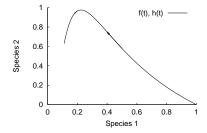
- ♠ From the following graphs of solutions of differential equations as functions of time, graph the matching phase-plane trajectory.
 - \bullet EXERCISE **5.7.5**



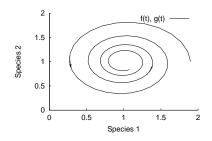
• EXERCISE 5.7.6



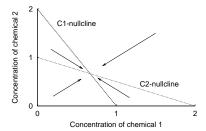
- ♠ From the following graphs of phase-plane trajectories graph the matching solutions of differential equations as functions of time.
 - EXERCISE 5.7.7



51



- On the following phase-plane diagrams, use the direction arrows to sketch phase-plane trajectories starting from two different initial conditions.
 - EXERCISE 5.7.9



• EXERCISE **5.7.10**



- Use the information in the phase-plane diagram to draw direction arrows on the nullclines.
 - \bullet EXERCISE **5.7.11**

The diagram in exercise 5.7.9.

• EXERCISE **5.7.12**

The diagram in exercise 5.7.10.

Compare solutions estimated with Euler's method with the phase-plane diagram and direction arrows found in the text for the competition equations

$$\begin{array}{rcl} \frac{da}{dt} & = & \mu(1 - \frac{a+b}{K_a})a \\ \\ \frac{db}{dt} & = & \lambda(1 - \frac{a+b}{K_b})b \end{array}$$

$$\frac{db}{dt} = \lambda(1 - \frac{a+b}{K_b})b$$

starting from the given initial conditions. Assume that $\mu = 2.0$, $\lambda = 2.0$, $K_a = 1000$ and $K_b = 500$.

• EXERCISE **5.7.13**

Start from a = 750 and b = 500. Take two steps, with a step length of $\Delta t = 0.1$, as in exercise 5.5.9.

• EXERCISE **5.7.14**

Start from a = 250 and b = 500. Take two steps, with a step length of $\Delta t = 0.1$, as in exercise 5.5.10.

• Compare solutions estimated with Euler's method with the phase-plane diagram and direction arrows found in the text for Newton's law of cooling

$$\frac{dH}{dt} = \alpha(A - H)$$

$$\frac{dA}{dt} = \alpha_2(H - A)$$

with the given parameter values and starting from the given initial conditions.

• EXERCISE **5.7.15**

Suppose $\alpha = 0.3$ and $\alpha_2 = 0.1$. Start from H = 60 and A = 20. Take two steps, with a step length of $\Delta t = 0.1$, as in exercise 5.5.13.

• EXERCISE **5.7.16**

Suppose $\alpha = 0.3$ and $\alpha_2 = 0.1$. Start from H = 0 and A = 20. Take two steps, with a step length of $\Delta t = 0.1$, as in exercise 5.5.14.

• EXERCISE **5.7.17**

Suppose $\alpha = 3.0$ and $\alpha_2 = 1.0$. Start from H = 60 and A = 20. Take two steps, with a step length of $\Delta t = 0.25$, as in exercise 5.5.15. Does this diagram help explain what went wrong?

• EXERCISE **5.7.18**

Suppose $\alpha = 3.0$ and $\alpha_2 = 1.0$. Start from H = 0 and A = 20. Take two steps, with a step length of $\Delta t = 0.5$, as in exercise 5.5.16. Does this diagram help explain what went wrong?

- \spadesuit Draw the nullclines and direction arrows for the following models of springs. Make sure to include positive and negative values for the position x and the velocity v.
 - EXERCISE **5.7.19**

The model in exercise 5.5.17.

• EXERCISE **5.7.20**

The model in exercise 5.5.18.

- ♠ Sketch the given solution of the following models of springs first as a pair of functions of time, and then in the phase-plane. Check that the solution follows the arrows.
 - EXERCISE **5.7.21**

The solution $x(t) = \cos(t)$ (exercise 5.5.19) of the spring equation in exercise 5.5.17.

• EXERCISE **5.7.22**

The solution $x(t) = e^{-t}\cos(t)$ (exercise 5.5.20) of the spring equation with friction in exercise 5.5.18.

APPLICATIONS

For the following problems, add direction arrows to the phase-plane.

• EXERCISE **5.7.23**

The model in exercise 5.5.21.

• EXERCISE **5.7.24**

The model in exercise 5.5.22.

• EXERCISE **5.7.25**

The model in exercise 5.5.25.

• EXERCISE **5.7.26**

The model in exercise 5.5.26.

• EXERCISE **5.7.27**

The model in exercise 5.5.27.

• EXERCISE **5.7.28**

The model in exercise 5.5.28.

• EXERCISE **5.7.29**

The model in exercise 5.6.33.

• EXERCISE **5.7.30**

The model in exercise 5.6.34.

• EXERCISE **5.7.31**

The model in exercise 5.6.35.

• EXERCISE **5.7.32**

The model in exercise 5.6.36.

• EXERCISE **5.7.33**

The model in exercise 5.6.37.

• EXERCISE **5.7.34**

The model in exercise 5.6.38.

• EXERCISE **5.7.35**

The model in exercise 5.6.39.

• EXERCISE **5.7.36**

The model in exercise 5.6.40.

- ♠ For the following problems, use the direction arrows on your phase-plane to sketch a solution starting from the given initial condition.
 - EXERCISE **5.7.37**

The model in exercise 5.7.25 starting from (1500,200). Is there another path for the solution that is consistent with the direction arrows?.

• EXERCISE **5.7.38**

The model in exercise 5.7.26 starting from (1500,200).

• EXERCISE **5.7.39**

The model in exercise 5.7.27 starting from (200,300).

• EXERCISE **5.7.40**

The model in exercise 5.7.28 starting from (200,300).

• EXERCISE **5.7.41**

The model in exercise 5.7.31 starting from (0.5,1).

• EXERCISE **5.7.42**

The model in exercise 5.7.32 starting from (0.5,1).

• EXERCISE **5.7.43**

The model in exercise 5.7.35 starting from (0.5,1).

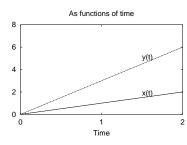
• EXERCISE **5.7.44**

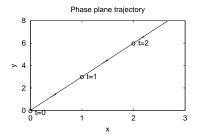
The model in exercise 5.7.36 starting from (0.5,0,5). Can you be sure that the solution behaves exactly like your picture?

Chapter 6

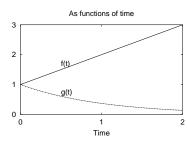
Answers

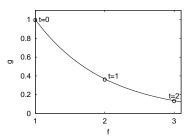
5.7.1.



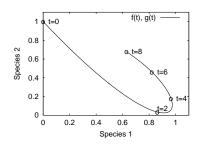


5.7.3.

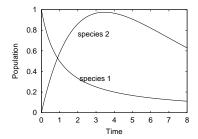




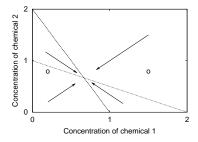
5.7.5.



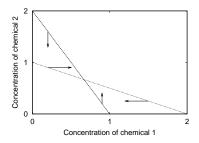
5.7.7.



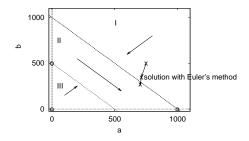
5.7.9.



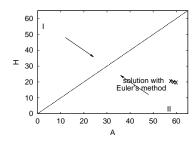
5.7.11.



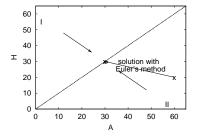
5.7.13. We found that $(\hat{a}(0.1), \hat{b}(0.1)) = (712.5, 350)$, with both values having decreased. This is consistent with the fact that our initial conditions lie in Region I (because 750+500>1000). Similarly, $(\hat{a}(0.2), \hat{b}(0.2))=(703.6, 271.3)$, with both values having decreased. This is consistent with the fact that our initial conditions lie in Region I (because 712.5+350>1000). However, the solution has now moved into region II and a will begin to increase.



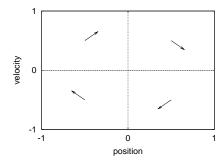
5.7.15. We found that $(\hat{H}(0.1), \hat{A}(0.1)) = (58.8, 20.4)$, with H having decreased and A increased. This is consistent with the fact that our initial conditions lie in Region II (because 60 > 20). Similarly, $(\hat{H}(0.2), \hat{A}(0.2)) = (57.6, 20.8)$ because our first step landed in region II.



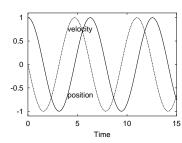
5.7.17. We found that $(\hat{H}(0.1), \hat{A}(0.1)) = (30.0, 30.0)$, with H having decreased and A increased. This is consistent with the fact that our initial conditions lie in Region II (because 60 > 20). However, $(\hat{H}(0.2), \hat{A}(0.2)) = (30.0, 30.0)$ because our first step landed right on the equilibrium. This overly long jump is a consequence of taking too big a step.

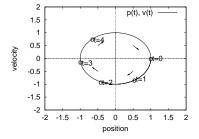


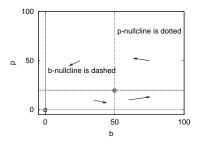
5.7.19. The x-nullcline is v = 0 and the v-nullcline is x = 0. These break the phase-plane into four regions. The position is increasing when the velocity is positive, and the velocity is decreasing when the position is positive.



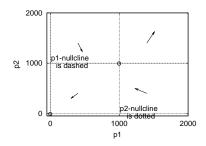
5.7.21.



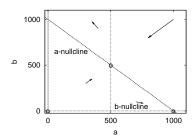




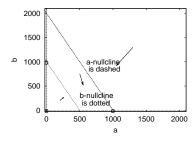
5.7.25.



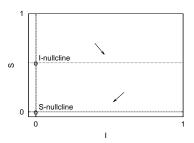
5.7.27.



5.7.29.



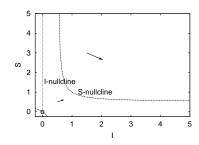
5.7.31.



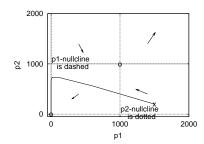
5.7.33.



5.7.35.

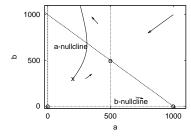


5.7.37.

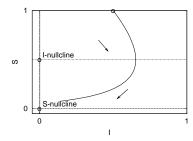


It is also possible that the solution goes to the right of the equilibrium and shoots off the upper right hand part of the phase-plane.

5.7.39.



5.7.41.



5.7.43.

