Equilibria and Display of Autonomous Differential Equations 5.2

MATHEMATICAL TECHNIQUES

- ♠ Find the equilibria of the following autonomous differential equations.
 - EXERCISE **5.2.1**

$$\frac{dx}{dt} = 1 - x^2.$$

• EXERCISE 5.2.2

$$\frac{dx}{dt} = 1 - e^x$$
.

• EXERCISE 5.2.3

$$\frac{dy}{dt} = y\cos(y).$$

• EXERCISE 5.2.4

$$\frac{dz}{dt} = \frac{1}{z} - 3.$$

- Find the equilibria of the following autonomous differential equations that include parameters.
 - EXERCISE **5.2.5**

$$\frac{dx}{dt} = 1 - ax$$

• EXERCISE **5.2.6**

$$\frac{dx}{dt} = cx + x^2$$

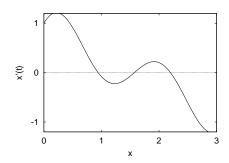
 $\frac{dx}{dt} = cx + x^2.$ • EXERCISE **5.2.7**

$$\frac{dW}{dt} = \alpha e^{\beta W} - 1.$$

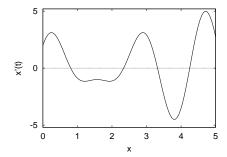
 $\frac{dt}{dt} = \alpha e^{zt} -$ • EXERCISE **5.2.8**

$$\frac{dy}{dt} = ye^{-\beta y} - ay.$$

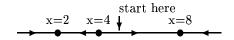
- $\frac{dy}{dt} = ye^{-\beta y} ay.$ From the following graphs of the rate of change as a function of the state variable, draw the phase-line diagram.
 - EXERCISE **5.2.9**



• EXERCISE **5.2.10**



- From the following phase-line diagrams, sketch a solution starting from the specified initial condition.
 - \bullet EXERCISE **5.2.11**



• EXERCISE **5.2.12**

$$x=2$$
 $x=4$ $x=8$

- \spadesuit From the given phase-line diagram, sketch a possible graph of the rate of change of x as a function of x.
 - \bullet EXERCISE **5.2.13**

The phase line in exercise 5.2.11.

• EXERCISE **5.2.14**

The phase line in exercise 5.2.12.

- Graph the rate of change as a function of the state variable and draw the phase-line diagram for the following differential equations.
 - EXERCISE **5.2.15**

 $\frac{dx}{dt} = 1 - x^2$ (as in exercise 5.2.1). Graph for $-2 \le x \le 2$. • EXERCISE **5.2.16**

 $\frac{dx}{dt} = 1 - e^x$ (as in exercise 5.2.2). Graph for $-2 \le x \le 2$. • EXERCISE **5.2.17**

 $\frac{dy}{dt} = y \cos(y)$ (as in exercise 5.2.3). Graph for $-2 \le y \le 2$. • EXERCISE **5.2.18**

 $\frac{dz}{dt} = \frac{1}{z} - 3$ (as in exercise 5.2.4). Graph for $0 < z \le 1$.

- A Try to find the "equilibria" of the following autonomous differential equations. What goes wrong? Graph the "equilibria" as functions of time for $0 \le t \le 5$.
 - EXERCISE **5.2.19**

$$\frac{dx}{dt} = x - t$$
.

 $\frac{dt}{dt} = x - t.$ • EXERCISE **5.2.20**

$$\frac{dx}{dt} = \ln(x) + t.$$
• EXERCISE **5.2.21**

$$\frac{dx}{dt} = x^2 - t + 1.$$

 $\frac{dx}{dt} = x^2 - t + 1.$ • EXERCISE **5.2.22** $\frac{dx}{dt} = x^2 - t^2.$

APPLICATIONS

 \spadesuit Suppose a population is growing at constant rate λ , but that individuals are harvested at a rate of h. The differential equation describing such a population is

$$\frac{db}{dt} = \lambda b - h.$$

For each of the following values of λ and h, find the equilibrium, draw the phase-line diagram and sketch one solution with initial condition below the equilibrium and another with initial condition above the equilibrium. Explain your result in words.

• EXERCISE **5.2.23**

$$\lambda = 2.0, h = 1000.$$

• EXERCISE **5.2.24**

$$\lambda = 0.5, h = 1000.$$

- \spadesuit Find the equilibria, graph the rate of change $\frac{db}{dt}$ as a function of b, and draw a phase-line diagram for the following models describing bacterial population growth.
 - EXERCISE **5.2.25**

The model in exercise 5.1.27. Check that your arrows are consistent with the behavior of b(t) at b=10 and b = 1000.

• EXERCISE **5.2.26**

The model in exercise 5.1.28. Check that your arrows are consistent with the behavior of b(t) at b=1000and b = 5000.

• EXERCISE **5.2.27**

The model in exercise 5.1.29. Check that your arrows are consistent with the behavior of b(t) at b = 100 and b = 300.

• EXERCISE **5.2.28**

The model in exercise 5.1.30. Check that your arrows are consistent with the behavior of b(t) at b = 1000 and b = 3000.

 \spadesuit Find the equilibria, graph the rate of change $\frac{dC}{dt}$ as a function of C, and draw a phase-line diagram for the following models describing chemical diffusion.

• EXERCISE **5.2.29**

The model in exercise 5.1.33. Check that the direction arrow is consistent with the behavior of C(t) at $C = \Gamma$.

• EXERCISE **5.2.30**

The model in exercise 5.1.34. Check that the direction arrow is consistent with the behavior of C(t) at $C = \Gamma$.

 \spadesuit Find the equilibria, graph the rate of change $\frac{dp}{dt}$ as a function of p, and draw a phase-line diagram for the following models describing competition.

• EXERCISE 5.2.31

The model in exercise 5.1.37. What happens to a solution starting from a small, but positive, value of p?

• EXERCISE **5.2.32**

The model in exercise 5.1.38. What happens to a solution starting from a small, but positive, value of p?

♠ Find the equilibria and draw the phase-line diagram for the following differential equations, in addition to answering the questions.

• EXERCISE **5.2.33**

Suppose the population size of some species of organism follows the model

$$\frac{dN}{dt} = \frac{3N^2}{2+N^2} - N$$

where N is measured in hundreds. Why might this population behave as it does at small values? This is another example of the Allee effect discussed in exercise 5.1.29.

• EXERCISE **5.2.34**

Suppose the population size of some species of organism follows the model

$$\frac{dN}{dt} = \frac{5N^2}{1 + N^2} - 2 * N$$

where N is measured in hundreds. What is the critical value below which this population is doomed to extinction (as in exercise 5.2.33)?

• EXERCISE **5.2.35**

The drag on a falling object is proportional to the square of its speed. In a differential equation

$$\frac{dv}{dt} = a - Dv^2$$

where v is speed, a is acceleration and D is drag. Suppose that $a = 9.8 \text{ m/s}^2$ and that D = 0.0032 per meter (values for a sky-diver). Check that the units in the differential equation are consistent. What does the equilibrium speed mean?

• EXERCISE **5.2.36**

Consider the same situation as in exercise 5.2.35 but for a skydiver diving head down with her arms against her sides and her toes pointed, thus minimizing drag. The drag D is reduced to D = 0.00048 per meter. Find the equilibrium speed. How does it compare to the ordinary sky-diver?

• EXERCISE **5.2.37**

According to Torricelli's law of draining, the rate which a fluid flows out of a cylinder through a hole at the bottom is proportional to the square root of the depth of the water. Let y represent the depth of water in

centimeters. The differential equation is

$$\frac{dy}{dt} = -c\sqrt{y}$$

where $c = 2.0\sqrt{\text{cm}}/\text{sec}$. Show that the units are consistent. Use your phase-line diagram to sketch solutions starting from y = 10.0 and y = 1.0.

• EXERCISE **5.2.38**

Write a differential equation describing the depth in a cylinder (as in exercise 5.2.37) where water enters at a rate of 4.0 cm/sec but continues to drain out as above. Use your phase-line diagram to sketch solutions starting from y = 10.0 and y = 1.0.

\bullet EXERCISE **5.2.39**

One of the most important differential equations in chemistry uses the **Michaelis-Menton** or **Monod** equation. Suppose S is the concentration of a substrate that is being converted into a product. Then

$$\frac{dS}{dt} = -k_1 \frac{S}{k_2 + S}$$

describes how substrate is used. Set $k_1 = k_2 = 1$. item How does this equation differ from Torricelli's law of draining (exercise 5.2.37)?

• EXERCISE **5.2.40**

Write a differential equation describing the amount of substrate if substrate is added at rate R but continues to be converted to product as before. Find the equilibrium, draw the phase-plane diagram and a representative solution with R = 0.5 and R = 1.5. Can you explain your results?

- ♠ Small organisms like bacteria take in food at rates proportional to their surface area but use energy at higher rates.
 - EXERCISE **5.2.41**

Suppose that energy is used at a rate proportional to the mass. In this case,

$$\frac{dV}{dt} = a_1 V^{2/3} - a_2 V.$$

where V represents the volume in cm³ and t is time measured in days. The first term says that surface area is proportional to volume to the 2/3 power. The constant a_1 gives the rate at which energy is taken in and has units of cm/day. a_2 is rate at which energy is used and has units of per day. Check the units. Find the equilibrium. What happens to the equilibrium as a_1 becomes smaller? Does this make sense? What happens to the equilibrium as a_2 becomes smaller? Does this make sense?

• EXERCISE **5.2.42**

Suppose that energy is used at a rate proportional to the mass to the 3/4 power (closer to what is observed). In this case,

$$\frac{dV}{dt} = a_1 V^{2/3} - a_2 V^{3/4}.$$

Find the units of a_2 if V is measured in cm³ and t is measured in days. (They should look rather strange.) Find the equilibrium. What happens to the equilibrium as a_1 becomes smaller? Does this make sense? What happens to the equilibrium as a_2 becomes smaller? Does this make sense?

Chapter 6

Answers

5.2.1.

- 1. This equation is autonomous because the only variable on the right hand side is the state variable x.
- 2. We must solve $1 x^2 = 0$.
- 3. Factoring gives (1-x)(1+x)=0.
- 4. Solving each factor gives x = 1 or x = -1.

5.2.3.

- 1. This equation is autonomous because the only variable on the right hand side is the state variable y.
- 2. We must solve $y \cos(y) = 0$.
- 3. This is already in factored form.
- 4. Solving gives y = 0 or $y = \frac{\pi}{2} + \pi n$ for any integer value of n.

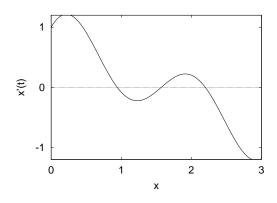
5.2.5.

- 1. This equation is autonomous because the only variable on the right hand side is the state variable x.
- 2. We must solve 1 ax = 0.
- 3. There is only one term, so we don't need to factor.
- 4. Solving, we find ax = 1 which has solution $x = \frac{1}{a}$.

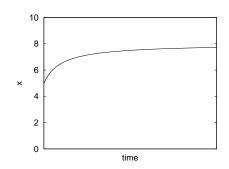
5.2.7.

- 1. This equation is autonomous because the only variable on the right hand side is the state variable W.
- 2. We must solve $\alpha e^{\beta W} 1 = 0$.
- 3. There is only one term, so we don't need to factor.
- 4. Solving, we find that $\alpha e^{\beta W} = 1$, which becomes $e^{\beta W} = \frac{1}{\alpha}$. Taking logarithms, $\beta W = -\ln(\alpha)$, which has solution $W = -\frac{\ln(\alpha)}{\beta}$.

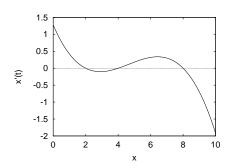
5.2.9.



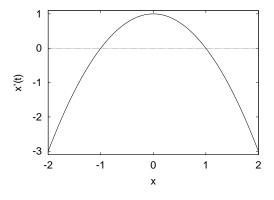
5.2.11.

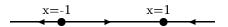


5.2.13.

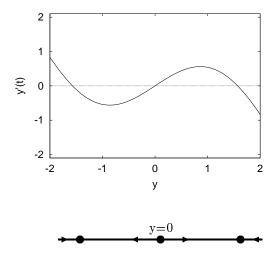


5.2.15.

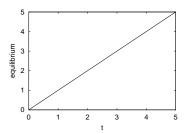




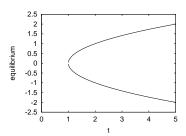
5.2.17.



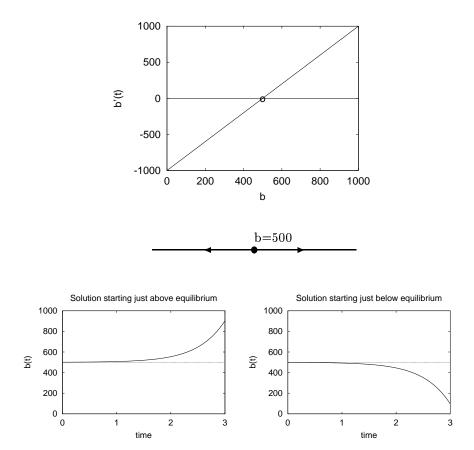
5.2.19. This is not an autonomous equation because t appears on the right hand side. If we go ahead and solve x - t = 0, we find x = t. The equilibrium is an ever-increasing function of t.



5.2.21. This is not an autonomous equation because t appears on the right hand side. If we go ahead and solve $x^2 = t - 1$, we find $x = \pm \sqrt{t - 1}$. This has no solution if t < 1, and two solutions for t > 1.

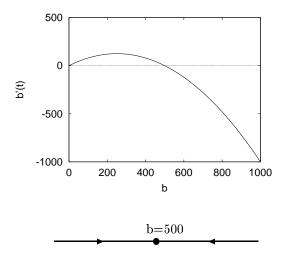


5.2.23. The equilibrium is $b^* = 500$.



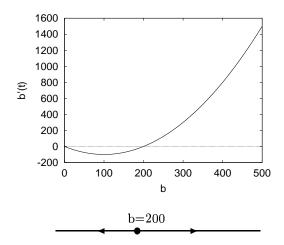
This population can outgrow the harvest if it starts at a large enough value. If it starts too small, the harvest will drive it to extinction.

5.2.25. We found that the population obeys the autonomous differential equation $\frac{db}{dt} = (1 - 0.002b)b$. This is in factored form, and has equilibria at b = 500 and at b = 0.



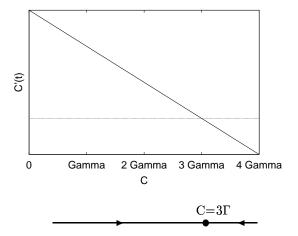
The arrow points up at b = 10, consistent with an increasing population, and down at b = 1000, consistent with a decreasing population.

5.2.27. We found that the population obeys the autonomous differential equation $\frac{db}{dt} = (-2 + 0.01b)b$. This is in factored form, and has equilibria at b = 200 and at b = 0.



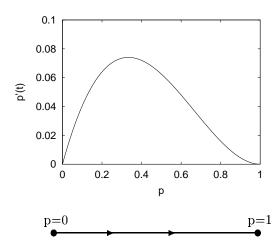
The arrow points down at b = 100, consistent with a decreasing population, and up at b = 300, consistent with an increasing population.

5.2.29. We found that the population obeys the autonomous differential equation $\frac{dC}{dt} = -\beta C + 3\beta\Gamma$. As long as $\beta \neq 0$, this has equilibria at $C = 3\Gamma$.



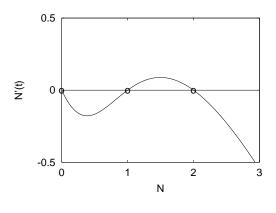
The arrow points up at $C = \Gamma$, consistent with an increasing concentration.

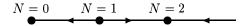
5.2.31. We found that the population obeys the autonomous differential equation $\frac{dp}{dt} = 0.5p(1-p)^2$. This has equilibria at p = 0 and p = 1.



All the arrows points up, except at the equilibria, so the solution moves up to p = 1, meaning that a takes over.

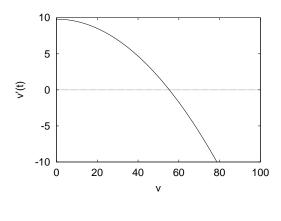
5.2.33. The equilibria are at N=0, and the solution of $\frac{3N}{2+N^2}-1=0$, which occurs where $N^2-3N+2=0$. This factors to have solutions at N=1 and N=2. To see whether N is increasing or decreasing between the equilibria, we need to check whether $\frac{dN}{dt}$ is positive or negative. We find that f(1/2)=-1/6<0, f(3/2)=3/34>0 and f(3)=-6/11<0. Therefore, the graph of the rate of change and the phase-line diagram must be the following.



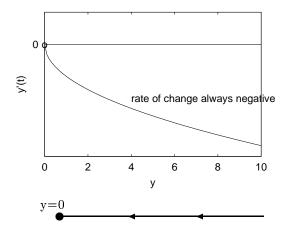


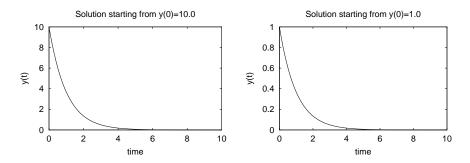
This population dies out if it drops below N = 1. Perhaps they cannot find mates when the population gets below one hundred.

5.2.35. Everything has units of meters per second squared. The equilibrium is the solution of $9.8 - 0.0032v^2 = 0$, or $v^* = \sqrt{9.8/0.0032} = 55.3$ m/s. This is the terminal velocity of a sky-diver in free fall.

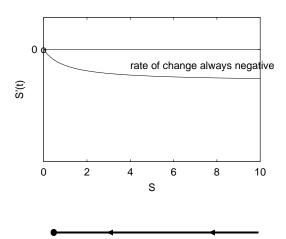


5.2.37. Both sides have units of cm/sec. This checks. The equilibrium is $y^* = 0$, meaning that all water has drained out of the cylinder.





5.2.39. The equilibrium is at $S^* = 0$. Eventually, all substrate will be used. In both cases the rate is always negative. However, the graph of the rate for Torricelli's law of draining is much steeper near a value of 0 for the state variable.



5.2.41. Everything has units of cm³/day. The equilibrium is

$$V^* = \left(\frac{a_1}{a_2}\right)^3.$$

The equilibrium gets smaller for smaller values of a_1 because this animal is less effective at collecting food. The equilibrium gets larger when a_2 becomes smaller because this animal is more efficient at using energy.