On Generic vanishing in char p > 0.

Christopher Hacon

University of Utah

May, 2013

Christopher Hacon On Generic vanishing in char p > 0.

(日)

Э

Varieties of m.A.d.

- Let X be a smooth projective variety over an algebraically closed field k and a : X → A a morphism to an abelian variety.
- If dim X = dim a(X) then we say that X has maximal Albanese dimension (m.A.d.).
- Over $k = \mathbb{C}$ the geometry of varieties of m.A.d. is extreemely well understood.
- They admit good minimal models (Fujino). In fact since A contains no rational curves, a relative minimal model for X over A does the trick.
- The 4-th pluricanonical map gives the litaka fibration (3-rd if X is of general type; Jiang-Lahoz-Tirabassi).
- The main tools in studying geometry of m.A.d. varieties are Generic-Vanishing theorems and the Fourier-Mukai transform.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Fourier Mukai transform

- Let be the dual abelian variety and P the (normalized) Poincaré bundle on A × Â so that P|_{A×x} = P_x is the topologically trivial line bundle parametrized by x ∈ Â.
- Let $R\hat{S}: D(A) \to D(\hat{A})$ be defined by $R\hat{S}(?) = Rp_{\hat{A},*}(Lp_A^*(?) \otimes \mathcal{P}).$
- For a coherent sheaf F and $x \in \hat{A}$ general, $R^i \hat{S}(F) \otimes k(x) = H^i(A, F \otimes P_x)$ (cohom. and base change).
- Mukai: $RS \circ R\hat{S} = (-1_A)^*[-g]$, and $R\hat{S} \circ RS = (-1_{\hat{A}})^*[-g]$.
- Eg. $R\hat{S}(k(x)) = Rp_{\hat{A},*}(\mathcal{P}|_{x \times \hat{A}}) = P_x$ and $R\hat{S}(P_x) = k(-x)[-g]$ (equivalent to the above isom.).
- If *L* is ample on \hat{A} and $\phi_L : \hat{A} \to A$ the isogeny s.t. $\phi_L(x) = t_x^* L \otimes L^{\vee}$, then RS(L) is a vector bundle of rank $h^0(L)$ s.t. $\phi_L^*(\hat{L}) = \bigoplus_{h^0(L)} L^{\vee}$.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

The Fourier Mukai transform

- Lemma: If $F \in Coh(A)$ and $h^i(A, F \otimes P_x) = 0$ for all *i*, $P_x \in Pic^0(A)$, then F = 0.
- Proof: RŜ(F) = 0 by Cohomology and Base Change so F=0 by RS ∘ RŜ = (−1_A)*[−g].
- We will be interested in computing

$$R\hat{S}(Ra_*\omega_X) = Rp_{\hat{A},*}(\omega_X \otimes (a \times \mathrm{id}_{\hat{A}})^*\mathcal{P})$$

and hence in the cohomology support loci

$$V^i(\omega_X) = \{x \in \hat{A} | h^i(\omega_X \otimes P_x) \neq 0\}$$

• These are governed by generic vanishing theorems.

Generic vanishing

Theorem (Green-Lazarsfeld)

Let X be a smooth complex projective variety, then every irreducible component of $V^i(\omega_X)$ is a (torsion) translate of a (reduced) subtorus of $\operatorname{Pic}^0(X)$ of codimension at least $i - (\dim(X) - \dim(a(X)))$. If X is m.A.d. then there are inclusions:

$$V^0(\omega_X) \supset V^1(\omega_X) \supset \ldots \supset V^{\dim(X)}(\omega_X).$$

 $(V^{\dim(X)}(\omega_X) = \{\mathcal{O}_X\} \text{ if } \hat{A} = \operatorname{Pic}^0(X).)$

- Idea: Given an element of $H^i(\omega_X \otimes P_x)$ we try to deform it in the tangent direction $0 \neq v \in H^1(X, \mathcal{O}_X) = T_x \hat{A}$.
- Using the $\partial \bar{\partial}$ lemma, Green and Lazarsfeld show that ϕ deforms to first order iff it deforms to all orders.
- Thus if x ∈ V is a generic point of an irreducible component of Vⁱ(ω_X) then V contains T_x(V) and hence V is a reduced subtorus.

Generic vanishing

- Let φ ∈ A^{n,i} and w ∈ A^{0,1} be the corresponding harmonic forms.
- ϕ deforms to order n if $\exists \phi_i$ s.t. $(\bar{\partial} + tw \wedge)(\phi + t\phi_1 + t^2\phi_2 + \ldots) = 0 \mod t^{n+1}.$
- ϕ deforms to first order if $\exists \phi_1$ s.t. $w \land \phi = \bar{\partial} \phi_1$.
- Since $\partial(w \wedge \phi) = 0$, then $w \wedge \phi = \bar{\partial} \partial c_0$.
- Replace ϕ_1 by ∂c_0 .
- Now $w \wedge \partial c_0 = \partial (w \wedge c_0)$ and $\bar{\partial}(w \wedge \partial c_0) = w \wedge \bar{\partial} \partial c_0 = w \wedge (w \wedge \phi) = 0$, so that $w \wedge \phi_1 = w \wedge \partial c_0 = \bar{\partial} \partial c_1$.
- Let $\phi_2 = \partial c_1$ and repeat.
- We inductively get $w \wedge \partial c_{i-1} = \overline{\partial} \partial c_i$ and we let $\phi_{i+1} = \partial c_i$.

(ロ) (同) (E) (E) (E)

- Pink-Roessler prove a similar result in char p > 0 for varieties that lift to Witt vectors w₂(k) with dim ≤ p and where the Picard variety has no supersingular factors.
- This uses a result of Deligne-Illusie: $h_D^r(X, P_x) \le h_D^r(X, P_x^{\otimes p})$ where $h_D^r(X, P_x) = \sum h^{r-j}(X, \Omega_X^j \otimes P_x)$.
- From this they deduce that the loci Vⁱ(Ω^j_X) are invariant under multiplication by p and this implies they are a finite union of torsion translates of subtori.

イロト イヨト イヨト イヨト

A conjecture of Green-Lazarsfeld

- We will be interested in char p > 0 versions of the generic vanishing statements: If X has m.A.d. then Vⁱ(ω_X) has codimension ≥ i.
- The following alternative point of view is a conjecture of Green-Lazarsfeld proven by Hacon and Popa-Pareschi

Theorem

Let X be a compact Kähler manifold of dimension d, $a : X \to A$ a morphism to an abelian variety with image $a(X) \subset A$ of dimension d - k. Then $R^i p_{\hat{A}}, *((a \times id_{\hat{A}})^* \mathcal{P}) = 0$ for $i \notin [d - k, d]$.

This result is in fact equivalent to generic vanishing as we will now explain.

・ロン ・四 と ・ ヨ と ・ ヨ と

A conjecture of Green-Lazarsfeld

• $Rp_{\hat{A}}, *((a \times id_{\hat{A}})^*\mathcal{P}) = Rp_{\hat{A}}, *(Lp_X^*(D_X(\omega_X)) \otimes (a \times id_{\hat{A}})^*\mathcal{P}) = R\hat{S}(Ra_*(D_X(\omega_X))) = R\hat{S}(D_A(Ra_*(\omega_X))).$

• By a theorem of Kollár $Ra_*\omega_X = \bigoplus_{i=0}^k R^i a_*\omega_X[-i]$.

 So the above result follows from *R*S(D_A(Rⁱa_{*}ω_X)) = H⁰(RS(D_A(Rⁱa_{*}ω_X))).

• Let $F \in Coh(A)$, then F is a GV_{-k} sheaf if

$$\operatorname{codim}\left(V^{i}(F):=\{P\in \hat{A}|h^{i}(F\otimes P)\neq 0\}\right)\geq i-k.$$

• And F is $WIT_{\geq k}$ if

$$R^i \hat{S}(F) = 0$$
 for all $i < k$.

We then have

・ 回 と ・ ヨ と ・ ヨ と

Characterization of generic vanishing

Theorem

Let dim A = g and $F \in Coh(A)$, then the following are equivalent:

- F is GV_{-k} .
- Hⁱ(A, F ⊗ L^V) = 0 for any i > k and any sufficiently ample line bundle L on Â.
 - Since by Kollár Hⁱ(R^ja_{*}ω_X ⊗ M) = 0 for any ample line bundle M, then it is easy to see that the theorem applies to F = R^ja_{*}ω_X. (Recall φ^{*}_L(L[∨]) = L^{⊕h⁰(L)}).
 - Thus $R\hat{S}(D_A(R^ja_*\omega_X))$ is a sheaf and $\operatorname{codim} V^i(R^ja_*\omega_X) \ge i$.
 - Thus generic vanishing follows as a limit of Kollár vanishing.
 - The result holds more generally for X klt (or using Nadel vanishing).

・ロン ・四 と ・ ヨ と ・ ヨ と

- If $F \in Coh(A)$ is GV_0 it also follows that $V^i(F) \supset V^{i+1}(F)$.
- So if F is GV_0 and $H^0(A, F \otimes P_x) = 0$ for all $P \in \hat{A}$, then $H^i(A, F \otimes P_x) = 0$ for all i and all $P \in \hat{A}$ and so F = 0.
- In general we expect that if F is GV₀ then F is determined by H⁰(A, F ⊗ P_x) = 0 for all P ∈ Â (similarly for morphisms between GV₀ sheaves).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Generic fails vanishing in char. p > 0

• Since vanishing fails for non klt varieties and in char p > 0, we expect generic vanishing also fails in this context.

Theorem (Hacon-Kovács)

There exist a projective variety X such that either (1) char > 0, then X is smooth, or (2) char. = 0, X has isolated Gorenstein LC singularities, and a separated projective morphism to an abelian variety $a : X \to A$ which is generically finite onto its image and such that $R^i p_{\hat{A}}, *((a \times id_{\hat{A}})^* \mathcal{P}) \neq 0$ for some $i \neq \dim X$.

- In fact we show that if $R^i p_{\hat{A}}, *((a \times id_{\hat{A}})^* \mathcal{P}) = 0$ for all $i \neq \dim X$, then $Ra_*\omega_X \cong a_*\omega_X$.
- Thus it suffices to construct $a : X \to A$ generically finite with $R^i a_* \omega_X \neq 0$ some $i \neq \dim X$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Generic fails vanishing in char. p > 0

- If char > 0, then there are examples of Z a smooth 6-fold and L a very ample line bundle on Z such that $H^1(Z, K_Z + L) = 0$ (Lauritzen-Rao).
- We construct $a_Y : Y \to A$ finite with an isolated singularity isomorphic to a cone over Z.
- If X → Y is the resolution then we check that R¹a_{*}ω_X ≠ 0 where a : X → A.
- This forces $R^i p_{\hat{A}}, *((a \times id_{\hat{A}})^* \mathcal{P}) \neq 0$ for some $i \neq \dim X$.
- I do not know of (but expect) examples where X is smooth and some $R^i a_* \omega_X$ fails generic vanishing.
- However we can prove a (weak) positive result.

・ロン ・回 と ・ ヨ と ・ ヨ と

Generic vanishing and Frobenius

- Consider $F: X \to X$ the Frobenius morphism.
- By duality we identify Hom(F_{*}ω_X, ω_X) ≃ F_{*}Hom(ω_X, ω_X), and let Tr : F_{*}ω_X → ω_X be the element corresponding to id_{ω_X}
- Iterating this we get maps $F^e_*\omega_X \to \omega_X$.
- It is well known that the image of these maps stabilizes (under mild hypothesis) to σ(X) ⊗ ω_X.
- If X is smooth (or F-pure) then $\sigma(X) = \mathcal{O}_X$.
- Tensoring by a line bundle L and taking global sections we get maps $H^0(F^e_*(\omega_X \otimes L^{p^e})) \to H^0(\omega_X \otimes L)$.
- The stable image is denoted by $S^0(\omega_X \otimes L) \subset H^0(\omega_X \otimes L)$.

(日) (同) (E) (E) (E)

Generic vanishing and Frobenius

- Given a morphism $a: X \to A$ we also obtain natural maps $F_*a_*\omega_X = a_*F_*\omega_X \to a_*\omega_X$.
- Let $\Phi^e : F^e_* a_* \omega_X \to a_* \omega_X$, then the image of Φ^e stabilizes for $e \gg 0$ (Blickle-Schwede).
- We call the stable image $S^0 a_* \omega_X$ and we consider the inverse system

$$\ldots \rightarrow F_*^{e+1}S^0a_*\omega_X \rightarrow F_*^eS^0a_*\omega_X \rightarrow \ldots$$

with inverse limit $\Omega = \lim F_*^e S^0 a_* \omega_X$.

- Thus Hⁱ(F^e_{*}S⁰a_{*}ω_X ⊗ L^V) = Hⁱ(F^e_{*}S⁰a_{*}ω_X ⊗ L^V) = 0 for any L sufficiently ample and e ≫ 0, in fact φ^{*}_L(L^V) = L^{⊕h⁰(L)} and F^{e*}L = L^{p^e} is sufficiently ample.
- Unluckily Ω is quasi-coherent and some difficulties arise. We show:

・ロン ・四 と ・ ヨ と ・ ヨ と

Theorem (Hacon-Patakfalvi)

There exists a quasi-coherent sheaf Λ on \hat{A} such that $R\hat{S}(\Omega) = D_{\hat{A}}(\Lambda)$. In particular $\operatorname{codim} R^{i}\hat{S}(\Omega) \geq i$.

- Here $\Lambda = \varinjlim(\hat{F}^e)^* R\hat{S}(S^0 a_* \omega_X)$ where $\hat{F} : \hat{A} \to \hat{A}$ is the dual isogeny to $\overrightarrow{F} : A \to A$.
- It does **not** follow that $R\hat{S}D_A(\Omega) = D_{\hat{A}}(D_{\hat{A}}(\Lambda))$ is a sheaf!
- $\Lambda \otimes k(y) \cong \varinjlim H^0(A, F^e_*(S^0a_*\omega_X) \otimes P_{-y})^{\vee}.$
- Thus $\Lambda = 0$ (and hence $\Omega = 0$) if $H^0(S^0a_*\omega_X \otimes P) = 0$ for all $P \in \hat{A}$.
- \exists closed subset $Z \subset \hat{A}$ s.t. if i > 0 and $p^e \cdot x \notin Z$ for all $e \ge 0$, then $\varinjlim H^i(A, F^e_*(S^0a_*\omega_X) \otimes P_{-y})^{\vee} = 0$.
- However, $\overline{V^i(\Omega)} = \hat{A}$ (if non-empty).

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem (Hacon-Patakfalvi)

If $\max \dim S^0(X, mK_X) = 1$, then $a : X \to A$ is surjective.

- Recall that $S^0(X, mK_X) = \operatorname{Im}(H^0(F^e_*(\omega_X^{1+(m-1)p^e})) \to H^0(\omega_X^m))$ where $e \gg 0$.
- In characteristic 0, by a result of Kawamata, if max dim H⁰(X, mK_X) = 1 then a : X → A is surjective.
- In characteristic p > 0, the groups $S^0(X, mK_X)$ are better behaved than $H^0(X, mK_X)$, however if E is an elliptic curve, then $S^0(X, mK_E) \neq 0$ iff E is not supersingular (so the above result is not optimal).

・ロシ ・ 日 ・ ・ 日 ・ ・ 日 ・

Geometric consequences

- The idea of the proof is as follows: Assume that S⁰(X, K_X) ≠ 0 (by hypothesis S⁰(X, mK_X) ≠ 0 for some m > 0; and one checks that (m, p) ≠ 1).
- Then $0_{\hat{A}} \in V^0(S^0a_*\omega_X)$ is an isolated point and so $R\hat{S}(S^0a_*\omega_X)$ has an Artinian summand (supported at $0_{\hat{A}}$).
- One can show that $\Lambda = \varinjlim(\hat{F}^e)^* R\hat{S}(S^0 a_* \omega_X)$ has a non-zero Artinian summand \mathcal{A} .
- Thus $RS(D_{\hat{A}}(\mathcal{A}))$ is a summand of $\Omega = RS(D_{\hat{A}}(\Lambda))$.
- But RS(D_Â(A)) is obtained by extensions of O_A and hence its support is A.

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・

Theorem

Let (A, Θ) be a PPAV and $D \in |m\Theta|$ then $(A, \frac{1}{m}D)$ is F-pure (and hence log canonical and $\operatorname{mult}_{x}(D) \leq m \dim A$ for all $x \in A$.

- We have that $\Theta \frac{1-\epsilon}{m}D$ is ample and so $p^e \Theta + \frac{(1-p^e)(1-\epsilon)}{m}D$ is suff. ample, gen. and $H^i(A, -\otimes P) = 0$, i > 0, $P \in \hat{A}$.
- There is a surjection $F^e_*\mathcal{O}_A(p^e\Theta + \frac{(1-p^e)(1-\epsilon)}{m}D) \to \sigma(A, \frac{1-\epsilon}{m}D) \otimes \mathcal{O}_A(\Theta).$
- Using the FM transform one checks that the induced map $H^0(F^e_*\mathcal{O}_A(p^e\Theta + \frac{(1-p^e)(1-\epsilon)m}{D})\otimes P) \to H^0(\sigma(A, \frac{1-\epsilon}{m}D)\otimes \mathcal{O}_A(\Theta)\otimes P)$ is non-zero for general $P \in \hat{A}$.
- But then the general translate of Θ vanishes along the cosupport of $\sigma(A, \frac{1-\epsilon}{m}D)$ and so $\sigma(A, \frac{1-\epsilon}{m}D) = \mathcal{O}_A$.

・ロシ ・ 日 ・ ・ ヨ ・ ・ ヨ ・