Introduction Extending sections in Char p > 0Proof of the existence of flips

On 3-fold flips in char p > 0.

Christopher Hacon

University of Utah

May, 2013

Christopher Hacon 3-fold flips in char p > 0.

・ロ・ ・ 日・ ・ 日・ ・ 日・

臣

Introduction Extending sections in Char p > 0Proof of the existence of flips

Outline of the talk

Christopher Hacon 3-fold flips in char p > 0.

<□> <@> < E> < E> < E</p>

Introduction Extending sections in Char p > 0Proof of the existence of flips

Outline of the talk

2 Extending sections in Char p > 0

Christopher Hacon 3-fold flips in char p > 0.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Introduction Extending sections in Char p > 0Proof of the existence of flips

Outline of the talk

- 2 Extending sections in Char p > 0
- O Proof of the existence of flips

・ロト ・回ト ・ヨト ・ヨト

Introduction

Extending sections in Char p > 0Proof of the existence of flips

Outline of the talk

2 Extending sections in Char p > 0

3 Proof of the existence of flips

・ロン ・回 と ・ ヨ と ・ ヨ と …

Birational classification over \mathbb{C} .

- In recent years there has been substantial progress in understanding the birational geometry of varieties over the complex numbers C.
- It is known that the canonical ring $R(K_X)$ is finitely generated (for any smooth projective variety X; [BCHM], [Siu]).
- If X is of general type (i.e. K_X is big so that h⁰(mK_X) = O(m^{dim X})), then X has a minimal model which is given by a finite sequence of flips and divisorial contractions X --→ X₁ --→ X₂ ... -→ X_{min}. In particular K_{Xmin} is nef.
- If K_X is not pseudo-effective (i.e. $K_X + \epsilon H$ is not big for any H ample and $0 < \epsilon \ll 1$), then after finitely many flips and divisorial contractions we obtain a Mori fiber space: $X_N \to Z$. In particular $-K_{X_N}$ is ample over Z and dim $X > \dim Z$.

- By contrast, very little is known in characteristic p > 0.
- In dimension 2 the classification is analogous to the characteristic 0 case. More precisely we have
- Given a normal proj. surface X, Δ = ∑δ_iΔ_i ≥ 0 s.t. (1) X is Q-factorial, 0 ≤ δ_i ≤ 1 or (2) k = F_p and 0 ≤ δ_i or (3) (X, Δ) is LC, then there exists a finite sequence of K_X + Δ negative contractions of irreducible curves X → ... → X_i → X_{i+1} → ... X_N s.t.
 X_N is a minimal model (K_{XN} + Δ_N is nef) or
 - X_N is a Mori fiber space $(\exists f : X_N \to Z \text{ with } \rho(X_N/Z) = 1, \dim Z < \dim X_N \text{ and } -(K_{X_N} + \Delta_N) \text{ is } f\text{-ample}).$
- SLC abundance: If $K_X + \Delta$ is nef, then it is semiample.

- Resolution of singularities is expected to hold, but so far it is only known in dimension ≤ 3 (by Abhyankar, Cutkosky, Cossart and Piltant).
- There are many other technical difficulties (especially the failure of Kawamata-Viehweg vanishing).
- In this talk I will discuss recent progress for 3-folds.
- I begin by recalling a result of Keel. Let *L* be a nef line bundle (on a proper scheme), then the exceptional locus of *L* is *E*(*L*) = {*Z* ⊂ *X*|*Z* · *L*^{dim *Z*} = 0}.
- If L is semiample, then $f : X \to T = \operatorname{Proj} \oplus_{m \ge 0} H^0(\mathcal{O}_X(mL))$ contracts E(L).
- If there is a proper morphism of algebraic spaces contracting E(L), then L is **EWM** (endowed with map).

・ロン ・回 と ・ ヨ と ・ ヨ と

- Keel shows that in char p > 0 a nef line bundle L is semiample (EWM) iff L|_{E(L)} is semiample (EWM). He then proves the following:
- Base point free theorem: If X is normal and Q-factorial, $0 \le \Delta < 1$, L is a nef and big Cartier divisor such that $L - (K_X + \Delta)$ is nef and big then L is EWM. (If $k = \overline{F}_p$ then L is semiample.)
- Cone Theorem: Assume moreover that $\kappa(K_X + \Delta) \ge 0$ then (1) $\overline{NE}_1(X) = \overline{NE}_1(X)_{(K_X + \Delta) \ge 0} + \sum_{i \in \mathbb{N}} \mathbb{R}[C_i],$ (2) $0 < -(K_X + \Delta) \cdot C_i \le 3$ for almost all C_i , (3) $\mathbb{R}[C_i]$ are discrete in $(K_X + \Delta)_{<0}$.
- This allows us to run a MMP as long as we can prove the existence of flips (and stay in the projective category).
- Flips exist (under "mild" restrictions).

Theorem

(Hacon-Xu) Let (X, Δ) be a \mathbb{Q} -factorial 3-fold projective dlt pair, $\Delta \in \{1 - \frac{1}{n} | n \in \mathbb{N}\}$ and p > 5 then flips exist.

Recall that a flipping contraction is a small birational morphism f: X → Z with ρ(X/Z) = 1 such that −(K_X + Δ) is f-ample.
The flip f⁺: X⁺ → Z is another small birational morphism with ρ(X⁺/Z) = 1 such that K_{X⁺} + Δ⁺ is f⁺-ample.
If the flip exists (assuming Z is affine), then it is given by X⁺ = Proj ⊕_{m∈ℕ} H⁰(m(K_X + Δ)).

• So one must show that $R(K_X + \Delta)$ is finitely generated.

Corollary

If K_X is pseudo-effective and terminal, then it has a minimal model.

(ロ) (同) (E) (E)

- There is an additional difficulty: we do not know that Z is projective. However, if X is projective, we can still guarantee that X⁺ is projective.
- Similarly if X → Z is a divisorial contraction and X is projective, then we construct a projective "divisorial contraction" X' → Z as the relative minimal model of X over Z.
- Base point free theorem, existence of flips in characteristic ≤ 5 or for Δ with arbitrary coefficients, termination of klt flips and abundance are all open for 3-folds.

Introduction Extending sections in Char p > 0Proof of the existence of flips

Outline of the talk

2 Extending sections in Char p > 0

3 Proof of the existence of flips

・ロン ・回 と ・ ヨ と ・ ヨ と

臣

Vanishing over \mathbb{C} .

- The main tool in the subject is the Kawamata-Viehweg vanishing Theorem.
- Let (X, B) be a klt pair and D be a Cartier divisor such that $M := D (K_X + B)$ is nef and big, then $H^i(X, \mathcal{O}_X(D)) = 0$ for i > 0.
- Recall: If X is smooth and B = ∑ b_iD_i has simple normal crossings support where 0 ≤ b_i < 1 then (X, B) is klt.
- *M* is nef if *M* · *C* ≥ 0 for any curve *C* ⊂ *X* and nef and big if moreover *M*^{dim X} > 0.
- If H¹(X, O_X(D)) = 0, then the restriction H⁰(X, O_X(D + S)) → H⁰(S, O_S((D + S)|_S)) is surjective and we may apply induction on dim X.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Positive char approach

- Let k be algebraically closed field of characteristic p > 0.
- By examples of Raynaud and others, it is known that Kodaira (and hence also Kawamata-Viehweg) vanishing fails in positive characteristic and dim X ≥ 2.
- We therefore attempt to replace this vanishing by the systematic use of the Frobenius morphism and Serre vanishing.
- Consider $F: X \to X$ the Frobenius morphism (a finite morphism).
- By duality we identify $\mathcal{H}om(F_*\omega_X, \omega_X) \cong F_*\mathcal{H}om(\omega_X, \omega_X)$, and we let $Tr : F_*\omega_X \to \omega_X$ be the element corresponding to id_{ω_X} .
- We obtain homomorphisms

$$\ldots F^{e+1}_* \omega_X \to F^e_* \omega_X \to \ldots F_* \omega_X \to \omega_X.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Canonical subsystems of adjoint bundles

- If X is smooth and L is a line bundle, then we also obtain homomorphisms F^e_{*}(ω_X ⊗ L^{p^e}) ≅ (F^e_{*}ω_X) ⊗ L → ω_X ⊗ L.
- We Let S⁰(X, ω_X ⊗ L) be the image of H⁰(X, ω_X ⊗ L^{p^e}) → H⁰(X, ω_X ⊗ L) for e ≫ 0 sufficiently divisible.
- If \mathcal{L} is ample, then $H^1(X, \omega_X \otimes \mathcal{L}^{p^e}) = 0$ for $e \gg 0$ so that $H^0(X, \omega_X(S) \otimes \mathcal{L}^{p^e}) \to H^0(S, \omega_S \otimes \mathcal{L}|_S^{p^e})$ is surjective.
- Thus $S^0(X, \sigma(X, S) \otimes \mathcal{L}(S)^{p^e}) \to S^0(S, \omega_S \otimes \mathcal{L})$ is surjective.
- Here $S^0(X, \sigma(X, S) \otimes \mathcal{L}(S)^{p^e})$ is the image of $H^0(\omega_X(S) \otimes \mathcal{L}^{p^e}) \subset H^0(\omega_X \otimes \mathcal{L}(S)^{p^e}) \to H^0(\omega_X \otimes \mathcal{L}(S)).$
- The above result generalizes to log pairs by work of Schwede:

イロト イヨト イヨト イヨト

Generalization to log pairs

- If (X, Δ) is a pair such that (p^e 1)(K_X + Δ) is Cartier for some e > 0 (i.e. p does not divide the index of K_X + Δ). then we get Φ^e_Δ : F^e_{*}O_X((1 p^e)(K_X + Δ)) → O_X (by adding (p^e 1)Δ and using Tr on the smooth locus).
- σ(X, Δ) denotes the image of Φ^e_Δ for e > 0 sufficiently divisible and S⁰(X, σ(X, Δ) ⊗ L) the image on global sections after tensoring by L.
- $\sigma(X, \Delta)$ is an analog of the non LC ideal in characterisic 0
- At snc points $\sigma(X, \Delta) = \mathcal{O}_X$ iff $\Delta \leq 1$.
- (X, Δ) is **F-pure** if $\sigma(X, \Delta) = \mathcal{O}_X$ and **F-regular** if $\sigma(X, \Delta + \epsilon H) = \mathcal{O}_X$ for any H; $0 < \epsilon \ll 1$ (better: $\mathcal{AI} \subset \mathcal{O}_X$ non-trivial s.t. $\Phi^e_{\Delta}(\mathcal{I} \cdot \mathcal{O}_X((1 p^e)(K_X + \Delta))) \subset \mathcal{I})$.
- Analogs of LC and KLT.

(ロ) (同) (E) (E) (E)

Extension Theorem

Theorem (Schwede)

Let (X, Δ) be an F-pure pair such that p does not divide the index of $K_X + \Delta$. Assume that there is a normal non-F-regular center Z so that

$$\Phi^{\mathsf{e}}_{\Delta}(\mathcal{I}_{Z} \cdot \mathcal{O}_{X}((1-p^{\mathsf{e}})(\mathcal{K}_{X}+\Delta))) \subset \mathcal{I}_{Z}.$$

If \mathcal{M} is Cartier and $\mathcal{M} - (K_X + \Delta)$ is ample, then

$$S^0(X, \sigma(X, \Delta) \otimes \mathcal{M}) \to S^0(Z, \sigma(Z, \Delta_Z) \otimes \mathcal{M}|_Z)$$

is surjective (where Δ_Z is defined by "adjunction").

Question: Can we arrange $S^0(Z, \sigma(Z, \Delta_Z) \otimes \mathcal{M}|_Z) \neq 0$?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Global F-regularity

- If \mathcal{M} is sufficiently ample, then $S^0(X, \sigma(X, \Delta) \otimes \mathcal{M}) \cong H^0(X, \sigma(X, \Delta) \otimes \mathcal{M})$ is globally generated (in general the inclusion can be strict!).
- If \mathcal{M} is big and semiample, let $f : X \to T = \operatorname{Proj}(\bigoplus_{m \ge 0} \mathcal{M}^m)$ Then (replacing \mathcal{M} by a multiple)

$$H^0(X, \mathcal{O}_X((p^e-1)(\mathcal{K}_X+\Delta))\otimes \mathcal{M}^{p^e}) \to H^0(X, \mathcal{M})$$

is surjective provided that (X, Δ) is *F*-regular over *T* i.e. $F_*^e f_* \mathcal{O}_X((p^e - 1)(K_X + \Delta)) \rightarrow \mathcal{O}_T$ is surjective.

• By a result of Schwede-Smith X/T is of relative log Fano type.

(ロ) (同) (E) (E) (E)

Global F-regularity II

- If dim X = 2, p > 5, (X, Δ) is klt, $\Delta \in \{1 \frac{1}{n} | n \in \mathbb{N}\}$, $f : X \to T$ is birational and $-(K_X + \Delta)$ is *f*-ample then (X, Δ) is globally *F*-regular over *T*.
- Hara proved the case when $\Delta = 0$ and f = id.
- p > 5 is a necessary condition.
- The proof is by "classification"; uses Shokurov's theory of complements.
- We will now give a sketch of the proof of the existence of 3-fold flips which closely follows ideas of Shokurov.

Outline of the talk

- 2 Extending sections in Char p > 0
- O Proof of the existence of flips

・ロン ・回 と ・ ヨ と ・ ヨ と …

Pl-flips and the restricted algebra

- By Shokurov's reduction to pl-flips it is enough to prove the existence of pl-flips.
- Thus we may assume that $f : X \to Z = \operatorname{Spec}(A)$ is a small birational morphism of normal varieties, $(X, \Delta = S + B)$ is plt where $S = \lfloor \Delta \rfloor$, $\rho(X/Z) = 1$ and $-(K_X + \Delta)$ and -S are f ample.
- Let $R_S(K_X + \Delta) = \text{Im}(R(K_X + \Delta) \rightarrow R(K_{S^n} + B_{S^n}))$ where $S^n \rightarrow S$ is the normalization and $K_{S^n} + B_{S^n} = (K_X + \Delta)|_{S^n}$.
- Then $R(K_X + \Delta)$ is fin. gen. iff $R(K_{S^n} + B_{S^n})$ is fin. gen.
- We have $K_X + \Delta = tS$; assume t = 1, then the kernel of $H^0(m(K_X + \Delta)) \rightarrow H^0(m(K_{S^n} + B_{S^n}))$ is in $H^0((m-1)(K_X + \Delta))$.
- If $R_S(K_X + \Delta) = R(K_{S^n} + B_{S^n})$ we would be done! So we must identify which elements of $R(K_{S^n} + B_{S^n})$ lift.

Normality of S

- In char 0, if (X, S + B) is plt (near S) then S is normal and (S, B_S) is klt.
- In char p > 0, this is not known (pf. depends on KV-vanish.).
- We show that if dim X = 3, $B \in \{1 \frac{1}{n} | n \in \mathbb{N}\}$ and p > 5 this holds (more generally assuming that (S^n, B_{S^n}) is strongly *F*-regular then (X, S + B) is *F*-pure near *S* (there are related results of Schwede and others)).
- Let $g: Y \to X$ be a log resolution, $g_*^{-1}S = S' \to S^n \to S$ the induced map.
- $K_Y + S' = g^*(K_X + S + B) + A_Y, K_{S'} = g'^*(K_{S^n} + B_{S^n}) + A_{S'}.$
- Pick $F \ge 0$ exceptional, g-anti-ample.
- Pick H sufficiently ample on X ($H|_{S^n}$ very ample).

(ロ) (同) (E) (E) (E)

Normality of S

- Let $L = g^*H + \lceil A_Y \rceil$ and $\Xi = S' + \{-A_Y\} + \epsilon F$ ($0 < \epsilon \ll 1$).
- $L (K_Y + \Xi) \cong g^*(H (K_X + \Delta)) \epsilon F$ is ample.
- $S^0(\sigma(Y, \Xi) \otimes \mathcal{O}_Y(L)) \to S^0(\sigma(S', \Xi) \otimes \mathcal{O}_{S'}(L))$ is onto.
- We will show that $S^0(\sigma(S', \Xi) \otimes \mathcal{O}_{S'}(L)) = H^0(\mathcal{O}_{S'}(L))$, thus $H^0(\mathcal{O}_X(H)) \cong H^0(\mathcal{O}_Y(L)) \twoheadrightarrow H^0(\mathcal{O}_{S'}(L)) \supset H^0(\mathcal{O}_{S^n}(H))$.
- As $H|_{S^n}$ is very ample, we are done.
- Pick *E* s.t. $S^n \supset E \supset g(F|_{S'})$ and $0 < \epsilon \ll \delta \ll 1$.
- $g^*(K_{S^n} + B_{S^n} + \delta E) \ge K_{S'} + \{-A_{S'}\} \lceil A_{S'}\rceil + \epsilon F|_{S'}$, so $F^e_*\mathcal{O}_{S^n}((1-p^e)(K_{S^n} + B_{S^n} + \delta E + p^eH|_{S^n}) \hookrightarrow$ $g_*F^e_*\mathcal{O}_{S'}((1-p^e)(K_{S'} + \Xi_{S'}) + p^eL).$
- As $K_{S^n} + B_{S^n}$ is *F*-regular, we have a surjection $F^e_* \mathcal{O}_{S^n}((1-p^e)(K_{S^n} + B_{S^n} + \delta E + p^e H|_{S^n})) \rightarrow H^0(\mathcal{O}_{S^n}(H)).$

(ロ) (同) (E) (E) (E)

The restricted algebra

- For any $f: Y \to X$, let $N_{i,Y} = \operatorname{Mob}(i(K_X + \Delta))$ and $M_{i,S'} = N_{i,Y}|_{S'}$, $D_{i,S'} = \frac{1}{i}M_{i,S'}$ and $D_{S'} = \lim D_{i,S'}$.
- For Y sufficiently high, $N_{i,Y}$ and $M_{i,S'}$ are free and $\lceil A_Y \rceil$ (resp. $\lceil A_{S'} \rceil$) saturated i.e. $|N_{i,Y} + \lceil A_Y \rceil| = |N_{i,Y}| + \lceil A_Y \rceil$. (This is because $\lceil A_Y \rceil \ge 0$ is exceptional and so $|f^*(i(K_X + \Delta)) + \lceil A_Y \rceil| = |f^*(i(K_X + \Delta))| + \lceil A_Y \rceil$.)
- R_S(K_X + Δ) is finitely generated iff
 there exists S̄ → S such that M_{i,S'} descends to S̄ for all i ≫ 0 (given h : S' → S̄, then M_{i,S'} = h*M_{i,S̄} and
 an index ī s.t. D_{i,S̄} = D_{ī,S̄} whenever ī|i.
 μ : S̄ → S is just the terminalization of (S, B_S) i.e. the "smallest" resolution such that mult_x(B_{S̄}) < 1 for any x ∈ S̄ and K_{S̄} + B_{S̄} = μ*(K_S + B_{S̄}) (nb. B_{S̄} = -A_{S̄} ≥ 0).

Descending to \overline{S} .

- So we must show that if $M = M_{i,S'}$ is free and $\lceil A_{S'} \rceil$ saturated, then it descends to \overline{S} .
- Since $\lceil A_{S'} \rceil$ is the exceptional set of $S' \to \overline{S}$, we need $M \cap \lceil A_{S'} \rceil = \emptyset$.
- Suppose that ∃N̄ ∈ |N| s.t. C = N̄ ∩ S' ∈ |M| is smooth then let Ξ = S' + {−A_Y} + εF and arguing as above, one sees that S⁰(σ(Y,Ξ+N̄)⊗O_Y(N+⌈A_Y⌉)) → S⁰(σ(C,B_C)⊗O_C(N+⌈A_Y⌉)) is surjective.
- Since C is an affine curve, the RHS is generated, but the LHS vanishes along [A_Y] and so C ∩ [A_{S'}] = 0, i.e.
 M ∩ [A_{S'}] = Ø as required.

(日) (종) (종) (종) (종)

Descending to \overline{S} (sing. C).

- If C is singular, technical issues arise.
- In char 0, this creates a 0-dimensional non-klt center at the singular points of *C* and we expect to be able to lift sections from these centers and conclude as above.
- In char p > 0 we use F-seshadri constants (developed by Mustata and Schwede).
- Since C moves (in |M ⊗ m²_x|), one sees that ε(x, M_{i,S'}) ≥ 2 (so ε_F(x, M_{i,S'}) ≥ 1) and we are able to lift sections from these points.
- Thus all M_{i,S'} descend to S̄. Note that the limit D_{S̄} is nef (over Z) and (S̄, B_{S̄}) is a weak log Fano, thus D_{S̄} is a semiample ℝ-divisor.

• Let $a: \overline{S} \to S^+$ be the induced morphism. We claim that $D_{\overline{S}} = a^* D_{S^+}$ where $D_{S^+} \in \text{Div}_{\mathbb{Q}}(S^+)$.

$D_{\bar{S}}$ descends to S^+ .

- To see this, we pick C ∈ Div(S⁺) so that ||C − jD_{S⁺}|| ≪ 1 (by Diophantine approximation).
- Proceeding as above one checks that $\left(\left\lceil \frac{j}{i}M_{i,S'} + A_{S'} \right\rceil - M_{j,S'}\right) \cdot g^*C = 0 \text{ and hence}$ $\left\lceil \frac{j}{i}M_{i,S'} + A_{S'} \right\rceil - M_{j,S'} \text{ is exceptional over } S^+.$
- Finally, the usual saturation arguments (with Kawamata Viehweg vanishing replaced by the S^0 extension results) show that $\frac{1}{i}M_{i,\bar{S}} = D_{\bar{S}}$ for all i > 0 sufficiently divisible.

・ロン ・四 と ・ ヨ と ・ ヨ と