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Notation

Recall that a complex projective variety X � PNC is de�ned by
homogeneous polynomials P1; � � � ;Pt 2 C[x0; � � � ; xN ].

Two varieties X ;X 0 are birational if they have isomorphic
open subsets U �= U 0.

If X is smooth of dimension n, then TX denotes the tangent
bundle of X and !X = �nT_

X
is the canonical line bundle.

KX denotes (a choice of) the canonical divisor i.e. a formal
linear combination of codimension 1 subvarieties of X such
that !X = OX (KX ).

We would like to use !X (or equivalently KX ) to understand
the geometry of X .
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Pluricanonical maps

Elements of H0(!
m
X

) may be locally written as
f (x1; : : : ; xn)(dx1 ^ : : : ^ dxn)


m.

If s0; : : : ; sN is a basis of H0(!
m
X

), then the rational map

�
!

m

X

: X 99K PN

is de�ned by x ! [s0(x) : : : : : sN(x)]. (This map is not
de�ned on the common zeroes of s0; : : : ; sN .)

If X and X 0 are birational, then 8m � 0

H0(X ; !
m
X

) �= H0(X 0; !
m
X 0 ):
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Birational invariants

The canonical ring of X is given by

R(X ) =
M

m�0

H0(X ; !
m
X

):

The Kodaira dimension of X is

�(X ) := tr:deg:CR(X )� 1 2 f�1; 0; 1; : : : ;dim(X )g:

We have �(X ) := maxm>0fdim�
!

m

X

(X )g.

If �(X ) = dimX , we say that X is of general type.

One would like to understand the structure of this ring and to
use its features to classify complex projective varieties.
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Today I would like to discuss the following result:

Theorem (Birkar-Cascini-Hacon-McKernan and Siu)

Let X be a smooth projective variety, then R(X ) is �nitely
generated.

The two proofs are independent. Our proof is algebraic and uses
the ideas of the MMP (minimal model program). Siu's proof is
analytic and requires X to be of general type.
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Birational geometry of surfaces

The classi�cation of surfaces (dim(X ) = 2) was already
understood by the Italian school of Algebraic Geometry
around the beginning of the 20th-century.

The �rst problem in the birational classi�cation of surfaces is
that given any point on a surface x 2 X , one can produce a
birational morphism

� : ~X = Blx(X )! X

known as the blow up of X at x .

The morphism � may be viewed as a surgery that replaces the
point x by a rational curve E �= P1 = P(TxX ).

The exceptional curve E is called a �1 curve since

!~X � E = deg(!~X jE ) = �1:
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Birational geometry of surfaces II

By a Theorem of Castelnuovo, one may reverse this procedure
i.e. given any surface X and any �1 curve E � X , there
exists a morphism � : X ! X1 such that X = Blx(X1) for
some point x 2 X1.

Note that �(X1) = �(X )� 1 � 0 and so this procedure can be
repeated at most �nitely many times.

A minimal surface is a surface that contains no �1 curves.

By Castelnuovo's Theorem, given any surface X there exists a
birational morphism to a minimal surface X ! Xmin (given by
�nitely many point blow downs).
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Birational geometry of surfaces III

If �(X ) = �1, then X is covered by rational curves (i.e. by
P1's). The sections of H0(!
m

X
) must vanish along these

curves for m > 0. Hence R(X ) �= C.

If �(X ) � 0, then the minimal model X ! Xmin is unique and
KXmin is nef. This means that for any curve C � Xmin we have

!Xmin � C � 0:

In fact one can show that !Xmin is semiample i.e. there is an
integer m > 0 such that the sections of H0(!
m

Xmin
) have no

common zeroes.
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Therefore, �
!

m

Xmin

: Xmin ! PN is a morphism,

!
m
Xmin

�= ��OPN (1).

It then follows that R(X ) is �nitely generated.

Conclusion: After performing a �nite sequence of
geometrically meaningful operations (contracting �1 curves)
we obtain a birational model on which ! is positive (nef and
semiample).
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MMP for 3-folds

By work of Mori, Kawamata, Koll�ar, Reid, Shokurov and
others it is possible to generalize this picture to 3-folds:

Theorem

Assume dim(X ) = 3. If �(X ) < 0, then X is covered by rational
curves and R(X ) �= C.
If �(X ) � 0, then there is a birational map X 99K Xmin such that
!Xmin is nef (i.e. !Xmin � C � 0 for any curve C � Xmin).

More precisely, if �(X ) � 0, there is a sequence of 
ips and
divisorial contractions

X 99K X1 99K : : : 99K XM = Xmin:

It is known that !Xmin is semiample (i.e. �
!

m

Xmin

: X ! PNC is a

morphism) and so R(X ) is �nitely generated.
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MMP for 3-folds II

Divisorial contractions are the analog of contracting a �1
curve on a surface.

Flips are a new operation that we will discuss below.

The minimal model Xmin is not unique.

The varieties Xi have mild singularities.
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Running a MMP

A Minimal Model program is a sequence of geometric
operations Xi 99K Xi+1 that starting from a projective variety
X produces a minimal model (if �(X ) � 0) or a covering
family of rational curves (if �(X ) < 0).

We start with a projective variety X with mild singularities.

If !X is nef we are done (X = Xmin).

If !X is not nef, then consider the cone of e�ective curves

NE (X ) = f
X

riCi jri 2 R
�0g= �

(here C � C 0 or [C ] = [C 0] if for any line bundle L on X , we
have L � (C � C 0) = 0).

By the Cone Theorem, there is a negative extremal ray
R = R+[C ] where C � X is a curve such that !X � C < 0 and
there is a morphism ContR : X ! Z such that a curve D � X
is contracted if and only if [D] 2 R+[C ].
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Running a MMP II

If dimZ < dimX , then X is covered by !X negative rational
curves. (This only happens if �(X ) < 0.)

If dimZ = dimX and ContR is divisorial (i.e.
dimExc(X ! Z ) = dimX � 1) then Z has mild singularities
and we may replace X by Z (and restart the whole process).

If dimZ = dimX and ContR is small (i.e.
dimExc(X ! Z ) � dimX � 2) then Z has \bad"
singularities. In particular !Z � C does not always make sense.

Instead of replacing X by Z , we will replace X by its 
ip X+.
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Flips

The 
ip of X ! Z is a small birational morphism X+ ! Z
such that
1) X 99K X+ is an isomorphism on the complement of
Exc(X ! Z ),
2) X+ has mild singularities, and
3) If C � Exc(X+ ! Z ), then !X+ � C > 0.

In other words, the 
ip X 99K X+ is a surgery that replaces
!X negative curves by !X+ positive curves.

If the 
ip of X ! Z exists, it is unique and given by
ProjZR(X ). So that to construct the 
ip we must show that
R(X ) is �nitely generated over Z (i.e. if Z = SpecA, R(X ) is
a �nitely generated A-algebra).
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Flips II

In dimension 3, 
ips were constructed by Mori.

In order to complete the MMP, one must show that there are
no in�nite sequence of 
ips and divisorial contractions.

If X ! Z is a divisorial contraction, then
�(Z ) = �(X )� 1 � 0. If X 99K X+ is a 
ip, then
�(X+) = �(X ). Therefore, it su�ces to show that there is no
in�nite sequence of 
ips.

In dimension 3, this is relatively easy to do.
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2 The MMP for 3-folds

3 Higher dimensional MMP
Reduction to log pairs of general type
Idea of the proof
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Log pairs

It is necessary to work in grater generality with Kawamata log
terminal (KLT) log-pairs (X ;�).

One should think of these pairs as representing varieties with
mild singularities.

Roughly speaking, we may assume that X is smooth and
� =
P

�i�i is a formal sum of smooth codimension 1
subvarieties meeting transversely with coe�cients 0 � �i < 1.

The proof proceeds by induction on the dimension of X . We
relate !X (equivalently KX ) to its restriction to a divisor S
(i.e. a codimension 1 subvariety which typically belongs to
jmKX j).

This is achieved by the adjunction formula which has the form
(KX + S)jS = KS +�S for some Q-divisor �S .
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A Theorem of Fujino-Mori

Mori and Fujino have shown that:

Theorem

Let (X ;�) be any KLT Q-factorial pair with � 2 DivQ(X ). Then
there exists a KLT Q-factorial pair (Y ; �) of general type with
� 2 DivQ(Y ) such that

R(KX +�)(m) �= R(KY + �)(m)

for any su�ciently divisible integer m > 0.

Recall that KY + � is of general type if
tr:deg:CR(KY + �)(m) � 1 = dimY .
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A Theorem of Fujino-Mori II

It follows that to show the main theorem (i.e. that R(X ) is
�nitely generated), it su�ces to prove the corresponding
statement for KLT log pairs of general type.

If (X ;�) is KLT and KX +� is nef and of general type, then
by the Base Point Free Theorem of Kawamata and Shokurov,
KX +� is semiample.

As we have mentioned before, this implies that R(KX +�) is
�nitely generated.

Therefore, to show that R(X ) is �nitely generated (for any
smooth complex projective variety), it su�ces to show that
minimal models exist for KLT pairs of general type.
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Existence of minimal models for KLT pairs of general type.

Theorem (Birkar-Cascini-Hacon-McKernan)

Let (X ;�) be any KLT pair of general type. Then there is a
minimal model f : X 99K Xmin (i.e. KXmin + f�� is semiample).

Corollary

Flips exist (for KLT pairs; in any dimension).

Remark: We are unable to show termination of 
ips. But we can
pick a sequence of 
ips that terminates.
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The induction

The main idea is to proceed by induction on the dimension.
We show that:

(Hacon-McKernan) If minimal models (for KLT pairs of
general type) exist in dimension n, then 
ips exist in dimension
n + 1. (Uses ideas of Shokurov and Siu-Kawamata-Tsuji.)

(Birkar-Cascini-Hacon-McKernan) If 
ips exist in dimension
n+ 1 (and minimal models exist in dimension n) then minimal
models exist in dimension n + 1. (Uses the ideas of the MMP
and in particular techniques developed by Shokurov.)
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Existence of 
ips

By a result of Shokurov, the existence of 
ips is reduced to
the existence of Pl-
ips.

This means that we may assume that (X ;�) is PLT i.e.
� = S +

P
�i�i with 0 � �i < 1 and S is the unique center

along which (X ;�) is not KLT.

By adjunction, we may write (KX +�)jS = KS +�S where
(S ;�S) is KLT.

Shokurov's observation is that to show that R(KX +�) is
�nitely generated over Z (and hence that the 
ip exists), it
su�ces to show that the restricted algebra

RS(KX +�) := Im(R(KX +�)! R(KS +�S))

is �nitely generated (over Z ).
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If RS(KX +�) = R(KS +�S) then we are done as we are
assuming that minimal models exist in dimension n = dimS .

This is too much to expect. However, we show that
RS(KX +�) = R(KS +�) where 0 � � � �S and (S ;�) is
KLT.

The divisor � is the limit of Q-divisors �m de�ned by
subtracting common components of �S and
Bs(m(KX +�))=m from �S .

Using ideas of Siu, Kawamata and Tsuji we show that

H0(m(KS+�m)) = Im(H0(m(KX+�))! H0(m(KS+�S))):

The divisor � is a priori an R-divisor.

Using a Diophantine approximation argument, we show that
� is in fact a Q-divisor and � = �m for some m > 0.
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The MMP with scaling

In order to prove the existence of minimal models (given the
existence of 
ips), instead of trying to show that any sequence
of 
ips terminates, we carefully choose our sequence of 
ips
(and divisorial contractions).

If (X ;�) is a KLT pair, we pick an ample divisor A such that
KX +�+ A is ample (and hence X is the minimal model of
(X ;�+ A)).

We then consider t1 = infft � 0jKX +�+ tA is nefg:

If t1 = 0 we are done. Otherwise we 
ip (resp. perform a
divisorial contraction) along a ray R = R+[C ] where
(KX +�+ t1A) � C = 0.

In this way, we obtain a sequence of rational numbers
1 � t1 � t2 � � � � 0 and of 
ips/div. contractions Xi 99K Xi+1

such that Xi is a minimal model for (X ;�+ tiA).
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Idea of the proof

The MMP with scaling II

Using ideas of Shokurov, we show that the set of all minimal
models for pairs of the form (X ;�+ tA) with t 2 [0; 1] is
�nite.

This implies that the sequence : : :Xi 99K Xi+1 : : : is not
in�nite and so the above process produces the required
minimal model.

Note that to prove the above result on the �niteness of
minimal models, we must use a compactness argument and
hence it is critical to work with R-divisors.
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