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Notation

I am interested in the birational geometry of complex
projective varieties.

X � P
N

C is de�ned by homogeneous polynomials
P1; � � � ;Pt 2 C[x0; � � � ; xN ].

We will assume that X is irreducible and smooth.

In the previous talk I discussed the geometry of curves i.e.
dimX = 1.

In this case X is a smooth orientable compact manifold of
dimR X = 2 and so X is a Riemann Surface.
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Riemann Surfaces

Christopher Hacon Finite generation of canonical rings II



Introduction
Surfaces

Higher dimensional preview

Curves

Curves are topologically determined by their genus.

g = 0: X is a rational curve i.e. X = P
1.

g = 1: There is a 1-parameter family of elliptic curves.

g � 2: Curves of general type. These form a
3g � 3-dimensional family.

There are in�nitely many ways to embed X � P
N

C .
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Curves II

Embeddings X � P
N

C are obtained as follows.

If L is a line bundle and s0; : : : ; sN are a basis of H0(X ; L),
then x ! [s0(x) : : : : : sN(x)] de�nes a map �L : X 99K P

N

C on
the complement of the common zeroes of the si .

If s0; : : : ; sN separate points and tangent directions on X ,
then �L is an embedding.

One natural choice for L is !
k
X

, where !X is the line bundle
whose sections s 2 H0(X ; !X ) may be locally written as
sjU = f (x)dx . (One may think of these as
rational/meromorhic functions on X with prescribed poles.)

Note that the genus of X is then given by g = dimH0(X ; !X ).
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Curves III

The canonical ring R(X ) =
L

k�0 H
0(X ; !
k

X
) is a

fundamental invariant of X .

If g = 0, then !X = OP1

C
(�2) so that H0(X ; !
k

X
) = 0 for all

k > 0 i.e. R(X ) �= C.

If g = 1, then !X = OX so that H0(X ; !
k
X

) = C for all
k > 0 i.e. R(X ) �= C[t].

If g � 2 then !
3
X

de�nes an embedding � : X ! P
N

C .

It follows that !
3
X

= ��O
PN

C
(1). It is then easy to see that

R(X ) is �nitely generated and X = ProjR(X ).
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Surfaces

One would naturally like to generalize these results to higher
dimensions.

The next case of interest are surfaces i.e. dimX = 2. (Note
that dimR X = 4!)

The �rst di�culty is that given any point on a surface x 2 X ,
one can produce a new surface

� : ~X = Blx(X )! X

known as the blow up of X at x .

The morphism � may be viewed as a surgery that replaces the
point x by a rational curve E �= P

1 = P(TxX ).
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Blowing up a point
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Birational Surfaces

The exceptional curve E is called a �1 curve since

!~X � E = deg(!~X jE ) = �1:

One says that X ;X 0 are birational if they have isomorphic
open subsets U �= U 0.

For example X is birational to Blx(X ).

It turns out that two surfaces are birational if and only if there
is a �nite sequence of blow ups such that

BlxtBlxt�1
� � �Blx1(X ) = Blx 0sBlx 0s�1

� � �Blx 0
1
(X 0):
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Example of a birational map
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Birational Surfaces II

Since the space C(X ) of rational functions on X are
determined by any open subset U � X , two surfaces X ;X 0 are
birational if and only if C(X ) �= C(X 0).

For example a surface X is rational (i.e. birational to P2
C if

and only if C(X ) �= C(x ; y).

It is then natural to study surfaces modulo birational
equivalence.

Given X one would like to identify a unique representative X 0

birational to X . Ideally this representative X 0 has nice
properties that are useful in understanding the geometry of X 0

(and hence of X ).
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Castelnuovo's Theorem

The answer is given by a result of Castelnuovo. It is easiest to
describe this in terms of the canonical bundle.

Let !X = �2T_
X
be the canonical line bundle.

If � : ~X = Blx(X )! X is the blow up of a point, and
E = ��1(x) is the exceptional curve, then E is a �1 curve i.e.
E �= P

1
C and E � !X = deg!X jE = �1.

Castelnuovo's Theorem says that one may reverse this
procedure i.e. given any surface X and any �1 curve E � X ,
there exists a morphism � : X ! X1 such that X = Blx(X1)
for some point x 2 X1.
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Minimal Surfaces

A minimal surface is a surface that contains no �1 curves.

Note that �(Blx(X )) = �(X ) + 1 so that one can only blow
down �nitely many curves.

So, given a surface X , after blowing down �nitely many �1
curves, one obtains a morphism X ! Xmin where Xmin is a
minimal surface.

The natural question is then: Is Xmin unique? Does Xmin have
any interesting special properties?
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Canonical Ring

The answer is given in terms of the canonical ring

R(X ) =
M

k�0

H0(X ; !
k
X

):

The Kodaira dimension of X is

�(X ) := tr:deg:CR(X )� 1:

We have �(X ) := maxk>0fdim�
!

k

X

(X )g.

If �(X ) = �1, then the minimal model X ! Xmin is not
unique (but it is well understood how two di�erent minimal
models are related).

If �(X ) � 0, then the minimal model X ! Xmin is unique.
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Birational geometry of Surfaces

However, if �(X ) = �1, then Xmin is either P2
C or a ruled

surface so that X is covered by rational curves (i.e. by P1's).
The sections of H0(!
m

X
) must vanish along these curves for

m > 0. Hence R(X ) �= C.

If �(X ) � 0, then the minimal model X ! Xmin is unique and
!Xmin

is nef. This means that for any curve C � Xmin we have

!Xmin
� C � 0:

In fact one can show that !Xmin
is semiample i.e. there is an

integer m > 0 such that the sections of H0(!
m
Xmin

) have no
common zeroes.
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Birational geometry of surfaces II

Therefore, '
!

m

Xmin

: Xmin ! P
N is a morphism,

!
m
Xmin

�= '�OPN (1).

It is then easy to show that R(X ) is �nitely generated.

Conclusion: If X is not covered by rational curves, then after
performing a �nite sequence of geometrically meaningful
operations (contracting �1 curves) we obtain a birational
model on which ! is positive (nef and semiample).

Finite generation of R(X ) then follows.
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Birational geometry of surfaces III

More precisely we have the following:

If �(X ) = 0, then Xmin is either an abelian, hyperellyptic, K3
or Enriques surface. !
12

Xmin
= OX so that

R(X )(12) = �m�0H
0(!
12m

X
) �= C[t].

If �(X ) = 1, then !
12
Xmin

de�nes a morphism f : Xmin ! C

whose general �ber is an elliptic curve. We have !
12
Xmin

= f �H
where H is an ample line bundle on C .

If �(X ) = 2, then !
5
Xmin

de�nes a morphism

' : Xmin ! Xcan � P
N where Xcan = Proj(R(X )) is the

canonical model of X . The map X ! Xcan is birational and
Xcan has �nitely many mildly singular points (rational double
points).
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Birational geometry of surfaces IV

If �(X ) = 2, it is natural to ask if one can understand the
geometry of Xmin more precisely. We have the following.

Theorem (Castelnuovo)

If X is a surface with H0(X ; !
2
X

) = 0 and H0(X ;
1
X
) = 0, then X

is birational to P2
C.

Corollary (L�uroth problem)

Let C � L � C(x ; y) be any �eld then L �= C or L �= C(x) or
L �= C(x ; y). (Note that we may have a strict inclusion even if
L �= C(x ; y).)
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Birational geometry of surfaces V

Idea of proof. The inclusion L � C(x ; y) corresponds to a
morphism X 0 ! X where C(X 0) = L and C(X ) = C(x ; y).

If dimX 0 = 0, then L �= C.
If dimX 0 = 1, then H0(!x 0) = H0(
1

X 0
) = 0 as H0(
1

X
) = 0.

Therefore X 0 = P
1
C and L = C(X 0) = C(x).

If dimX 0 = 2, then H0(X 0; !
2
X 0

) = 0 and H0(X ;
1
X 0
) = 0 so that

X 0 is birational to P2
C and hence L �= C(x ; y).

Remark. The above result fails in higher dimension.
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Birational geometry of surfaces VI

In general it is impossible to classify surfaces with �(X ) = 2.

It is not even known if there exists a surface X homeomorphic
to P2

C with �(X ) = 2.

Never-the-less we have a good qualitative understanding of
the birational geometry of X .

In the next lecture, I will illustrate how to extend the
Kodaira-Enriques surface classi�cation to arbitrary dimension.

Christopher Hacon Finite generation of canonical rings II



Introduction
Surfaces

Higher dimensional preview

Birational geometry of surfaces VI

In general it is impossible to classify surfaces with �(X ) = 2.

It is not even known if there exists a surface X homeomorphic
to P2

C with �(X ) = 2.

Never-the-less we have a good qualitative understanding of
the birational geometry of X .

In the next lecture, I will illustrate how to extend the
Kodaira-Enriques surface classi�cation to arbitrary dimension.

Christopher Hacon Finite generation of canonical rings II



Introduction
Surfaces

Higher dimensional preview

Birational geometry of surfaces VI

In general it is impossible to classify surfaces with �(X ) = 2.

It is not even known if there exists a surface X homeomorphic
to P2

C with �(X ) = 2.

Never-the-less we have a good qualitative understanding of
the birational geometry of X .

In the next lecture, I will illustrate how to extend the
Kodaira-Enriques surface classi�cation to arbitrary dimension.

Christopher Hacon Finite generation of canonical rings II



Introduction
Surfaces

Higher dimensional preview

Birational geometry of surfaces VI

In general it is impossible to classify surfaces with �(X ) = 2.

It is not even known if there exists a surface X homeomorphic
to P2

C with �(X ) = 2.

Never-the-less we have a good qualitative understanding of
the birational geometry of X .

In the next lecture, I will illustrate how to extend the
Kodaira-Enriques surface classi�cation to arbitrary dimension.

Christopher Hacon Finite generation of canonical rings II



Introduction
Surfaces

Higher dimensional preview

Outline of the talk

1 Introduction
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Higher dimensional varieties

Theorem (Birkar-Cascini-Hacon-McKernan - Siu)

Let X be a smooth complex projective variety of general type (i.e.
�(X ) = dim(X )) then X has a canonical model

Xcan = ProjR(X ):

One can also show that X has a minimal model Xmin.
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Higher dimensional varieties

There are several new feaures Xcan and Xmin may have mild
singularities.

Xmin may not be unique.

The map X 99K Xmin is given by a carefully chosen �nite
sequence of divisorial contractions (the analog of contracting
a �1 curve) and ips (a new operation).

In dimension 3, ips were constructed by S. Mori,
in dimension 4 by V. Shokurov, and
in dimension � 5 by Birkar-Cascini-Hacon-McKernan using
techniques of Shokurov and Siu.
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