Classifying Algebraic Varieties I

Christopher Hacon

University of Utah

March, 2008

Christopher Hacon Classifying Algebraic Varieties I

・ロト ・回ト ・ヨト ・ヨト

臣

Outline of the talk

Christopher Hacon Classifying Algebraic Varieties I

(日) (四) (注) (注) (注) (注)

Outline of the talk

1 Introduction

2 equations in 2 variables

Christopher Hacon Classifying Algebraic Varieties I

・ロト ・同ト ・ヨト ・ヨト

Э

Outline of the talk

1 Introduction

- 2 2 equations in 2 variables
- 3 1 equation in 2 variables

・ロン ・回 と ・ヨン ・ヨン

臣

Outline of the talk

1 Introduction

- 2 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets

・ロン ・回 と ・ ヨン ・ ヨン

Outline of the talk

1 Introduction

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets

・ロン ・回 と ・ ヨン ・ ヨン

Outline of the talk

1 Introduction

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets

<ロ> (日) (日) (日) (日) (日)

Introduction

2 equations in 2 variables 1 equation in 2 variables Irreducible subsets Curves Higher dimensions. Preview.

Outline of the talk

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets
- 5 Curves

・ロン ・回 と ・ヨン ・ヨン

Polynomial equations

Algebraic Geometry is concerned with the study of solutions of polynomial equations say n-equations in m-variables

$$\begin{cases} P_1(x_1,...,x_m) = 0 \\ ... \\ ... \\ P_n(x_1,...,x_m) = 0. \end{cases}$$

1 equation in 1 variable

For example, 1 equation in 1 variable
 P(x) = a_dx^d + a_{d-1}x^{d-1} + ... + a₁x + a₀ a_d ≠ 0
 (a polynomial of degree d in x).

(ロ) (同) (E) (E) (E)

1 equation in 1 variable

For example, 1 equation in 1 variable

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_1 x + a_0 \qquad a_d \neq 0$$

(a polynomial of degree d in x).

If a_i ∈ C, then by the Fundamental Theorem of Algebra, we may find c_i ∈ C such that P(x) factors as

$$P(x) = a_d(x-c_1)(x-c_2)\cdots(x-c_d).$$

・ロト ・回ト ・ヨト ・ヨト

1 equation in 1 variable

- For example, 1 equation in 1 variable
 P(x) = a_dx^d + a_{d-1}x^{d-1} + ... + a₁x + a₀
 a_d ≠ 0
 (a polynomial of degree d in x).
- If a_i ∈ C, then by the Fundamental Theorem of Algebra, we may find c_i ∈ C such that P(x) factors as

$$P(x) = a_d(x-c_1)(x-c_2)\cdots(x-c_d).$$

• Therefore a polynomial of degree *d* always has exactly *d* solutions or roots (when counted with multiplicity).

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

1 equation in 1 variable

• For example, 1 equation in 1 variable

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_1 x + a_0 \qquad a_d \neq 0$$

(a polynomial of degree d in x).

If a_i ∈ C, then by the Fundamental Theorem of Algebra, we may find c_i ∈ C such that P(x) factors as

$$P(x) = a_d(x - c_1)(x - c_2) \cdots (x - c_d).$$

- Therefore a polynomial of degree *d* always has exactly *d* solutions or roots (when counted with multiplicity).
- If one is interested in solutions that belong to ℝ (or Q, or Z etc.), then the problem is much more complicated, but at least we know that there are at most d solutions.

Complex solutions

Throughout this talk I will always look for complex solutions $(z_1, \ldots, z_m) \in \mathbb{C}^m$ to polynomial equations

$$P_1(x_1,\ldots,x_m)=0$$
 \ldots $P_n(x_1,\ldots,x_m)=0$

where $P_i \in \mathbb{C}[x_1, \ldots, x_m]$.

・ロン ・回 と ・ヨン ・ヨン

Outline of the talk

1 Introduction

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets
- 5 Curves

・ロン ・回 と ・ ヨン ・ ヨン

Lines in the plane

Consider now 2 equations in 2 variables. For example 2 lines in the plane i.e.

$$P_1(x,y) = a_1x + b_1y + c_1$$
 and $P_2(x,y) = a_2x + b_2y + c_2$.

・ロト ・回ト ・ヨト ・ヨト

э

Lines in the plane

Consider now 2 equations in 2 variables. For example 2 lines in the plane i.e.

$$P_1(x,y) = a_1x + b_1y + c_1$$
 and $P_2(x,y) = a_2x + b_2y + c_2$.

There are 3 cases

・ロト ・回ト ・ヨト ・ヨト

Lines in the plane

Consider now 2 equations in 2 variables. For example 2 lines in the plane i.e.

$$P_1(x,y) = a_1x + b_1y + c_1$$
 and $P_2(x,y) = a_2x + b_2y + c_2$.

There are 3 cases

If the lines coincide (i.e. if P₁(x, y) = cP₂(x, y) for some 0 ≠ c ∈ C), then there are infinitely many solutions.

(a)

Lines in the plane

Consider now 2 equations in 2 variables. For example 2 lines in the plane i.e.

$$P_1(x,y) = a_1x + b_1y + c_1$$
 and $P_2(x,y) = a_2x + b_2y + c_2$.

There are 3 cases

- If the lines coincide (i.e. if P₁(x, y) = cP₂(x, y) for some 0 ≠ c ∈ C), then there are infinitely many solutions.
- If the lines are distinct but parallel then there are no solutions.

(ロ) (同) (E) (E)

Lines in the plane

Consider now 2 equations in 2 variables. For example 2 lines in the plane i.e.

$$P_1(x,y) = a_1x + b_1y + c_1$$
 and $P_2(x,y) = a_2x + b_2y + c_2$.

There are 3 cases

- If the lines coincide (i.e. if P₁(x, y) = cP₂(x, y) for some 0 ≠ c ∈ C), then there are infinitely many solutions.
- If the lines are distinct but parallel then there are no solutions.
- If the lines are not parallel, there is a unique solution.

(a)

Lines in the plane

Lines in the plane

So, in most cases two lines intersect at a unique point.

Christopher Hacon Classifying Algebraic Varieties I

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Lines in the plane

So, in most cases two lines intersect at a unique point.

Question

Is it possible to also think of distinct parallel lines as intersecting at one point?

() < </p>

Lines in the plane

So, in most cases two lines intersect at a unique point.

Question

Is it possible to also think of distinct parallel lines as intersecting at one point?

The answer is yes if one chooses an appropriate compactification

$$\mathbb{C}^2 \subset \mathbb{P}^2_{\mathbb{C}} = \mathbb{C}^2 \cup \{ \text{line at infinity} \}.$$

() < </p>

Lines in the plane

So, in most cases two lines intersect at a unique point.

Question

Is it possible to also think of distinct parallel lines as intersecting at one point?

The answer is yes if one chooses an appropriate compactification

$$\mathbb{C}^2 \subset \mathbb{P}^2_{\mathbb{C}} = \mathbb{C}^2 \cup \{ \text{line at infinity} \}.$$

The "line at infinity" is given by $\mathbb{C} \cup \{\infty\}$. It corresponds to all possible slopes of a line.

() < </p>

Lines in the plane

We may thus think of two distinct parallel lines as meeting in exactly one point at infinity and we have

・ロト ・回ト ・ヨト ・ヨト

Lines in the plane

We may thus think of two distinct parallel lines as meeting in exactly one point at infinity and we have

Theorem

Let L_1 and L_2 be two distinct lines in $\mathbb{P}^2_{\mathbb{C}}$. Then L_1 and L_2 meet in exactly one point.

・ロト ・日下・ ・ ヨト

Lines in the projective plane

The projective plane

• To make things precise, one defines

 $\mathbb{P}^2_{\mathbb{C}} := (\mathbb{C}^3 - \{(0,0,0)\})/(\mathbb{C} - \{0\}).$

The projective plane

• To make things precise, one defines

$$\mathbb{P}^2_{\mathbb{C}} := (\mathbb{C}^3 - \{(0,0,0)\})/(\mathbb{C} - \{0\}).$$

• So that given $(b_1, b_2, b_3) \in \mathbb{C}^3$ and $(c_1, c_2, c_3) \in \mathbb{C}^3$, we have that (b_1, b_2, b_3) is equivalent to (c_1, c_2, c_3) if $(b_1, b_2, b_3) = \lambda(c_1, c_2, c_3)$ for some $\lambda \in \mathbb{C} - \{0\}$.

・ロン ・回 と ・ ヨン ・ ヨン

The projective plane

• To make things precise, one defines

$$\mathbb{P}^2_{\mathbb{C}} := (\mathbb{C}^3 - \{(0,0,0)\})/(\mathbb{C} - \{0\}).$$

- So that given $(b_1, b_2, b_3) \in \mathbb{C}^3$ and $(c_1, c_2, c_3) \in \mathbb{C}^3$, we have that (b_1, b_2, b_3) is equivalent to (c_1, c_2, c_3) if $(b_1, b_2, b_3) = \lambda(c_1, c_2, c_3)$ for some $\lambda \in \mathbb{C} \{0\}$.
- We denote by $[b_1 : b_2 : b_3]$ the equivalence class of (b_1, b_2, b_3) . We have

$$\mathbb{C}^2 \hookrightarrow \mathbb{P}^2_{\mathbb{C}} \quad \text{ defined by } \quad (b_1, b_2) \to [b_1 : b_2 : 1].$$

イロン イヨン イヨン イヨン

The projective plane

• To make things precise, one defines

$$\mathbb{P}^2_{\mathbb{C}} := (\mathbb{C}^3 - \{(0,0,0)\})/(\mathbb{C} - \{0\}).$$

- So that given $(b_1, b_2, b_3) \in \mathbb{C}^3$ and $(c_1, c_2, c_3) \in \mathbb{C}^3$, we have that (b_1, b_2, b_3) is equivalent to (c_1, c_2, c_3) if $(b_1, b_2, b_3) = \lambda(c_1, c_2, c_3)$ for some $\lambda \in \mathbb{C} \{0\}$.
- We denote by $[b_1 : b_2 : b_3]$ the equivalence class of (b_1, b_2, b_3) . We have

 $\mathbb{C}^2 \hookrightarrow \mathbb{P}^2_{\mathbb{C}}$ defined by $(b_1, b_2) \to [b_1 : b_2 : 1].$

• The points of $\mathbb{P}^2_{\mathbb{C}} - \mathbb{C}^2$ (the line at infinity) are of the form $[b_1 : b_2 : 0]$.

Lines in the projective plane

• Given the line 2x + 3y - 5 = 0, we consider the "homogenization" 2x + 3y - 5z = 0.

・ロン ・回 と ・ヨン ・ヨン

Lines in the projective plane

- Given the line 2x + 3y 5 = 0, we consider the "homogenization" 2x + 3y 5z = 0.
- The zero set of 2x + 3y 5z (or any homogeneous polynomial Q(x, y, z)) makes sense on $\mathbb{P}^2_{\mathbb{C}}$ as

 $2b_1+3b_2-5b_3=0$ iff $2\lambda b_1+3\lambda b_2-5\lambda b_3=0$ $\lambda \in \mathbb{C}-\{0\}$

イロト イヨト イヨト イヨト

Lines in the projective plane

- Given the line 2x + 3y 5 = 0, we consider the "homogenization" 2x + 3y 5z = 0.
- The zero set of 2x + 3y 5z (or any homogeneous polynomial Q(x, y, z)) makes sense on $\mathbb{P}^2_{\mathbb{C}}$ as

 $2b_1+3b_2-5b_3=0$ iff $2\lambda b_1+3\lambda b_2-5\lambda b_3=0$ $\lambda \in \mathbb{C}-\{0\}$

• Note that if we set z = 1, we recover the original equation on \mathbb{C}^2 .

イロン イヨン イヨン イヨン

Lines in the projective plane

- Given the line 2x + 3y 5 = 0, we consider the "homogenization" 2x + 3y 5z = 0.
- The zero set of 2x + 3y 5z (or any homogeneous polynomial Q(x, y, z)) makes sense on $\mathbb{P}^2_{\mathbb{C}}$ as

 $2b_1+3b_2-5b_3=0$ iff $2\lambda b_1+3\lambda b_2-5\lambda b_3=0$ $\lambda \in \mathbb{C}-\{0\}$

- Note that if we set z = 1, we recover the original equation on \mathbb{C}^2 .
- If z = 0, we obtain the point at infinity [-3:2:0] = [-3/2:1:0].

Lines in the projective plane

- Given the line 2x + 3y 5 = 0, we consider the "homogenization" 2x + 3y 5z = 0.
- The zero set of 2x + 3y 5z (or any homogeneous polynomial Q(x, y, z)) makes sense on $\mathbb{P}^2_{\mathbb{C}}$ as

 $2b_1+3b_2-5b_3=0$ iff $2\lambda b_1+3\lambda b_2-5\lambda b_3=0$ $\lambda \in \mathbb{C}-\{0\}$

- Note that if we set z = 1, we recover the original equation on \mathbb{C}^2 .
- If z = 0, we obtain the point at infinity
 [-3:2:0] = [-3/2:1:0].
- For any line parallel to 2x + 3y 5 = 0 we will obtain the same point at infinity.

・ロン ・回 と ・ヨン ・ヨン

Lines in the projective plane

- Given the line 2x + 3y 5 = 0, we consider the "homogenization" 2x + 3y 5z = 0.
- The zero set of 2x + 3y 5z (or any homogeneous polynomial Q(x, y, z)) makes sense on $\mathbb{P}^2_{\mathbb{C}}$ as

 $2b_1+3b_2-5b_3=0$ iff $2\lambda b_1+3\lambda b_2-5\lambda b_3=0$ $\lambda \in \mathbb{C}-\{0\}$

- Note that if we set z = 1, we recover the original equation on \mathbb{C}^2 .
- If z = 0, we obtain the point at infinity
 [-3:2:0] = [-3/2:1:0].
- For any line parallel to 2x + 3y 5 = 0 we will obtain the same point at infinity.
- More generally one can show the following.

Bezout's Theorem

Theorem (Bezout's Theorem)

Let P(x, y, z) and Q(x, y, z) be homogeneous polynomials of degrees d and d'. If the intersection of the curves

$$\{P(x,y,z)=0\}\cap\{Q(x,y,z)=0\}\subset\mathbb{P}^2_{\mathbb{C}}$$

is finite, then it consist of exactly $d \cdot d'$ points (counted with multiplicity).

・ロト ・回ト ・ヨト ・ヨト

Bezout's Theorem

Theorem (Bezout's Theorem)

Let P(x, y, z) and Q(x, y, z) be homogeneous polynomials of degrees d and d'. If the intersection of the curves

$$\{P(x,y,z)=0\}\cap\{Q(x,y,z)=0\}\subset \mathbb{P}^2_{\mathbb{C}}$$

is finite, then it consist of exactly $d \cdot d'$ points (counted with multiplicity).

In fact, Bezout's Theorem works in any number of variables.

・ロト ・回ト ・ヨト ・ヨト

Bezout's Theorem II

Theorem (Bezout's Theorem)

Let $P_1(x_0, \ldots, x_n), \ldots, P_n(x_0, \ldots, x_n)$ be n homogeneous polynomials of degrees d_1, \ldots, d_n . If the set

$$\bigcap_{i=1}^n \{P_i(x_0,\ldots,x_n)=0\} \subset \mathbb{P}^n_{\mathbb{C}}$$

is finite, then it consist of exactly $d_1 \cdots d_n$ points (counted with multiplicity).

・ロン ・回 と ・ヨン ・ヨン

Bezout's Theorem III

Outline of the talk

Introduction

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets

5 Curves

6 Higher dimensions. Preview.

・ロン ・回 と ・ヨン ・ヨン

Infinite number of solutions

So the next interesting question is:

Question

What happens when a set of polynomials has infinitely many solutions?

・ロト ・回ト ・ヨト ・ヨト

Infinite number of solutions

So the next interesting question is:

Question

What happens when a set of polynomials has infinitely many solutions?

Consider the case of 1 equation in 2 variables P(x, y) = 0. For example

$$y^2 = x(x-1)(x-2)\cdots(x-d+1).$$

・ロト ・回ト ・ヨト ・ヨト

Infinite number of solutions

So the next interesting question is:

Question

What happens when a set of polynomials has infinitely many solutions?

Consider the case of 1 equation in 2 variables P(x, y) = 0. For example

$$y^2 = x(x-1)(x-2)\cdots(x-d+1).$$

The solutions in \mathbb{R}^2 and in \mathbb{C}^2 look like this.

() < </p>

Hyperelliptic curve I

Hyperelliptic curve II

Hyperelliptic curve III

The missing point is mysterious at first,

・ロン ・回 と ・ヨン ・ヨン

Э

Hyperelliptic curve III

The missing point is mysterious at first, but if we consider solutions of the homogenized polynomial

$$\{y^2 z^{d-2} - x(x-z)(x-2z)\cdots(x-(d-1)z) = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

・ロト ・回ト ・ヨト ・ヨト

Hyperelliptic curve III

The missing point is mysterious at first, but if we consider solutions of the homogenized polynomial

$$\{y^2 z^{d-2} - x(x-z)(x-2z)\cdots(x-(d-1)z) = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

then the missing point is just the point at infinity [0:1:0].

・ロト ・回ト ・ヨト ・ヨト

Hyperelliptic curve III

The missing point is mysterious at first, but if we consider solutions of the homogenized polynomial

$$\{y^2 z^{d-2} - x(x-z)(x-2z)\cdots(x-(d-1)z) = 0\} \subset \mathbb{P}^2_{\mathbb{C}}$$

then the missing point is just the point at infinity [0:1:0]. The picture is now much more natural. It corresponds to a Riemann Surface.

() < </p>

Hyperelliptic curve IV

Singular curves

In special cases, it is possible for the set of solutions to be singular. For example $y^2 - x^3 = 0$ and $y^2 - x^2(x+1) = 0$.

・ロン ・四 と ・ ヨ と ・ ヨ と

臣

Singular curves II

Singular curves III

Singular curves are rare!

Christopher Hacon Classifying Algebraic Varieties I

(ロ) (部) (注) (注) [

Singular curves III

Singular curves are rare!

• If we slightly perturb the equations of a singular curve eg.

$$y^2 - x^3 + \epsilon = 0,$$

we obtain smooth Riemann Surfaces.

・ロン ・回 と ・ ヨン ・ ヨン

Singular curves III

Singular curves are rare!

• If we slightly perturb the equations of a singular curve eg.

$$y^2 - x^3 + \epsilon = 0,$$

we obtain smooth Riemann Surfaces.

• Moreover, there is a (natural) way to resolve (=remove) singularities.

(ロ) (同) (E) (E)

Outline of the talk

Introduction

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets

5 Curves

6 Higher dimensions. Preview.

・ロン ・回 と ・ヨン ・ヨン

ullet In general a **Zariski closed subset** of $\mathbb{P}^m_{\mathbb{C}}$ is a set of the form

$$X = \bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m) = 0\} \subset \mathbb{P}^m_{\mathbb{C}}.$$

(Where $P_1, \ldots, P_n \in \mathbb{C}[x_0, \ldots, x_m]$ are homogeneous polynomials.)

・ロン ・回 と ・ヨン ・ヨン

• In general a Zariski closed subset of $\mathbb{P}^m_{\mathbb{C}}$ is a set of the form

$$X = \bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m) = 0\} \subset \mathbb{P}^m_{\mathbb{C}}.$$

(Where $P_1, \ldots, P_n \in \mathbb{C}[x_0, \ldots, x_m]$ are homogeneous polynomials.)

 A Zariski closed subset of P^m_C is irreducible if it can not be written as the union of 2 proper Zariski closed subsets.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• In general a Zariski closed subset of $\mathbb{P}^m_{\mathbb{C}}$ is a set of the form

$$X = \bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m) = 0\} \subset \mathbb{P}^m_{\mathbb{C}}.$$

(Where $P_1, \ldots, P_n \in \mathbb{C}[x_0, \ldots, x_m]$ are homogeneous polynomials.)

- A Zariski closed subset of P^m_C is irreducible if it can not be written as the union of 2 proper Zariski closed subsets.
- Any Zariski closed subset is a finite union of irreducible Zariski closed subsets.

・ロン ・回 と ・ ヨ と ・ ヨ と

• In general a Zariski closed subset of $\mathbb{P}^m_{\mathbb{C}}$ is a set of the form

$$X = \bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m) = 0\} \subset \mathbb{P}^m_{\mathbb{C}}.$$

(Where $P_1, \ldots, P_n \in \mathbb{C}[x_0, \ldots, x_m]$ are homogeneous polynomials.)

- A Zariski closed subset of P^m_C is irreducible if it can not be written as the union of 2 proper Zariski closed subsets.
- Any Zariski closed subset is a finite union of irreducible Zariski closed subsets.
- If $P(x,y,z) \in \mathbb{C}[x,y,z]$ is homogeneous of degree r > 0, then

$$X = \{P(x, y, z) = 0\}$$

is irreducible if and only if P(x, y, z) does not factor.

Reducible set

Irreducible subsets II

If X is an infinite irreducible Zariski closed subset, then there is an integer d > 0 such that for most points $x \in X$, one can find an open neighborhood $x \in U_x \subset X$ where U_x is analytically isomorphic to a ball in \mathbb{C}^d .

・ロト ・同ト ・ヨト ・ヨト

Irreducible subsets II

If X is an infinite irreducible Zariski closed subset, then there is an integer d > 0 such that for most points $x \in X$, one can find an open neighborhood $x \in U_x \subset X$ where U_x is analytically isomorphic to a ball in \mathbb{C}^d . We say that X has **dimension** d.

・ロト ・同ト ・ヨト ・ヨト

Irreducible set of dimension 2

Outline of the talk

Introduction

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets

・ロン ・回 と ・ヨン ・ヨン

Curves

• A curve is an irreducible Zariski closed subset of dimension 1.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.

・ロン ・回 と ・ヨン ・ヨン

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.
- Topologically, a curve X is determined by its genus.

・ロン ・日ン ・ヨン ・ヨン

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.
- Topologically, a curve X is determined by its genus.
- For any given genus $g \ge 0$, it is natural to ask

イロト イヨト イヨト イヨト

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.
- Topologically, a curve X is determined by its genus.
- For any given genus $g \ge 0$, it is natural to ask

Question

How many curves of genus g are there?

<ロ> (日) (日) (日) (日) (日)

• The simplest curves are **rational curves** i.e. curves of genus 0.

イロン イヨン イヨン イヨン

Э

Curves II

- The simplest curves are **rational curves** i.e. curves of genus 0.
- There is only one such curve $X = \mathbb{P}^1_{\mathbb{C}}$.

・ロン ・四 と ・ ヨ と ・ ヨ と

臣

Curves II

- The simplest curves are **rational curves** i.e. curves of genus 0.
- There is only one such curve $X = \mathbb{P}^1_{\mathbb{C}}$.
- There are many different ways to embed $X \subset \mathbb{P}^m_{\mathbb{C}}$.

・ロン ・回 と ・ヨン ・ヨン

Curves II

- The simplest curves are **rational curves** i.e. curves of genus 0.
- There is only one such curve $X = \mathbb{P}^1_{\mathbb{C}}$.
- There are many different ways to embed $X \subset \mathbb{P}^m_{\mathbb{C}}$.
- For example

$$X = \{xz - y^2 = 0\} \cap \{xw - yz = 0\} \cap \{yw - z^2 = 0\} \subset \mathbb{P}^3_{\mathbb{C}}$$

is a curve of genus 0.

・ロン ・回 と ・ ヨン ・ ヨン

Curves II

- The simplest curves are **rational curves** i.e. curves of genus 0.
- There is only one such curve $X = \mathbb{P}^1_{\mathbb{C}}$.
- There are many different ways to embed $X \subset \mathbb{P}^m_{\mathbb{C}}$.
- For example

$$X = \{xz - y^2 = 0\} \cap \{xw - yz = 0\} \cap \{yw - z^2 = 0\} \subset \mathbb{P}^3_{\mathbb{C}}$$

is a curve of genus 0.

• To see that $X \cong \mathbb{P}^1_{\mathbb{C}}$ notice that X may be "parameterized" by $[s:t] \to [s^3:s^2t:st^2:t^3]$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Elliptic curves

• If g > 0 then there are many different curves of genus g.

Christopher Hacon Classifying Algebraic Varieties I

(日) (四) (E) (E) (E)

- If g > 0 then there are many different curves of genus g.
- For example

$$X_t = \{y^2 - x(x-1)(x-t) = 0\}$$

defines a 1-parameter family of curves of genus 1 (also known as **elliptic curves**).

・ロト ・回ト ・ヨト ・ヨト

- If g > 0 then there are many different curves of genus g.
- For example

$$X_t = \{y^2 - x(x-1)(x-t) = 0\}$$

defines a 1-parameter family of curves of genus 1 (also known as **elliptic curves**).

• Any other elliptic curve is equivalent to X_t for some t.

・ロト ・回ト ・ヨト ・ヨト

Curves of general type

If X is a curve with genus g ≥ 2 then we say that X is a curve of general type.

・ロン ・四 と ・ ヨ と ・ ヨ と

臣

Curves of general type

- If X is a curve with genus g ≥ 2 then we say that X is a curve of general type.
- There is a 3g 3-parameter a family of curves of general type.

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Curves of general type

- If X is a curve with genus g ≥ 2 then we say that X is a curve of general type.
- There is a 3g 3-parameter a family of curves of general type.
- There are many senses in which curves of general type (g ≥ 2) are more complicated/interesting. Here are my favorites:

イロト イヨト イヨト イヨト

Curves of general type

- If X is a curve with genus g ≥ 2 then we say that X is a curve of general type.
- There is a 3g 3-parameter a family of curves of general type.
- There are many senses in which curves of general type (g ≥ 2) are more complicated/interesting. Here are my favorites:

Number Theory. By a theorem of Faltings, they have at most finitely many rational solutions (over \mathbb{Q}), whereas rational curves always have infinitely many solutions. (eg. $x^n + y^n = z^n$!)

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・

Curves of general type II

Topology. The fundamental group of a rational curve is trivial.

・ロト ・回ト ・ヨト ・ヨト

臣

Curves of general type II

Topology. The fundamental group of a rational curve is trivial. The fundamental group of an elliptic curve is $\mathbb{Z} \times \mathbb{Z}$.

・ロト ・回ト ・ヨト ・ヨト

Topology. The fundamental group of a rational curve is trivial. The fundamental group of an elliptic curve is $\mathbb{Z} \times \mathbb{Z}$. The fundamental group of a curve of general type is a free group on generators a_i, b_j with $1 \le i, j \le g$ modulo the relation

$$a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}=1.$$

<ロ> (日) (日) (日) (日) (日)

Topology. The fundamental group of a rational curve is trivial. The fundamental group of an elliptic curve is $\mathbb{Z} \times \mathbb{Z}$. The fundamental group of a curve of general type is a free group on generators a_i, b_j with $1 \le i, j \le g$ modulo the relation

$$a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}=1.$$

Its abelianization is \mathbb{Z}^{2g} .

(a)

Curves of general type III

Differential geometry. If $g \ge 2$ (respectively g = 1 and g = 0), then X admits a metric with negative (respectively constant and positive) curvature.

・ロン ・回 と ・ヨン ・ヨン

Curves of general type III

Differential geometry. If $g \ge 2$ (respectively g = 1 and g = 0), then X admits a metric with negative (respectively constant and positive) curvature.

Complex analysis. Consider the space of global holomorphic 1-forms $H^0(X, \omega_X)$ (i.e. objects that may locally be written as f(x)dx). Then $H^0(X, \omega_X) \cong \mathbb{C}^g$.

イロト イヨト イヨト イヨト

Curve embeddings

• Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$\bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m)=0\} \subset \mathbb{P}^m_{\mathbb{C}}$$

・ロト ・回ト ・ヨト ・ヨト

Curve embeddings

• Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$\bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m)=0\} \subset \mathbb{P}^m_{\mathbb{C}}.$$

• We would like to find a natural (canonical) description for X.

() < </p>

Curve embeddings

• Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$\bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m)=0\} \subset \mathbb{P}^m_{\mathbb{C}}.$$

- We would like to find a natural (canonical) description for X.
- Since X is compact, the only holomorphic functions on X are constant.

() < </p>

Curve embeddings

• Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$\bigcap_{i=1}^n \{P_i(x_1,\ldots,x_m)=0\} \subset \mathbb{P}^m_{\mathbb{C}}.$$

- We would like to find a natural (canonical) description for X.
- Since X is compact, the only holomorphic functions on X are constant.
- It is then more interesting to consider meromorphic functions on *X*.

(a)

Rational functions

A divisor D = ∑ d_iP_i is a formal sum of points P_i ∈ X with multiplicities d_i ∈ Z.

・ロト ・同ト ・ヨト ・ヨト

臣

Rational functions

- A divisor $D = \sum d_i P_i$ is a formal sum of points $P_i \in X$ with multiplicities $d_i \in \mathbb{Z}$.
- The set $H^0(X, \mathcal{O}_X(D))$ is the set of rational functions f on X whose poles are no worse than D.

・ロン ・回 と ・ヨン ・ヨン

Rational functions

- A divisor $D = \sum d_i P_i$ is a formal sum of points $P_i \in X$ with multiplicities $d_i \in \mathbb{Z}$.
- The set $H^0(X, \mathcal{O}_X(D))$ is the set of rational functions f on X whose poles are no worse than D.
- In other words if $(f) = (f)_0 (f)_\infty = \operatorname{zeroes}(f) \operatorname{poles}(f)$, then $f \in H^0(X, \mathcal{O}_X(D))$ if and only if $(f) + D \ge 0$.

・ロン ・四 と ・ ヨ と ・ ヨ と

Rational functions

- A divisor $D = \sum d_i P_i$ is a formal sum of points $P_i \in X$ with multiplicities $d_i \in \mathbb{Z}$.
- The set $H^0(X, \mathcal{O}_X(D))$ is the set of rational functions f on X whose poles are no worse than D.
- In other words if $(f) = (f)_0 (f)_\infty = \operatorname{zeroes}(f) \operatorname{poles}(f)$, then $f \in H^0(X, \mathcal{O}_X(D))$ if and only if $(f) + D \ge 0$.
- The set $H^0(X, \mathcal{O}_X(D))$ is a finite dimensional complex vector space.

◆ロ → ◆周 → ◆臣 → ◆臣 → □臣

Rational functions

- A divisor $D = \sum d_i P_i$ is a formal sum of points $P_i \in X$ with multiplicities $d_i \in \mathbb{Z}$.
- The set $H^0(X, \mathcal{O}_X(D))$ is the set of rational functions f on X whose poles are no worse than D.
- In other words if $(f) = (f)_0 (f)_\infty = \operatorname{zeroes}(f) \operatorname{poles}(f)$, then $f \in H^0(X, \mathcal{O}_X(D))$ if and only if $(f) + D \ge 0$.
- The set $H^0(X, \mathcal{O}_X(D))$ is a finite dimensional complex vector space.
- E.g. $H^0(\mathbb{P}^1_{\mathbb{C}}, \mathcal{O}_{\mathbb{P}^1_{\mathbb{C}}}(dP_{\infty}))$ corresponds to homogeneous p(x) of degree $\leq d$.

(ロ) (同) (E) (E) (E)

Rational functions II

• Given a basis s_0, \ldots, s_m of $H^0(X, \mathcal{O}_X(D))$, we obtain a map $X \dashrightarrow \mathbb{P}^m_{\mathbb{C}}$ given by

$$x \to [s_0(x) : \ldots : s_m(x)]$$

(undefined at the common zeroes of the s_i).

・ロン ・四 と ・ ヨ と ・ ヨ と

Rational functions II

• Given a basis s_0, \ldots, s_m of $H^0(X, \mathcal{O}_X(D))$, we obtain a map $X \dashrightarrow \mathbb{P}^m_{\mathbb{C}}$ given by

$$x \rightarrow [s_0(x) : \ldots : s_m(x)]$$

(undefined at the common zeroes of the s_i).

• Alternatively one can think of $\mathcal{O}_X(D)$ as a line bundle and s_i as sections of this line bundle.

・ロット (雪) (目) (日)

Rational functions II

• Given a basis s_0, \ldots, s_m of $H^0(X, \mathcal{O}_X(D))$, we obtain a map $X \dashrightarrow \mathbb{P}^m_{\mathbb{C}}$ given by

$$x \rightarrow [s_0(x) : \ldots : s_m(x)]$$

(undefined at the common zeroes of the s_i).

- Alternatively one can think of $\mathcal{O}_X(D)$ as a line bundle and s_i as sections of this line bundle.
- To find a natural embedding $X \subset \mathbb{P}^m_{\mathbb{C}}$, it suffices to find a "natural" line bundle $\mathcal{O}_X(D)$ such that the sections $s_i \in H^0(X, \mathcal{O}_X(D))$ separate the points and tangent directions of X.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Holomorphic 1-forms

• There is essentially only one choice for such a line bundle: the canonical line bundle ω_X .

・ロン ・回 と ・ヨン ・ヨン

臣

Holomorphic 1-forms

- There is essentially only one choice for such a line bundle: the canonical line bundle ω_X.
- The sections of $H^0(X, \omega_X)$ are holomorphic 1-forms. I.e. they can locally be written as f(x)dx.

・ロト ・回ト ・ヨト ・ヨト

Holomorphic 1-forms

- There is essentially only one choice for such a line bundle: the canonical line bundle ω_X .
- The sections of $H^0(X, \omega_X)$ are holomorphic 1-forms. I.e. they can locally be written as f(x)dx.

Theorem

Let X be a curve of genus $g \ge 2$, then for any $k \ge 3$ the sections of $H^0(X, (\omega_X)^{\otimes k})$ define an embedding

$$X \hookrightarrow \mathbb{P}^{(2k-1)(g-1)-1}_{\mathbb{C}}$$

(a)

Holomorphic 1-forms II

• There is a more abstract/natural point of view:

Christopher Hacon Classifying Algebraic Varieties I

・ロン ・回 と ・ヨン ・ヨン

臣

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$R(X) = \bigoplus_{k \ge 0} H^0(X, (\omega_X)^{\otimes k}).$$

・ロン ・回 と ・ ヨン ・ ヨン

臣

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$R(X) = \bigoplus_{k \ge 0} H^0(X, (\omega_X)^{\otimes k}).$$

Then R(X) is finitely generated C-algebra and X = ProjR(X).

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$R(X) = igoplus_{k\geq 0} H^0(X, (\omega_X)^{\otimes k}).$$

- Then R(X) is finitely generated C-algebra and X = ProjR(X).
- In coordinates this may be described as follows. If r_0, \dots, r_m are generators of R(X) and

$$K = \ker \left(\mathbb{C}[x_0, \ldots, x_m] \to R(X) \right),$$

then $X \subset \mathbb{P}^m_{\mathbb{C}}$ is defined by the equations in K.

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$R(X) = igoplus_{k \ge 0} H^0(X, (\omega_X)^{\otimes k}).$$

- Then R(X) is finitely generated C-algebra and X = ProjR(X).
- In coordinates this may be described as follows. If r_0, \dots, r_m are generators of R(X) and

$$K = \ker \left(\mathbb{C}[x_0, \ldots, x_m] \to R(X) \right),$$

then $X \subset \mathbb{P}^m_{\mathbb{C}}$ is defined by the equations in K.

• There are many interesting open problems on the structure of R(X) (even if dim X = 1).

Outline of the talk

Introduction

- 2 equations in 2 variables
- 3 1 equation in 2 variables
- Irreducible subsets

5 Curves

・ロン ・回 と ・ ヨン ・ ヨン

The Canonical Ring

 In the following two lectures I will explain how one may understand solution sets of dimension ≥ 2.

・ロン ・回 と ・ ヨン ・ ヨン

臣

The Canonical Ring

- In the following two lectures I will explain how one may understand solution sets of dimension ≥ 2.
- Let X be an irreducible Zariski closed set of dimension d. The sections s ∈ H⁰(X, ω_X^{⊗k}) may be locally written as f(x₁,...,x_d)(dx₁ ∧ ... ∧ dx_d)^{⊗k}.

・ロン ・回 と ・ ヨン ・ ヨン

The Canonical Ring

- In the following two lectures I will explain how one may understand solution sets of dimension ≥ 2.
- Let X be an irreducible Zariski closed set of dimension d. The sections s ∈ H⁰(X, ω_X^{⊗k}) may be locally written as f(x₁,...,x_d)(dx₁ ∧ ... ∧ dx_d)^{⊗k}.
- The Canonical Ring of X given by

$$R(X) = \bigoplus_{k \ge 0} H^0(X, \omega_X^{\otimes k}).$$

・ロン ・回 と ・ヨン ・ヨン

Surfaces and 3-folds

• The geometry of complex surfaces (d = 2) was well understood in terms of R(X) by the Italian School of Algebraic Geometry at the beginning of the 20-th century.

Surfaces and 3-folds

- The geometry of complex surfaces (d = 2) was well understood in terms of R(X) by the Italian School of Algebraic Geometry at the beginning of the 20-th century.
- The geometry of complex 3-folds (d = 3) was understood in the 1980's by work of S. Mori, Y. Kawamata, J. Kollár, V. Shokurov and others.

<ロ> (日) (日) (日) (日) (日)

Surfaces and 3-folds

- The geometry of complex surfaces (d = 2) was well understood in terms of R(X) by the Italian School of Algebraic Geometry at the beginning of the 20-th century.
- The geometry of complex 3-folds (d = 3) was understood in the 1980's by work of S. Mori, Y. Kawamata, J. Kollár, V. Shokurov and others.
- In particular, if dim X = 3, then R(X) is finitely generated.

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \ge 4$). In particular we have:

・ロン ・回 と ・ ヨン ・ ヨン

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \ge 4$). In particular we have:

Theorem (Birkar-Cascini-Hacon-M^cKernan, Siu)

The canonical ring

$$R(X) = \bigoplus_{k>0} H^0(X, \omega_X^{\otimes k})$$

is finitely generated.

() < </p>

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \ge 4$). In particular we have:

Theorem (Birkar-Cascini-Hacon-M^cKernan, Siu)

The canonical ring

$$R(X) = \bigoplus_{k \ge 0} H^0(X, \omega_X^{\otimes k})$$

is finitely generated.

It follows that there is a natural map $\phi: X \dashrightarrow \operatorname{Proj} R(X) \cong \mathbb{P}^m_{\mathbb{C}}$.

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \ge 4$). In particular we have:

Theorem (Birkar-Cascini-Hacon-M^cKernan, Siu)

The canonical ring

$$R(X) = \bigoplus_{k \ge 0} H^0(X, \omega_X^{\otimes k})$$

is finitely generated.

It follows that there is a natural map $\phi : X \to \operatorname{Proj} R(X) \cong \mathbb{P}^m_{\mathbb{C}}$. In most cases, ϕ carries a lot of information about X and it can be used to study the geometry of X in a coordinate free manner.