Classifying Algebraic Varieties I

Christopher Hacon

University of Utah
March, 2008

Outline of the talk

(1) Introduction

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables
(4) Irreducible subsets

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables
(4) Irreducible subsets
(5) Curves

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables
(4) Irreducible subsets
(5) Curves
(6) Higher dimensions. Preview.

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables
(4) Irreducible subsets
(5) Curves
(6) Higher dimensions. Preview

Polynomial equations

Algebraic Geometry is concerned with the study of solutions of polynomial equations say n-equations in m-variables

$$
\left\{\begin{array}{c}
P_{1}\left(x_{1}, \ldots, x_{m}\right)=0 \\
\ldots \\
\ldots \\
P_{n}\left(x_{1}, \ldots, x_{m}\right)=0
\end{array}\right.
$$

1 equation in 1 variable

- For example, 1 equation in 1 variable

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} \quad a_{d} \neq 0
$$

(a polynomial of degree d in x).

1 equation in 1 variable

- For example, 1 equation in 1 variable

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} \quad a_{d} \neq 0
$$

(a polynomial of degree d in x).

- If $a_{i} \in \mathbb{C}$, then by the Fundamental Theorem of Algebra, we may find $c_{i} \in \mathbb{C}$ such that $P(x)$ factors as

$$
P(x)=a_{d}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{d}\right)
$$

1 equation in 1 variable

- For example, 1 equation in 1 variable

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} \quad a_{d} \neq 0
$$

(a polynomial of degree d in x).

- If $a_{i} \in \mathbb{C}$, then by the Fundamental Theorem of Algebra, we may find $c_{i} \in \mathbb{C}$ such that $P(x)$ factors as

$$
P(x)=a_{d}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{d}\right)
$$

- Therefore a polynomial of degree d always has exactly d solutions or roots (when counted with multiplicity).

1 equation in 1 variable

- For example, 1 equation in 1 variable

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x+a_{0} \quad a_{d} \neq 0
$$

(a polynomial of degree d in x).

- If $a_{i} \in \mathbb{C}$, then by the Fundamental Theorem of Algebra, we may find $c_{i} \in \mathbb{C}$ such that $P(x)$ factors as

$$
P(x)=a_{d}\left(x-c_{1}\right)\left(x-c_{2}\right) \cdots\left(x-c_{d}\right)
$$

- Therefore a polynomial of degree d always has exactly d solutions or roots (when counted with multiplicity).
- If one is interested in solutions that belong to \mathbb{R} (or \mathbb{Q}, or \mathbb{Z} etc.), then the problem is much more complicated, but at least we know that there are at most d solutions.

Complex solutions

Throughout this talk I will always look for complex solutions $\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$ to polynomial equations

$$
P_{1}\left(x_{1}, \ldots, x_{m}\right)=0 \quad \ldots \quad P_{n}\left(x_{1}, \ldots, x_{m}\right)=0
$$

where $P_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$.

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables

4 Irreducible subsets
(5) Curves

6 Higher dimensions. Preview.

Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.
$P_{1}(x, y)=a_{1} x+b_{1} y+c_{1} \quad$ and $\quad P_{2}(x, y)=a_{2} x+b_{2} y+c_{2}$.

Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.
$P_{1}(x, y)=a_{1} x+b_{1} y+c_{1} \quad$ and $\quad P_{2}(x, y)=a_{2} x+b_{2} y+c_{2}$.
There are 3 cases

Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.
$P_{1}(x, y)=a_{1} x+b_{1} y+c_{1} \quad$ and $\quad P_{2}(x, y)=a_{2} x+b_{2} y+c_{2}$.
There are 3 cases
(1) If the lines coincide (i.e. if $P_{1}(x, y)=c P_{2}(x, y)$ for some $0 \neq c \in \mathbb{C})$, then there are infinitely many solutions.

Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.
$P_{1}(x, y)=a_{1} x+b_{1} y+c_{1} \quad$ and $\quad P_{2}(x, y)=a_{2} x+b_{2} y+c_{2}$.
There are 3 cases
(1) If the lines coincide (i.e. if $P_{1}(x, y)=c P_{2}(x, y)$ for some $0 \neq c \in \mathbb{C})$, then there are infinitely many solutions.
(2) If the lines are distinct but parallel then there are no solutions.

Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.
$P_{1}(x, y)=a_{1} x+b_{1} y+c_{1} \quad$ and $\quad P_{2}(x, y)=a_{2} x+b_{2} y+c_{2}$.
There are 3 cases
(1) If the lines coincide (i.e. if $P_{1}(x, y)=c P_{2}(x, y)$ for some $0 \neq c \in \mathbb{C})$, then there are infinitely many solutions.
(2) If the lines are distinct but parallel then there are no solutions.
(3) If the lines are not parallel, there is a unique solution.

Lines in the plane

Lines in the plane

So, in most cases two lines intersect at a unique point.

Lines in the plane

So, in most cases two lines intersect at a unique point.

Question

Is it possible to also think of distinct parallel lines as intersecting at one point?

Lines in the plane

So, in most cases two lines intersect at a unique point.

Question

Is it possible to also think of distinct parallel lines as intersecting at one point?

The answer is yes if one chooses an appropriate compactification

$$
\mathbb{C}^{2} \subset \mathbb{P}_{\mathbb{C}}^{2}=\mathbb{C}^{2} \cup\{\text { line at infinity }\}
$$

Lines in the plane

So, in most cases two lines intersect at a unique point.

Question

Is it possible to also think of distinct parallel lines as intersecting at one point?

The answer is yes if one chooses an appropriate compactification

$$
\mathbb{C}^{2} \subset \mathbb{P}_{\mathbb{C}}^{2}=\mathbb{C}^{2} \cup\{\text { line at infinity }\}
$$

The "line at infinity" is given by $\mathbb{C} \cup\{\infty\}$. It corresponds to all possible slopes of a line.

Lines in the plane

We may thus think of two distinct parallel lines as meeting in exactly one point at infinity and we have

Lines in the plane

We may thus think of two distinct parallel lines as meeting in exactly one point at infinity and we have

Theorem

Let L_{1} and L_{2} be two distinct lines in $\mathbb{P}_{\mathbb{C}}^{2}$.
Then L_{1} and L_{2} meet in exactly one point.

Lines in the projective plane

The projective plane

- To make things precise, one defines

$$
\mathbb{P}_{\mathbb{C}}^{2}:=\left(\mathbb{C}^{3}-\{(0,0,0)\}\right) /(\mathbb{C}-\{0\})
$$

The projective plane

- To make things precise, one defines

$$
\mathbb{P}_{\mathbb{C}}^{2}:=\left(\mathbb{C}^{3}-\{(0,0,0)\}\right) /(\mathbb{C}-\{0\})
$$

- So that given $\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{C}^{3}$ and $\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{C}^{3}$, we have that $\left(b_{1}, b_{2}, b_{3}\right)$ is equivalent to $\left(c_{1}, c_{2}, c_{3}\right)$ if $\left(b_{1}, b_{2}, b_{3}\right)=\lambda\left(c_{1}, c_{2}, c_{3}\right)$ for some $\lambda \in \mathbb{C}-\{0\}$.

The projective plane

- To make things precise, one defines

$$
\mathbb{P}_{\mathbb{C}}^{2}:=\left(\mathbb{C}^{3}-\{(0,0,0)\}\right) /(\mathbb{C}-\{0\})
$$

- So that given $\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{C}^{3}$ and $\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{C}^{3}$, we have that $\left(b_{1}, b_{2}, b_{3}\right)$ is equivalent to $\left(c_{1}, c_{2}, c_{3}\right)$ if $\left(b_{1}, b_{2}, b_{3}\right)=\lambda\left(c_{1}, c_{2}, c_{3}\right)$ for some $\lambda \in \mathbb{C}-\{0\}$.
- We denote by $\left[b_{1}: b_{2}: b_{3}\right.$] the equivalence class of $\left(b_{1}, b_{2}, b_{3}\right)$. We have

$$
\mathbb{C}^{2} \hookrightarrow \mathbb{P}_{\mathbb{C}}^{2} \quad \text { defined by } \quad\left(b_{1}, b_{2}\right) \rightarrow\left[b_{1}: b_{2}: 1\right] .
$$

The projective plane

- To make things precise, one defines

$$
\mathbb{P}_{\mathbb{C}}^{2}:=\left(\mathbb{C}^{3}-\{(0,0,0)\}\right) /(\mathbb{C}-\{0\})
$$

- So that given $\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{C}^{3}$ and $\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{C}^{3}$, we have that $\left(b_{1}, b_{2}, b_{3}\right)$ is equivalent to $\left(c_{1}, c_{2}, c_{3}\right)$ if $\left(b_{1}, b_{2}, b_{3}\right)=\lambda\left(c_{1}, c_{2}, c_{3}\right)$ for some $\lambda \in \mathbb{C}-\{0\}$.
- We denote by $\left[b_{1}: b_{2}: b_{3}\right.$] the equivalence class of $\left(b_{1}, b_{2}, b_{3}\right)$. We have

$$
\mathbb{C}^{2} \hookrightarrow \mathbb{P}_{\mathbb{C}}^{2} \quad \text { defined by } \quad\left(b_{1}, b_{2}\right) \rightarrow\left[b_{1}: b_{2}: 1\right] .
$$

- The points of $\mathbb{P}_{\mathbb{C}}^{2}-\mathbb{C}^{2}$ (the line at infinity) are of the form [$\left.b_{1}: b_{2}: 0\right]$.

Lines in the projective plane

- Given the line $2 x+3 y-5=0$, we consider the "homogenization" $2 x+3 y-5 z=0$.

Lines in the projective plane

- Given the line $2 x+3 y-5=0$, we consider the "homogenization" $2 x+3 y-5 z=0$.
- The zero set of $2 x+3 y-5 z$ (or any homogeneous polynomial $Q(x, y, z))$ makes sense on $\mathbb{P}_{\mathbb{C}}^{2}$ as $2 b_{1}+3 b_{2}-5 b_{3}=0 \quad$ iff $\quad 2 \lambda b_{1}+3 \lambda b_{2}-5 \lambda b_{3}=0 \quad \lambda \in \mathbb{C}-\{0$

Lines in the projective plane

- Given the line $2 x+3 y-5=0$, we consider the "homogenization" $2 x+3 y-5 z=0$.
- The zero set of $2 x+3 y-5 z$ (or any homogeneous polynomial $Q(x, y, z))$ makes sense on $\mathbb{P}_{\mathbb{C}}^{2}$ as $2 b_{1}+3 b_{2}-5 b_{3}=0 \quad$ iff $\quad 2 \lambda b_{1}+3 \lambda b_{2}-5 \lambda b_{3}=0 \quad \lambda \in \mathbb{C}-\{0$
- Note that if we set $z=1$, we recover the original equation on \mathbb{C}^{2}.

Lines in the projective plane

- Given the line $2 x+3 y-5=0$, we consider the "homogenization" $2 x+3 y-5 z=0$.
- The zero set of $2 x+3 y-5 z$ (or any homogeneous polynomial $Q(x, y, z))$ makes sense on $\mathbb{P}_{\mathbb{C}}^{2}$ as $2 b_{1}+3 b_{2}-5 b_{3}=0 \quad$ iff $\quad 2 \lambda b_{1}+3 \lambda b_{2}-5 \lambda b_{3}=0 \quad \lambda \in \mathbb{C}-\{0$
- Note that if we set $z=1$, we recover the original equation on \mathbb{C}^{2}.
- If $z=0$, we obtain the point at infinity
$[-3: 2: 0]=[-3 / 2: 1: 0]$.

Lines in the projective plane

- Given the line $2 x+3 y-5=0$, we consider the "homogenization" $2 x+3 y-5 z=0$.
- The zero set of $2 x+3 y-5 z$ (or any homogeneous polynomial $Q(x, y, z))$ makes sense on $\mathbb{P}_{\mathbb{C}}^{2}$ as $2 b_{1}+3 b_{2}-5 b_{3}=0 \quad$ iff $\quad 2 \lambda b_{1}+3 \lambda b_{2}-5 \lambda b_{3}=0 \quad \lambda \in \mathbb{C}-\{0$
- Note that if we set $z=1$, we recover the original equation on \mathbb{C}^{2}.
- If $z=0$, we obtain the point at infinity $[-3: 2: 0]=[-3 / 2: 1: 0]$.
- For any line parallel to $2 x+3 y-5=0$ we will obtain the same point at infinity.

Lines in the projective plane

- Given the line $2 x+3 y-5=0$, we consider the "homogenization" $2 x+3 y-5 z=0$.
- The zero set of $2 x+3 y-5 z$ (or any homogeneous polynomial $Q(x, y, z))$ makes sense on $\mathbb{P}_{\mathbb{C}}^{2}$ as $2 b_{1}+3 b_{2}-5 b_{3}=0 \quad$ iff $\quad 2 \lambda b_{1}+3 \lambda b_{2}-5 \lambda b_{3}=0 \quad \lambda \in \mathbb{C}-\{0$
- Note that if we set $z=1$, we recover the original equation on \mathbb{C}^{2}.
- If $z=0$, we obtain the point at infinity $[-3: 2: 0]=[-3 / 2: 1: 0]$.
- For any line parallel to $2 x+3 y-5=0$ we will obtain the same point at infinity.
- More generally one can show the following.

Bezout's Theorem

Theorem (Bezout's Theorem)

Let $P(x, y, z)$ and $Q(x, y, z)$ be homogeneous polynomials of degrees d and d^{\prime}. If the intersection of the curves

$$
\{P(x, y, z)=0\} \cap\{Q(x, y, z)=0\} \subset \mathbb{P}_{\mathbb{C}}^{2}
$$

is finite, then it consist of exactly $d \cdot d^{\prime}$ points (counted with multiplicity).

Bezout's Theorem

Theorem (Bezout's Theorem)

Let $P(x, y, z)$ and $Q(x, y, z)$ be homogeneous polynomials of degrees d and d^{\prime}. If the intersection of the curves

$$
\{P(x, y, z)=0\} \cap\{Q(x, y, z)=0\} \subset \mathbb{P}_{\mathbb{C}}^{2}
$$

is finite, then it consist of exactly $d \cdot d^{\prime}$ points (counted with multiplicity).

In fact, Bezout's Theorem works in any number of variables.

Bezout's Theorem II

Theorem (Bezout's Theorem)

Let $P_{1}\left(x_{0}, \ldots, x_{n}\right), \ldots, P_{n}\left(x_{0}, \ldots, x_{n}\right)$ be n homogeneous polynomials of degrees d_{1}, \ldots, d_{n}. If the set

$$
\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{0}, \ldots, x_{n}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{n}
$$

is finite, then it consist of exactly $d_{1} \cdots d_{n}$ points (counted with multiplicity).

Bezout's Theorem III

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables

4 Irreducible subsets
(5) Curves

6 Higher dimensions. Preview.

Infinite number of solutions

So the next interesting question is:

Question

What happens when a set of polynomials has infinitely many solutions?

Infinite number of solutions

So the next interesting question is:

Question

What happens when a set of polynomials has infinitely many solutions?

Consider the case of 1 equation in 2 variables $P(x, y)=0$. For example

$$
y^{2}=x(x-1)(x-2) \cdots(x-d+1)
$$

Infinite number of solutions

So the next interesting question is:

Question

What happens when a set of polynomials has infinitely many solutions?

Consider the case of 1 equation in 2 variables $P(x, y)=0$. For example

$$
y^{2}=x(x-1)(x-2) \cdots(x-d+1)
$$

The solutions in \mathbb{R}^{2} and in \mathbb{C}^{2} look like this.

Higher dimensions. Preview.
Hyperelliptic curve I

$$
\mathbb{R}^{2} \quad y^{2}=x(x-1)(x-2) \cdots(x-d+1) \quad \text { deven }
$$

Introduction

Hyperelliptic curve II

$$
\mathbb{C}^{2} \quad y^{2}=x(x-1)(x-2) \quad . \quad(x-d+1) \quad \text { deven }
$$

Hyperelliptic curve III

The missing point is mysterious at first,

Hyperelliptic curve III

The missing point is mysterious at first, but if we consider solutions of the homogenized polynomial

$$
\left\{y^{2} z^{d-2}-x(x-z)(x-2 z) \cdots(x-(d-1) z)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}
$$

Hyperelliptic curve III

The missing point is mysterious at first, but if we consider solutions of the homogenized polynomial

$$
\left\{y^{2} z^{d-2}-x(x-z)(x-2 z) \cdots(x-(d-1) z)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}
$$

then the missing point is just the point at infinity $[0: 1: 0]$.

Hyperelliptic curve III

The missing point is mysterious at first, but if we consider solutions of the homogenized polynomial

$$
\left\{y^{2} z^{d-2}-x(x-z)(x-2 z) \cdots(x-(d-1) z)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}
$$

then the missing point is just the point at infinity $[0: 1: 0]$. The picture is now much more natural. It corresponds to a Riemann Surface.

Hyperelliptic curve IV

$$
\mathbb{P}_{a}^{2} \quad y^{2} z^{d-2}=x(x-z)(x-2 z) \cdot \cdot(x-(d-1) z)
$$

$$
y=\frac{d}{2}-1 \text { holes }
$$

Singular curves

In special cases, it is possible for the set of solutions to be singular.
For example $y^{2}-x^{3}=0$ and $y^{2}-x^{2}(x+1)=0$.

Higher dimensions. Preview.

Singular curves II

$$
\text { Cusp } \quad z y^{2}=x^{3} \quad \mathbb{P}_{c}^{2}
$$

Node $z y^{2}=x^{2}(x+z) \quad \mathbb{P}_{c}^{2}$

Singular curves III

Singular curves are rare!

Singular curves III

Singular curves are rare!

- If we slightly perturb the equations of a singular curve eg.

$$
y^{2}-x^{3}+\epsilon=0
$$

we obtain smooth Riemann Surfaces.

Singular curves III

Singular curves are rare!

- If we slightly perturb the equations of a singular curve eg.

$$
y^{2}-x^{3}+\epsilon=0
$$

we obtain smooth Riemann Surfaces.

- Moreover, there is a (natural) way to resolve (=remove) singularities.

Irreducible subsets

Curves
Higher dimensions. Preview.

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables
(4) Irreducible subsets
(5) Curves
(6) Higher dimensions. Preview

Irreducible subsets

- In general a Zariski closed subset of $\mathbb{P}_{\mathbb{C}}^{m}$ is a set of the form

$$
X=\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

(Where $P_{1}, \ldots, P_{n} \in \mathbb{C}\left[x_{0}, \ldots, x_{m}\right]$ are homogeneous polynomials.)

Irreducible subsets

- In general a Zariski closed subset of $\mathbb{P}_{\mathbb{C}}^{m}$ is a set of the form

$$
X=\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

(Where $P_{1}, \ldots, P_{n} \in \mathbb{C}\left[x_{0}, \ldots, x_{m}\right]$ are homogeneous polynomials.)

- A Zariski closed subset of $\mathbb{P}_{\mathbb{C}}^{m}$ is irreducible if it can not be written as the union of 2 proper Zariski closed subsets.

Irreducible subsets

- In general a Zariski closed subset of $\mathbb{P}_{\mathbb{C}}^{m}$ is a set of the form

$$
X=\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

(Where $P_{1}, \ldots, P_{n} \in \mathbb{C}\left[x_{0}, \ldots, x_{m}\right]$ are homogeneous polynomials.)

- A Zariski closed subset of $\mathbb{P}_{\mathbb{C}}^{m}$ is irreducible if it can not be written as the union of 2 proper Zariski closed subsets.
- Any Zariski closed subset is a finite union of irreducible Zariski closed subsets.

Irreducible subsets

- In general a Zariski closed subset of $\mathbb{P}_{\mathbb{C}}^{m}$ is a set of the form

$$
X=\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

(Where $P_{1}, \ldots, P_{n} \in \mathbb{C}\left[x_{0}, \ldots, x_{m}\right]$ are homogeneous polynomials.)

- A Zariski closed subset of $\mathbb{P}_{\mathbb{C}}^{m}$ is irreducible if it can not be written as the union of 2 proper Zariski closed subsets.
- Any Zariski closed subset is a finite union of irreducible Zariski closed subsets.
- If $P(x, y, z) \in \mathbb{C}[x, y, z]$ is homogeneous of degree $r>0$, then

$$
X=\{P(x, y, z)=0\}
$$

is irreducible if and only if $P(x, y, z)$ does not factor.

Introduction
 2 equations in 2 variables 1 equation in 2 variables Irreducible subsets
 Curves
 Higher dimensions. Preview.

Reducible set

$$
\text { REDUGIBLE ZARISKI LLOSED SUBSET OF } \mathbb{P}_{4}^{3}
$$

Irreducible subsets II

If X is an infinite irreducible Zariski closed subset, then there is an integer $d>0$ such that for most points $x \in X$, one can find an open neighborhood $x \in U_{x} \subset X$ where U_{x} is analytically isomorphic to a ball in \mathbb{C}^{d}.

Irreducible subsets II

If X is an infinite irreducible Zariski closed subset, then there is an integer $d>0$ such that for most points $x \in X$, one can find an open neighborhood $x \in U_{x} \subset X$ where U_{x} is analytically isomorphic to a ball in \mathbb{C}^{d}.
We say that X has dimension d.

Introduction

Higher dimensions. Preview.

Irreducible set of dimension 2

$$
\text { SINGULAR SET IN } \mathbb{P}_{4}^{3}
$$

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables

4 Irreducible subsets
(5) Curves

6 Higher dimensions. Preview.

1 equation in 2 variables
Irreducible subsets
Curves
Higher dimensions. Preview.

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.
- Topologically, a curve X is determined by its genus.

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.
- Topologically, a curve X is determined by its genus.
- For any given genus $g \geq 0$, it is natural to ask

Curves

- A curve is an irreducible Zariski closed subset of dimension 1.
- All smooth curves are orientable compact manifolds of real dimension 2 and so they are Riemann Surfaces.
- Topologically, a curve X is determined by its genus.
- For any given genus $g \geq 0$, it is natural to ask

Question

How many curves of genus g are there?

Introduction
 2 equations in 2 variables
 1 equation in 2 variables
 Irreducible subsets
 Curves
 Higher dimensions. Preview.

Curves II

- The simplest curves are rational curves i.e. curves of genus 0 .

Introduction
 2 equations in 2 variables
 1 equation in 2 variables
 Irreducible subsets
 Curves
 Higher dimensions. Preview.

Curves II

- The simplest curves are rational curves i.e. curves of genus 0 .
- There is only one such curve $X=\mathbb{P}_{\mathbb{C}}^{1}$.

Curves II

- The simplest curves are rational curves i.e. curves of genus 0 .
- There is only one such curve $X=\mathbb{P}_{\mathbb{C}}^{1}$.
- There are many different ways to embed $X \subset \mathbb{P}_{\mathbb{C}}^{m}$.

Curves II

- The simplest curves are rational curves i.e. curves of genus 0 .
- There is only one such curve $X=\mathbb{P}_{\mathbb{C}}^{1}$.
- There are many different ways to embed $X \subset \mathbb{P}_{\mathbb{C}}^{m}$.
- For example

$$
X=\left\{x z-y^{2}=0\right\} \cap\{x w-y z=0\} \cap\left\{y w-z^{2}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{3}
$$

is a curve of genus 0 .

Curves II

- The simplest curves are rational curves i.e. curves of genus 0 .
- There is only one such curve $X=\mathbb{P}_{\mathbb{C}}^{1}$.
- There are many different ways to embed $X \subset \mathbb{P}_{\mathbb{C}}^{m}$.
- For example

$$
X=\left\{x z-y^{2}=0\right\} \cap\{x w-y z=0\} \cap\left\{y w-z^{2}=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{3}
$$

is a curve of genus 0 .

- To see that $X \cong \mathbb{P}_{\mathbb{C}}^{1}$ notice that X may be "parameterized" by $[s: t] \rightarrow\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right]$.

Elliptic curves

- If $g>0$ then there are many different curves of genus g.

Elliptic curves

- If $g>0$ then there are many different curves of genus g.
- For example

$$
X_{t}=\left\{y^{2}-x(x-1)(x-t)=0\right\}
$$

defines a 1-parameter family of curves of genus 1 (also known as elliptic curves).

Elliptic curves

- If $g>0$ then there are many different curves of genus g.
- For example

$$
X_{t}=\left\{y^{2}-x(x-1)(x-t)=0\right\}
$$

defines a 1-parameter family of curves of genus 1 (also known as elliptic curves).

- Any other elliptic curve is equivalent to X_{t} for some t.

Curves of general type

- If X is a curve with genus $g \geq 2$ then we say that X is a curve of general type.

Curves of general type

- If X is a curve with genus $g \geq 2$ then we say that X is a curve of general type.
- There is a $3 g-3$-parameter a family of curves of general type.

Curves of general type

- If X is a curve with genus $g \geq 2$ then we say that X is a curve of general type.
- There is a $3 g-3$-parameter a family of curves of general type.
- There are many senses in which curves of general type ($g \geq 2$) are more complicated/interesting. Here are my favorites:

Curves of general type

- If X is a curve with genus $g \geq 2$ then we say that X is a curve of general type.
- There is a $3 g-3$-parameter a family of curves of general type.
- There are many senses in which curves of general type ($g \geq 2$) are more complicated/interesting. Here are my favorites:

Number Theory. By a theorem of Faltings, they have at most finitely many rational solutions (over \mathbb{Q}), whereas rational curves always have infinitely many solutions. (eg. $x^{n}+y^{n}=z^{n}!$)

Curves of general type II

Topology. The fundamental group of a rational curve is trivial.

Curves of general type II

Topology. The fundamental group of a rational curve is trivial. The fundamental group of an elliptic curve is $\mathbb{Z} \times \mathbb{Z}$.

Curves of general type II

Topology. The fundamental group of a rational curve is trivial. The fundamental group of an elliptic curve is $\mathbb{Z} \times \mathbb{Z}$. The fundamental group of a curve of general type is a free group on generators a_{i}, b_{j} with $1 \leq i, j \leq g$ modulo the relation

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1
$$

Curves of general type II

Topology. The fundamental group of a rational curve is trivial. The fundamental group of an elliptic curve is $\mathbb{Z} \times \mathbb{Z}$. The fundamental group of a curve of general type is a free group on generators a_{i}, b_{j} with $1 \leq i, j \leq g$ modulo the relation

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1
$$

Its abelianization is $\mathbb{Z}^{2 g}$.

Curves of general type III

Differential geometry. If $g \geq 2$ (respectively $g=1$ and $g=0$), then X admits a metric with negative (respectively constant and positive) curvature.

Curves of general type III

Differential geometry. If $g \geq 2$ (respectively $g=1$ and $g=0$), then X admits a metric with negative (respectively constant and positive) curvature.

Complex analysis. Consider the space of global holomorphic 1-forms $H^{0}\left(X, \omega_{X}\right)$ (i.e. objects that may locally be written as $f(x) d x)$. Then $H^{0}\left(X, \omega_{X}\right) \cong \mathbb{C}^{g}$.

Curve embeddings

- Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$
\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

Curve embeddings

- Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$
\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

- We would like to find a natural (canonical) description for X.

Curve embeddings

- Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$
\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

- We would like to find a natural (canonical) description for X.
- Since X is compact, the only holomorphic functions on X are constant.

Curve embeddings

- Note that (as mentioned above) for any curve X there are (infinitely) many different descriptions

$$
\bigcap_{i=1}^{n}\left\{P_{i}\left(x_{1}, \ldots, x_{m}\right)=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{m}
$$

- We would like to find a natural (canonical) description for X.
- Since X is compact, the only holomorphic functions on X are constant.
- It is then more interesting to consider meromorphic functions on X.

Rational functions

- A divisor $D=\sum d_{i} P_{i}$ is a formal sum of points $P_{i} \in X$ with multiplicities $d_{i} \in \mathbb{Z}$.

Rational functions

- A divisor $D=\sum d_{i} P_{i}$ is a formal sum of points $P_{i} \in X$ with multiplicities $d_{i} \in \mathbb{Z}$.
- The set $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is the set of rational functions f on X whose poles are no worse than D.

Rational functions

- A divisor $D=\sum d_{i} P_{i}$ is a formal sum of points $P_{i} \in X$ with multiplicities $d_{i} \in \mathbb{Z}$.
- The set $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is the set of rational functions f on X whose poles are no worse than D.
- In other words if $(f)=(f)_{0}-(f)_{\infty}=\operatorname{zeroes}(f)-\operatorname{poles}(f)$, then $f \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ if and only if $(f)+D \geq 0$.

Rational functions

- A divisor $D=\sum d_{i} P_{i}$ is a formal sum of points $P_{i} \in X$ with multiplicities $d_{i} \in \mathbb{Z}$.
- The set $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is the set of rational functions f on X whose poles are no worse than D.
- In other words if $(f)=(f)_{0}-(f)_{\infty}=\operatorname{zeroes}(f)-\operatorname{poles}(f)$, then $f \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ if and only if $(f)+D \geq 0$.
- The set $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is a finite dimensional complex vector space.

Rational functions

- A divisor $D=\sum d_{i} P_{i}$ is a formal sum of points $P_{i} \in X$ with multiplicities $d_{i} \in \mathbb{Z}$.
- The set $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is the set of rational functions f on X whose poles are no worse than D.
- In other words if $(f)=(f)_{0}-(f)_{\infty}=\operatorname{zeroes}(f)-\operatorname{poles}(f)$, then $f \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ if and only if $(f)+D \geq 0$.
- The set $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ is a finite dimensional complex vector space.
- E.g. $H^{0}\left(\mathbb{P}_{\mathbb{C}}^{1}, \mathcal{O}_{\mathbb{P}_{\mathbb{C}}^{1}}\left(d P_{\infty}\right)\right)$ corresponds to homogeneous $p(x)$ of degree $\leq d$.

Rational functions II

- Given a basis s_{0}, \ldots, s_{m} of $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$, we obtain a map $X \rightarrow \mathbb{P}_{\mathbb{C}}^{m}$ given by

$$
x \rightarrow\left[s_{0}(x): \ldots: s_{m}(x)\right]
$$

(undefined at the common zeroes of the s_{i}).

Rational functions II

- Given a basis s_{0}, \ldots, s_{m} of $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$, we obtain a map $X \rightarrow \mathbb{P}_{\mathbb{C}}^{m}$ given by

$$
x \rightarrow\left[s_{0}(x): \ldots: s_{m}(x)\right]
$$

(undefined at the common zeroes of the s_{i}).

- Alternatively one can think of $\mathcal{O}_{X}(D)$ as a line bundle and s_{i} as sections of this line bundle.

Rational functions II

- Given a basis s_{0}, \ldots, s_{m} of $H^{0}\left(X, \mathcal{O}_{X}(D)\right)$, we obtain a map $X \rightarrow \mathbb{P}_{\mathbb{C}}^{m}$ given by

$$
x \rightarrow\left[s_{0}(x): \ldots: s_{m}(x)\right]
$$

(undefined at the common zeroes of the s_{i}).

- Alternatively one can think of $\mathcal{O}_{X}(D)$ as a line bundle and s_{i} as sections of this line bundle.
- To find a natural embedding $X \subset \mathbb{P}_{\mathbb{C}}^{m}$, it suffices to find a "natural" line bundle $\mathcal{O}_{X}(D)$ such that the sections $s_{i} \in H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ separate the points and tangent directions of X.

Holomorphic 1-forms

- There is essentially only one choice for such a line bundle: the canonical line bundle ω_{X}.

Holomorphic 1-forms

- There is essentially only one choice for such a line bundle: the canonical line bundle ω_{X}.
- The sections of $H^{0}\left(X, \omega_{X}\right)$ are holomorphic 1-forms. I.e. they can locally be written as $f(x) d x$.

Holomorphic 1-forms

- There is essentially only one choice for such a line bundle: the canonical line bundle ω_{X}.
- The sections of $H^{0}\left(X, \omega_{X}\right)$ are holomorphic 1-forms. I.e. they can locally be written as $f(x) d x$.

Theorem

Let X be a curve of genus $g \geq 2$, then for any $k \geq 3$ the sections of $H^{0}\left(X,\left(\omega_{X}\right)^{\otimes k}\right)$ define an embedding

$$
X \hookrightarrow \mathbb{P}_{\mathbb{C}}^{(2 k-1)(g-1)-1}
$$

Holomorphic 1-forms II

- There is a more abstract/natural point of view:

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X,\left(\omega_{X}\right)^{\otimes k}\right)
$$

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X,\left(\omega_{X}\right)^{\otimes k}\right)
$$

- Then $R(X)$ is finitely generated \mathbb{C}-algebra and $X=\operatorname{Proj} R(X)$.

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X,\left(\omega_{X}\right)^{\otimes k}\right)
$$

- Then $R(X)$ is finitely generated \mathbb{C}-algebra and $X=\operatorname{Proj} R(X)$.
- In coordinates this may be described as follows. If r_{0}, \cdots, r_{m} are generators of $R(X)$ and

$$
K=\operatorname{ker}\left(\mathbb{C}\left[x_{0}, \ldots, x_{m}\right] \rightarrow R(X)\right),
$$

then $X \subset \mathbb{P}_{\mathbb{C}}^{m}$ is defined by the equations in K.

Holomorphic 1-forms II

- There is a more abstract/natural point of view:
- Define the canonical ring

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X,\left(\omega_{X}\right)^{\otimes k}\right)
$$

- Then $R(X)$ is finitely generated \mathbb{C}-algebra and $X=\operatorname{Proj} R(X)$.
- In coordinates this may be described as follows. If r_{0}, \cdots, r_{m} are generators of $R(X)$ and

$$
K=\operatorname{ker}\left(\mathbb{C}\left[x_{0}, \ldots, x_{m}\right] \rightarrow R(X)\right)
$$

then $X \subset \mathbb{P}_{\mathbb{C}}^{m}$ is defined by the equations in K.

- There are many interesting open problems on the structure of $R(X)$ (even if $\operatorname{dim} X=1$).

Higher dimensions. Preview.

Outline of the talk

(1) Introduction
(2) 2 equations in 2 variables
(3) 1 equation in 2 variables

4 Irreducible subsets
(5) Curves
(6) Higher dimensions. Preview.

Higher dimensions. Preview.

The Canonical Ring

- In the following two lectures I will explain how one may understand solution sets of dimension ≥ 2.

Higher dimensions. Preview.

The Canonical Ring

- In the following two lectures I will explain how one may understand solution sets of dimension ≥ 2.
- Let X be an irreducible Zariski closed set of dimension d. The sections $s \in H^{0}\left(X, \omega_{X}^{\otimes k}\right)$ may be locally written as $f\left(x_{1}, \ldots, x_{d}\right)\left(d x_{1} \wedge \ldots \wedge d x_{d}\right)^{\otimes k}$.

Higher dimensions. Preview.

The Canonical Ring

- In the following two lectures I will explain how one may understand solution sets of dimension ≥ 2.
- Let X be an irreducible Zariski closed set of dimension d. The sections $s \in H^{0}\left(X, \omega_{X}^{\otimes k}\right)$ may be locally written as $f\left(x_{1}, \ldots, x_{d}\right)\left(d x_{1} \wedge \ldots \wedge d x_{d}\right)^{\otimes k}$.
- The Canonical Ring of X given by

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X, \omega_{X}^{\otimes k}\right)
$$

Higher dimensions. Preview.

Surfaces and 3 -folds

- The geometry of complex surfaces $(d=2)$ was well understood in terms of $R(X)$ by the Italian School of Algebraic Geometry at the beginning of the 20-th century.

Surfaces and 3-folds

- The geometry of complex surfaces $(d=2)$ was well understood in terms of $R(X)$ by the Italian School of Algebraic Geometry at the beginning of the 20-th century.
- The geometry of complex 3-folds $(d=3)$ was understood in the 1980's by work of S. Mori, Y. Kawamata, J. Kollár, V. Shokurov and others.

Surfaces and 3-folds

- The geometry of complex surfaces $(d=2)$ was well understood in terms of $R(X)$ by the Italian School of Algebraic Geometry at the beginning of the 20-th century.
- The geometry of complex 3-folds $(d=3)$ was understood in the 1980's by work of S. Mori, Y. Kawamata, J. Kollár, V. Shokurov and others.
- In particular, if $\operatorname{dim} X=3$, then $R(X)$ is finitely generated.

Higher dimensions. Preview.

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \geq 4$). In particular we have:

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \geq 4$). In particular we have:

Theorem (Birkar-Cascini-Hacon-M ${ }^{c}$ Kernan, Siu)

The canonical ring

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X, \omega_{X}^{\otimes k}\right)
$$

is finitely generated.

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \geq 4$). In particular we have:

Theorem (Birkar-Cascini-Hacon-M ${ }^{c}$ Kernan, Siu)

The canonical ring

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X, \omega_{X}^{\otimes k}\right)
$$

is finitely generated.
It follows that there is a natural map $\phi: X \rightarrow \operatorname{Proj} R(X) \cong \mathbb{P}_{\mathbb{C}}^{m}$.

Higher dimensions

Recently there have been some very exciting developments in higher dimensions ($d \geq 4$). In particular we have:

Theorem (Birkar-Cascini-Hacon-M ${ }^{c}$ Kernan, Siu)

The canonical ring

$$
R(X)=\bigoplus_{k \geq 0} H^{0}\left(X, \omega_{X}^{\otimes k}\right)
$$

is finitely generated.
It follows that there is a natural map $\phi: X \rightarrow \operatorname{Proj} R(X) \cong \mathbb{P}_{\mathbb{C}}^{m}$. In most cases, ϕ carries a lot of information about X and it can be used to study the geometry of X in a coordinate free manner.

