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Polynomial equations

Algebraic Geometry is concerned with the study of solutions of
polynomial equations say n-equations in m-variables

8>><
>>:

P1(x1; : : : ; xm) = 0
: : :
: : :

Pn(x1; : : : ; xm) = 0:
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1 equation in 1 variable

For example, 1 equation in 1 variable

P(x) = adx
d + ad�1x

d�1 + : : :+ a1x + a0 ad 6= 0

(a polynomial of degree d in x).

If ai 2 C, then by the Fundamental Theorem of Algebra, we
may �nd ci 2 C such that P(x) factors as

P(x) = ad(x � c1)(x � c2) � � � (x � cd):

Therefore a polynomial of degree d always has exactly d
solutions or roots (when counted with multiplicity).

If one is interested in solutions that belong to R (or Q, or Z
etc.), then the problem is much more complicated, but at
least we know that there are at most d solutions.
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Complex solutions

Throughout this talk I will always look for complex solutions
(z1; : : : ; zm) 2 C

m to polynomial equations

P1(x1; : : : ; xm) = 0 : : : Pn(x1; : : : ; xm) = 0

where Pi 2 C[x1; : : : ; xm].
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Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.

P1(x ; y) = a1x + b1y + c1 and P2(x ; y) = a2x + b2y + c2:

There are 3 cases

1 If the lines coincide (i.e. if P1(x ; y) = cP2(x ; y) for some
0 6= c 2 C), then there are in�nitely many solutions.

2 If the lines are distinct but parallel then there are no solutions.

3 If the lines are not parallel, there is a unique solution.
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Lines in the plane

So, in most cases two lines intersect at a unique point.

Question

Is it possible to also think of distinct parallel lines as intersecting at
one point?

The answer is yes if one chooses an appropriate compacti�cation

C2 � P2C = C2 [ fline at in�nityg:

The \line at in�nity" is given by C [ f1g. It corresponds to all
possible slopes of a line.
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Lines in the plane

We may thus think of two distinct parallel lines as meeting in
exactly one point at in�nity and we have

Theorem

Let L1 and L2 be two distinct lines in P2C.
Then L1 and L2 meet in exactly one point.
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The projective plane

To make things precise, one de�nes

P2C := (C3 � f(0; 0; 0)g)=(C� f0g):

So that given (b1; b2; b3) 2 C
3 and (c1; c2; c3) 2 C

3, we have
that (b1; b2; b3) is equivalent to (c1; c2; c3) if
(b1; b2; b3) = �(c1; c2; c3) for some � 2 C� f0g.
We denote by [b1 : b2 : b3] the equivalence class of
(b1; b2; b3). We have

C2 ,! P2C de�ned by (b1; b2)! [b1 : b2 : 1]:

The points of P2C � C
2 (the line at in�nity) are of the form

[b1 : b2 : 0].

Christopher Hacon Classifying Algebraic Varieties I



Introduction
2 equations in 2 variables
1 equation in 2 variables

Irreducible subsets
Curves

Higher dimensions. Preview.

The projective plane

To make things precise, one de�nes

P2C := (C3 � f(0; 0; 0)g)=(C� f0g):

So that given (b1; b2; b3) 2 C
3 and (c1; c2; c3) 2 C

3, we have
that (b1; b2; b3) is equivalent to (c1; c2; c3) if
(b1; b2; b3) = �(c1; c2; c3) for some � 2 C� f0g.

We denote by [b1 : b2 : b3] the equivalence class of
(b1; b2; b3). We have

C2 ,! P2C de�ned by (b1; b2)! [b1 : b2 : 1]:

The points of P2C � C
2 (the line at in�nity) are of the form

[b1 : b2 : 0].

Christopher Hacon Classifying Algebraic Varieties I



Introduction
2 equations in 2 variables
1 equation in 2 variables

Irreducible subsets
Curves

Higher dimensions. Preview.

The projective plane

To make things precise, one de�nes

P2C := (C3 � f(0; 0; 0)g)=(C� f0g):

So that given (b1; b2; b3) 2 C
3 and (c1; c2; c3) 2 C

3, we have
that (b1; b2; b3) is equivalent to (c1; c2; c3) if
(b1; b2; b3) = �(c1; c2; c3) for some � 2 C� f0g.
We denote by [b1 : b2 : b3] the equivalence class of
(b1; b2; b3). We have

C2 ,! P2C de�ned by (b1; b2)! [b1 : b2 : 1]:

The points of P2C � C
2 (the line at in�nity) are of the form

[b1 : b2 : 0].

Christopher Hacon Classifying Algebraic Varieties I



Introduction
2 equations in 2 variables
1 equation in 2 variables

Irreducible subsets
Curves

Higher dimensions. Preview.

The projective plane

To make things precise, one de�nes

P2C := (C3 � f(0; 0; 0)g)=(C� f0g):

So that given (b1; b2; b3) 2 C
3 and (c1; c2; c3) 2 C

3, we have
that (b1; b2; b3) is equivalent to (c1; c2; c3) if
(b1; b2; b3) = �(c1; c2; c3) for some � 2 C� f0g.
We denote by [b1 : b2 : b3] the equivalence class of
(b1; b2; b3). We have

C2 ,! P2C de�ned by (b1; b2)! [b1 : b2 : 1]:

The points of P2C � C
2 (the line at in�nity) are of the form

[b1 : b2 : 0].

Christopher Hacon Classifying Algebraic Varieties I



Introduction
2 equations in 2 variables
1 equation in 2 variables

Irreducible subsets
Curves

Higher dimensions. Preview.

Lines in the projective plane

Given the line 2x + 3y � 5 = 0, we consider the
\homogenization" 2x + 3y � 5z = 0.

The zero set of 2x + 3y � 5z (or any homogeneous
polynomial Q(x ; y ; z)) makes sense on P2C as

2b1+3b2�5b3 = 0 i� 2�b1+3�b2�5�b3 = 0 � 2 C�f0g:

Note that if we set z = 1, we recover the original equation on
C2.
If z = 0, we obtain the point at in�nity
[�3 : 2 : 0] = [�3=2 : 1 : 0].
For any line parallel to 2x + 3y � 5 = 0 we will obtain the
same point at in�nity.
More generally one can show the following.
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Bezout's Theorem

Theorem (Bezout's Theorem)

Let P(x ; y ; z) and Q(x ; y ; z) be homogeneous polynomials of
degrees d and d 0. If the intersection of the curves

fP(x ; y ; z) = 0g \ fQ(x ; y ; z) = 0g � P2C

is �nite, then it consist of exactly d � d 0 points (counted with
multiplicity).

In fact, Bezout's Theorem works in any number of variables.
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Bezout's Theorem II

Theorem (Bezout's Theorem)

Let P1(x0; : : : ; xn); : : : ;Pn(x0; : : : ; xn) be n homogeneous
polynomials of degrees d1; : : : ; dn. If the set

n\
i=1

fPi (x0; : : : ; xn) = 0g � PnC

is �nite, then it consist of exactly d1 � � � dn points (counted with
multiplicity).
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Bezout's Theorem III
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In�nite number of solutions

So the next interesting question is:

Question

What happens when a set of polynomials has in�nitely many
solutions?

Consider the case of 1 equation in 2 variables P(x ; y) = 0. For
example

y2 = x(x � 1)(x � 2) � � � (x � d + 1):

The solutions in R2 and in C2 look like this.
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Hyperelliptic curve I
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Hyperelliptic curve III

The missing point is mysterious at �rst,

but if we consider
solutions of the homogenized polynomial

fy2zd�2 � x(x � z)(x � 2z) � � � (x � (d � 1)z) = 0g � P2C

then the missing point is just the point at in�nity [0 : 1 : 0].
The picture is now much more natural. It corresponds to a
Riemann Surface.
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Hyperelliptic curve IV
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Singular curves

In special cases, it is possible for the set of solutions to be singular.
For example y2 � x3 = 0 and y2 � x2(x + 1) = 0.
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Singular curves II
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Singular curves III

Singular curves are rare!

If we slightly perturb the equations of a singular curve eg.

y2 � x3 + � = 0;

we obtain smooth Riemann Surfaces.

Moreover, there is a (natural) way to resolve (=remove)
singularities.
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Irreducible subsets

In general a Zariski closed subset of PmC is a set of the form

X =
n\

i=1

fPi (x1; : : : ; xm) = 0g � PmC :

(Where P1; : : : ;Pn 2 C[x0; : : : ; xm] are homogeneous
polynomials.)

A Zariski closed subset of PmC is irreducible if it can not be
written as the union of 2 proper Zariski closed subsets.
Any Zariski closed subset is a �nite union of irreducible Zariski
closed subsets.
If P(x ; y ; z) 2 C[x ; y ; z ] is homogeneous of degree r > 0, then

X = fP(x ; y ; z) = 0g

is irreducible if and only if P(x ; y ; z) does not factor.
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Reducible set
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Irreducible subsets II

If X is an in�nite irreducible Zariski closed subset, then there is an
integer d > 0 such that for most points x 2 X , one can �nd an
open neighborhood x 2 Ux � X where Ux is analytically
isomorphic to a ball in Cd .

We say that X has dimension d .
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Irreducible set of dimension 2
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Curves

A curve is an irreducible Zariski closed subset of dimension 1.

All smooth curves are orientable compact manifolds of real
dimension 2 and so they are Riemann Surfaces.

Topologically, a curve X is determined by its genus.

For any given genus g � 0, it is natural to ask

Question

How many curves of genus g are there?
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Curves II

The simplest curves are rational curves i.e. curves of genus 0.

There is only one such curve X = P1C.

There are many di�erent ways to embed X � PmC .

For example

X = fxz � y2 = 0g \ fxw � yz = 0g \ fyw � z2 = 0g � P3C

is a curve of genus 0.

To see that X �= P1C notice that X may be \parameterized" by
[s : t]! [s3 : s2t : st2 : t3].
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Elliptic curves

If g > 0 then there are many di�erent curves of genus g .

For example

Xt = fy2 � x(x � 1)(x � t) = 0g

de�nes a 1-parameter family of curves of genus 1 (also known
as elliptic curves).

Any other elliptic curve is equivalent to Xt for some t.
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Curves of general type

If X is a curve with genus g � 2 then we say that X is a
curve of general type.

There is a 3g � 3-parameter a family of curves of general type.

There are many senses in which curves of general type (g � 2)
are more complicated/interesting. Here are my favorites:

Number Theory. By a theorem of Faltings, they have at most
�nitely many rational solutions (over Q), whereas rational curves
always have in�nitely many solutions. (eg. xn + yn = zn!)
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Curves of general type II

Topology. The fundamental group of a rational curve is trivial.

The fundamental group of an elliptic curve is Z� Z.
The fundamental group of a curve of general type is a free group
on generators ai ; bj with 1 � i ; j � g modulo the relation

a1b1a
�1
1 b�1

1 a2b2a
�1
2 b�1

2 � � � agbga
�1
g b�1

g = 1:

Its abelianization is Z2g .
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Curves of general type III

Di�erential geometry. If g � 2 (respectively g = 1 and g = 0),
then X admits a metric with negative (respectively constant and
positive) curvature.

Complex analysis. Consider the space of global holomorphic
1-forms H0(X ; !X ) (i.e. objects that may locally be written as
f (x)dx). Then H0(X ; !X ) �= Cg .
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Curve embeddings

Note that (as mentioned above) for any curve X there are
(in�nitely) many di�erent descriptions

n\
i=1

fPi (x1; : : : ; xm) = 0g � PmC :

We would like to �nd a natural (canonical) description for X .

Since X is compact, the only holomorphic functions on X are
constant.

It is then more interesting to consider meromorphic functions
on X .
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Rational functions

A divisor D =
P

diPi is a formal sum of points Pi 2 X with
multiplicities di 2 Z.

The set H0(X ;OX (D)) is the set of rational functions f on X
whose poles are no worse than D.

In other words if (f ) = (f )0 � (f )1 = zeroes(f )� poles(f ),
then f 2 H0(X ;OX (D)) if and only if (f ) + D � 0.

The set H0(X ;OX (D)) is a �nite dimensional complex vector
space.

E.g. H0(P1C;OP1

C
(dP1)) corresponds to homogeneous p(x) of

degree � d .
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then f 2 H0(X ;OX (D)) if and only if (f ) + D � 0.

The set H0(X ;OX (D)) is a �nite dimensional complex vector
space.

E.g. H0(P1C;OP1

C
(dP1)) corresponds to homogeneous p(x) of

degree � d .
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Rational functions II

Given a basis s0; : : : ; sm of H0(X ;OX (D)), we obtain a map
X 99K PmC given by

x ! [s0(x) : : : : : sm(x)]

(unde�ned at the common zeroes of the si ).

Alternatively one can think of OX (D) as a line bundle and si
as sections of this line bundle.

To �nd a natural embedding X � PmC , it su�ces to �nd a
\natural" line bundle OX (D) such that the sections
si 2 H0(X ;OX (D)) separate the points and tangent directions
of X .
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Holomorphic 1-forms

There is essentially only one choice for such a line bundle: the
canonical line bundle !X .

The sections of H0(X ; !X ) are holomorphic 1-forms. I.e. they
can locally be written as f (x)dx .

Theorem

Let X be a curve of genus g � 2, then for any k � 3 the sections
of H0(X ; (!X )


k) de�ne an embedding

X ,! P
(2k�1)(g�1)�1
C :
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Holomorphic 1-forms II

There is a more abstract/natural point of view:

De�ne the canonical ring

R(X ) =
M
k�0

H0(X ; (!X )

k):

Then R(X ) is �nitely generated C-algebra and
X = ProjR(X ).
In coordinates this may be described as follows. If r0; � � � ; rm
are generators of R(X ) and

K = ker (C[x0; : : : ; xm]! R(X )) ;

then X � PmC is de�ned by the equations in K .
There are many interesting open problems on the structure of
R(X ) (even if dimX = 1).
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The Canonical Ring

In the following two lectures I will explain how one may
understand solution sets of dimension � 2.

Let X be an irreducible Zariski closed set of dimension d . The
sections s 2 H0(X ; !
kX ) may be locally written as
f (x1; : : : ; xd)(dx1 ^ : : : ^ dxd)


k .

The Canonical Ring of X given by

R(X ) =
M
k�0

H0(X ; !
kX ):
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Surfaces and 3-folds

The geometry of complex surfaces (d = 2) was well
understood in terms of R(X ) by the Italian School of
Algebraic Geometry at the beginning of the 20-th century.

The geometry of complex 3-folds (d = 3) was understood in
the 1980's by work of S. Mori, Y. Kawamata, J. Koll�ar, V.
Shokurov and others.

In particular, if dimX = 3, then R(X ) is �nitely generated.
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Higher dimensions

Recently there have been some very exciting developments in
higher dimensions (d � 4). In particular we have:

Theorem (Birkar-Cascini-Hacon-McKernan, Siu)

The canonical ring

R(X ) =
M
k�0

H0(X ; !
kX )

is �nitely generated.

It follows that there is a natural map � : X 99K ProjR(X ) �= PmC :
In most cases, � carries a lot of information about X and it can be
used to study the geometry of X in a coordinate free manner.
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