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Introduction

Polynomial equations

Algebraic Geometry is concerned with the study of solutions of
polynomial equations say n-equations in m-variables

Pl(Xl,...,Xm) =0

Pn(x1,...,Xm) = 0.
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Introduction

1 equation in 1 variable

@ For example, 1 equation in 1 variable
P(X) = adXd—l-ad_lxd_l +...+a1x+ ap ag # 0

(a polynomial of degree d in x).
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Introduction

1 equation in 1 variable

@ For example, 1 equation in 1 variable
P(X) = adXd—l-ad_lxd_l +...+a1x+ ap ag # 0

(a polynomial of degree d in x).
o If a; € C, then by the Fundamental Theorem of Algebra, we
may find ¢; € C such that P(x) factors as

P(x) = ag(x — a)(x — &) -+ - (x — ¢cq4)-
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Introduction

1 equation in 1 variable

@ For example, 1 equation in 1 variable
P(X) = adXd—l-ad_lxd_l +...+a1x+ ap ag # 0

(a polynomial of degree d in x).
o If a; € C, then by the Fundamental Theorem of Algebra, we
may find ¢; € C such that P(x) factors as

P(x) = ag(x — a)(x — &) -+ - (x — ¢cq4)-

@ Therefore a polynomial of degree d always has exactly d
solutions or roots (when counted with multiplicity).
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Introduction

1 equation in 1 variable

@ For example, 1 equation in 1 variable
P(X) = adXd—l-ad_lxd_l +...+a1x+ ap ag # 0

(a polynomial of degree d in x).
o If a; € C, then by the Fundamental Theorem of Algebra, we
may find ¢; € C such that P(x) factors as

P(x) = ag(x — a)(x — &) -+ - (x — ¢cq4)-

@ Therefore a polynomial of degree d always has exactly d
solutions or roots (when counted with multiplicity).

@ If one is interested in solutions that belong to R (or Q, or Z
etc.), then the problem is much more complicated, but at
least we know that there are at most d solutions.

Christopher Hacon Classifying Algebraic Varieties |



Introduction

Complex solutions

Throughout this talk | will always look for complex solutions
(z1,...,2m) € C™ to polynomial equations

Pi(x1,...,xm) =0 Po(x1,...yxm) =0

where P; € C[Xl, c. ,Xm].
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2 equations in 2 variables

Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.

Pi(x,y) = aix+ biy + a1 and  Pa(x,y) = axx + boy + ca.
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Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.

Pi(x,y) = aix+ biy + a1 and  Pa(x,y) = axx + boy + ca.

There are 3 cases

© If the lines coincide (i.e. if P1(x,y) = cP2(x,y) for some
0 # c € C), then there are infinitely many solutions.
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Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.

Pi(x,y) = aix+ biy + a1 and  Pa(x,y) = axx + boy + ca.

There are 3 cases

© If the lines coincide (i.e. if P1(x,y) = cP2(x,y) for some
0 # c € C), then there are infinitely many solutions.

@ If the lines are distinct but parallel then there are no solutions.
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Lines in the plane

Consider now 2 equations in 2 variables.
For example 2 lines in the plane i.e.

Pi(x,y) = aix+ biy + a1 and  Pa(x,y) = axx + boy + ca.

There are 3 cases

© If the lines coincide (i.e. if P1(x,y) = cP2(x,y) for some
0 # c € C), then there are infinitely many solutions.

@ If the lines are distinct but parallel then there are no solutions.

© If the lines are not parallel, there is a unique solution.
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2 equations in 2 variables

Lines in the plane

CAsE 1 CASE 2
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2 equations in 2 variables

Lines in the plane

So, in most cases two lines intersect at a unique point.
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Lines in the plane

So, in most cases two lines intersect at a unique point.

Is it possible to also think of distinct parallel lines as intersecting at
one point?
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Lines in the plane

So, in most cases two lines intersect at a unique point.

Is it possible to also think of distinct parallel lines as intersecting at
one point?

The answer is yes if one chooses an appropriate compactification

C? c P2 = C? U {line at infinity}.
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2 equations in 2 variables

Lines in the plane

So, in most cases two lines intersect at a unique point.

Is it possible to also think of distinct parallel lines as intersecting at
one point?

The answer is yes if one chooses an appropriate compactification
C? c P2 = C? U {line at infinity}.

The “line at infinity” is given by C U {oco}. It corresponds to all
possible slopes of a line.
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2 equations in 2 variables

Lines in the plane

We may thus think of two distinct parallel lines as meeting in
exactly one point at infinity and we have
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2 equations in 2 variables

Lines in the plane

We may thus think of two distinct parallel lines as meeting in
exactly one point at infinity and we have

Let Ly and Ly be two distinct lines in ..
Then Ly and Ly, meet in exactly one point.

Christopher Hacon Classifying Algebraic Varieties |



2 equations in 2 variables

Lines in the projective plane
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2 equations in 2 variables

The projective plane

@ To make things precise, one defines

P2 := (C* - {(0,0,0)})/(C - {0}).
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The projective plane

@ To make things precise, one defines

P2 := (C* - {(0,0,0)})/(C - {0}).

o So that given (by, by, b3) € C3 and (c1, ¢, c3) € C3, we have
that (b1, by, b3) is equivalent to (c1, ¢, ¢3) if
(b1, bo, b3) = A(c1, ¢, c3) for some A € C — {0}.
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The projective plane

@ To make things precise, one defines

P2 := (C* - {(0,0,0)})/(C - {0}).

o So that given (by, by, b3) € C3 and (c1, ¢, c3) € C3, we have
that (b1, by, b3) is equivalent to (c1, ¢, ¢3) if
(b1, bo, b3) = A(c1, ¢, c3) for some A € C — {0}.

e We denote by [b; : by : b3] the equivalence class of
(bl, b2, b3). We have

C? < P2 defined by  (by, bo) — [by : by : 1].
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2 equations in 2 variables

The projective plane

@ To make things precise, one defines

P2 := (C* - {(0,0,0)})/(C - {0}).

o So that given (by, by, b3) € C3 and (c1, ¢, c3) € C3, we have
that (b1, by, b3) is equivalent to (c1, ¢, ¢3) if
(b1, bo, b3) = A(c1, ¢, c3) for some A € C — {0}.

e We denote by [b; : by : b3] the equivalence class of
(bl, b2, b3). We have

C? < P2 defined by  (by, bo) — [by : by : 1].

o The points of P24 — C2 (the line at infinity) are of the form
[b1 : by : 0]
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2 equations in 2 variables

Lines in the projective plane

@ Given the line 2x + 3y — 5 = 0, we consider the
“homogenization” 2x 4+ 3y — 5z = 0.
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Lines in the projective plane

@ Given the line 2x + 3y — 5 = 0, we consider the
“homogenization” 2x 4+ 3y — 5z = 0.

@ The zero set of 2x + 3y — 5z (or any homogeneous
polynomial Q(x,y, z)) makes sense on PZ as

2b1+3b,—5b3 =0 iff 2Ab1+3Aby—5\b3 = 0 AeC—{0
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2 equations in 2 variables

Lines in the projective plane

@ Given the line 2x + 3y — 5 = 0, we consider the
“homogenization” 2x 4+ 3y — 5z = 0.

@ The zero set of 2x + 3y — 5z (or any homogeneous
polynomial Q(x,y, z)) makes sense on PZ as

2b1+3b,—5b3 =0 iff 2Ab1+3Aby—5\b3 = 0 AeC—{0

@ Note that if we set z = 1, we recover the original equation on
C2.
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Lines in the projective plane

@ Given the line 2x + 3y — 5 = 0, we consider the
“homogenization” 2x 4+ 3y — 5z = 0.

@ The zero set of 2x + 3y — 5z (or any homogeneous
polynomial Q(x,y, z)) makes sense on PZ as

2b1+3b,—5b3 =0 iff 2Ab1+3Aby—5\b3 = 0 AeC—{0

@ Note that if we set z = 1, we recover the original equation on
C2.

e If z =10, we obtain the point at infinity
[-3:2:01=[-3/2:1:0].
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Lines in the projective plane

@ Given the line 2x + 3y — 5 = 0, we consider the
“homogenization” 2x 4+ 3y — 5z = 0.

@ The zero set of 2x + 3y — 5z (or any homogeneous
polynomial Q(x,y, z)) makes sense on PZ as

2b1+3b,—5b3 =0 iff 2Ab1+3Aby—5\b3 = 0 AeC—{0

@ Note that if we set z = 1, we recover the original equation on
C2.

e If z =10, we obtain the point at infinity
[-3:2:01=[-3/2:1:0].

@ For any line parallel to 2x + 3y — 5 = 0 we will obtain the
same point at infinity.
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2 equations in 2 variables

Lines in the projective plane

@ Given the line 2x + 3y — 5 = 0, we consider the
“homogenization” 2x 4+ 3y — 5z = 0.

@ The zero set of 2x + 3y — 5z (or any homogeneous
polynomial Q(x,y, z)) makes sense on PZ as

2b1+3b,—5b3 =0 iff 2Ab1+3Aby—5\b3 = 0 AeC—{0

@ Note that if we set z = 1, we recover the original equation on
C2.

e If z =10, we obtain the point at infinity
[-3:2:01=[-3/2:1:0].

@ For any line parallel to 2x + 3y — 5 = 0 we will obtain the
same point at infinity.

@ More generally one can show the following.
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Bezout's Theorem

Theorem (Bezout’s Theorem)

Let P(x,y,z) and Q(x,y,z) be homogeneous polynomials of
degrees d and d'. If the intersection of the curves

{P(x,y,2) =0} N {Q(x,y,2) = 0} C P¢

is finite, then it consist of exactly d - d’ points (counted with
multiplicity).
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Bezout's Theorem

Theorem (Bezout’s Theorem)

Let P(x,y,z) and Q(x,y,z) be homogeneous polynomials of
degrees d and d'. If the intersection of the curves

{P(x,y,2) =0} N {Q(x,y,2) = 0} C P¢

is finite, then it consist of exactly d - d’ points (counted with
multiplicity).

In fact, Bezout's Theorem works in any number of variables.
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Bezout's Theorem Il

Theorem (Bezout's Theorem)

Let Pi(x0,---yXn);---, Pn(X0,-..,xn) be n homogeneous
polynomials of degrees di, ..., d,. If the set

n
({Pi(x0, -, xn) =0} C PE
i=1

is finite, then it consist of exactly di - - - d, points (counted with
multiplicity).
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2 equations in 2 variables

Bezout's Theorem Ill
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1 equation in 2 variables

Outline of the talk

© 1 equation in 2 variables
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1 equation in 2 variables

Infinite number of solutions

So the next interesting question is:

What happens when a set of polynomials has infinitely many
solutions?
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Infinite number of solutions

So the next interesting question is:

What happens when a set of polynomials has infinitely many

solutions?

Consider the case of 1 equation in 2 variables P(x,y) = 0. For

example
yV?=x(x—1)(x—=2)---(x—d+1).
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1 equation in 2 variables
> t

Infinite number of solutions

So the next interesting question is:

What happens when a set of polynomials has infinitely many
solutions?

Consider the case of 1 equation in 2 variables P(x,y) = 0. For

example
yV?=x(x—1)(x—=2)---(x—d+1).

The solutions in R? and in C2 look like this.
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1 equation in 2 variables

Hyperelliptic curve |
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1 equation in 2 variables

Hyperelliptic curve |l
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1 equation in 2 variables

Hyperelliptic curve IlI

The missing point is mysterious at first,
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1 equation in 2 variables

Hyperelliptic curve IlI

The missing point is mysterious at first, but if we consider
solutions of the homogenized polynomial

{y22972 — x(x — z)(x =2z)--- (x = (d = 1)z) = 0} C P2
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1 equation in 2 variables

Hyperelliptic curve IlI

The missing point is mysterious at first, but if we consider
solutions of the homogenized polynomial

{y22% — x(x — 2)(x — 22) --- (x — (d — 1)z) = 0} C P

then the missing point is just the point at infinity [0: 1 : 0].
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1 equation in 2 variables

Hyperelliptic curve IlI

The missing point is mysterious at first, but if we consider
solutions of the homogenized polynomial

{y22% — x(x — 2)(x — 22) --- (x — (d — 1)z) = 0} C P

then the missing point is just the point at infinity [0: 1 : 0].
The picture is now much more natural. It corresponds to a
Riemann Surface.
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1 equation in 2 variables

Hyperelliptic curve IV

—~72 258> _ S C(x-(8-)
Rv \/z‘x(xzﬁ(xzw . x-(4-) %)
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1 equation in 2 variables

Singular curves

In special cases, it is possible for the set of solutions to be singular.
For example y? — x3 =0 and y? — x*(x + 1) = 0.
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1 equation in 2 variables

Singular curves |l
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1 equation in 2 variables

Singular curves Il

Singular curves are rare!
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1 equation in 2 variables

Singular curves Il

Singular curves are rare!

o If we slightly perturb the equations of a singular curve eg.

y2—x>+e=0,

we obtain smooth Riemann Surfaces.
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1 equation in 2 variables

Singular curves Il

Singular curves are rare!

o If we slightly perturb the equations of a singular curve eg.

y2—x>+e=0,

we obtain smooth Riemann Surfaces.

@ Moreover, there is a (natural) way to resolve (=remove)
singularities.
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Outline of the talk

@ Irreducible subsets
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Irreducible subsets

Irreducible subsets

@ In general a Zariski closed subset of P{ is a set of the form

X = ({Pi(x1,...,xm) =0} C PE.
i=1
(Where Py,...,P, € C[xp, ..., Xmn] are homogeneous
polynomials.)
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Irreducible subsets

Irreducible subsets

@ In general a Zariski closed subset of P{ is a set of the form

n
X = ({Pi(x1,...,xm) =0} C PE.
i=1
(Where Py,...,P, € C[xp, ..., Xmn] are homogeneous
polynomials.)
@ A Zariski closed subset of PfV is irreducible if it can not be
written as the union of 2 proper Zariski closed subsets.
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Irreducible subsets

@ In general a Zariski closed subset of P{ is a set of the form

n
X = ({Pi(x1,...,xm) =0} C PE.
i=1
(Where Py,...,P, € C[xp, ..., Xmn] are homogeneous
polynomials.)
@ A Zariski closed subset of PfV is irreducible if it can not be
written as the union of 2 proper Zariski closed subsets.
@ Any Zariski closed subset is a finite union of irreducible Zariski
closed subsets.
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Irreducible subsets

Irreducible subsets

@ In general a Zariski closed subset of P{ is a set of the form

n
X = ({Pi(x1,...,xm) =0} C PE.
i=1
(Where Py,...,P, € C[xp, ..., Xmn] are homogeneous
polynomials.)
@ A Zariski closed subset of PfV is irreducible if it can not be
written as the union of 2 proper Zariski closed subsets.
@ Any Zariski closed subset is a finite union of irreducible Zariski
closed subsets.
o If P(x,y,z) € C[x,y, z] is homogeneous of degree r > 0, then

X ={P(x,y,z) =0}

is irreducible if and only if P(x, y,z) does not-factor.
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Irreducible subsets

Reducible set
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Irreducible subsets

Irreducible subsets Il

If X is an infinite irreducible Zariski closed subset, then there is an
integer d > 0 such that for most points x € X, one can find an
open neighborhood x € Uy, C X where Uy is analytically
isomorphic to a ball in CY.

Christopher Hacon Classifying Algebraic Varieties |



Irreducible subsets

Irreducible subsets Il

If X is an infinite irreducible Zariski closed subset, then there is an
integer d > 0 such that for most points x € X, one can find an
open neighborhood x € Uy, C X where Uy is analytically
isomorphic to a ball in CY.

We say that X has dimension d.
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Irreducible subsets

Irreducible set of dimension 2

/\ L n &

dim X =22

Classifying Algebraic Varieties |

Christopher Hacon




Curves

Outline of the talk

© Curves
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Curves

@ A curve is an irreducible Zariski closed subset of dimension 1.
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Curves

@ A curve is an irreducible Zariski closed subset of dimension 1.

@ All smooth curves are orientable compact manifolds of real
dimension 2 and so they are Riemann Surfaces.
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Curves

@ A curve is an irreducible Zariski closed subset of dimension 1.

@ All smooth curves are orientable compact manifolds of real
dimension 2 and so they are Riemann Surfaces.

@ Topologically, a curve X is determined by its genus.
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Curves

@ A curve is an irreducible Zariski closed subset of dimension 1.

@ All smooth curves are orientable compact manifolds of real
dimension 2 and so they are Riemann Surfaces.

@ Topologically, a curve X is determined by its genus.

o For any given genus g > 0, it is natural to ask
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Curves

@ A curve is an irreducible Zariski closed subset of dimension 1.

@ All smooth curves are orientable compact manifolds of real
dimension 2 and so they are Riemann Surfaces.

@ Topologically, a curve X is determined by its genus.

o For any given genus g > 0, it is natural to ask

How many curves of genus g are there?
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Curves

Curves Il

@ The simplest curves are rational curves i.e. curves of genus 0.
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Curves

Curves Il

@ The simplest curves are rational curves i.e. curves of genus 0.

@ There is only one such curve X = PL.
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Curves

Curves Il

@ The simplest curves are rational curves i.e. curves of genus 0.
@ There is only one such curve X = PL.

@ There are many different ways to embed X C P{.
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Curves

Curves Il

*]
]
"]
]

The simplest curves are rational curves i.e. curves of genus 0.
There is only one such curve X = PL.
There are many different ways to embed X C P{.

For example
X={xz-y’=0n{xw—yz=0}n{yw — 2> =0} Cc P2

is a curve of genus 0.
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Curves

Curves Il

@ The simplest curves are rational curves i.e. curves of genus 0.

@ There is only one such curve X = PL.

@ There are many different ways to embed X C P{.

@ For example
X={xz-y’=0n{xw—yz=0}n{yw — 2> =0} Cc P2
is a curve of genus 0.

@ To see that X = IP’(IC notice that X may be “parameterized” by

[s:t] = [s3:s%t:st?: £
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Curves

Elliptic curves

o If g > 0 then there are many different curves of genus g.
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Curves

Elliptic curves

o If g > 0 then there are many different curves of genus g.

@ For example
Xe = {y? — x(x — 1)(x — t) = 0}

defines a 1-parameter family of curves of genus 1 (also known
as elliptic curves).
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Curves

Elliptic curves

o If g > 0 then there are many different curves of genus g.

@ For example
Xe = {y? — x(x — 1)(x — t) = 0}

defines a 1-parameter family of curves of genus 1 (also known
as elliptic curves).

@ Any other elliptic curve is equivalent to X; for some t.
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Curves

Curves of general type

e If X is a curve with genus g > 2 then we say that X is a
curve of general type.
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Curves

Curves of general type

e If X is a curve with genus g > 2 then we say that X is a
curve of general type.

@ There is a 3g — 3-parameter a family of curves of general type.
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Curves

Curves of general type

e If X is a curve with genus g > 2 then we say that X is a
curve of general type.
@ There is a 3g — 3-parameter a family of curves of general type.

@ There are many senses in which curves of general type (g > 2)
are more complicated/interesting. Here are my favorites:
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Curves

Curves of general type

e If X is a curve with genus g > 2 then we say that X is a
curve of general type.

@ There is a 3g — 3-parameter a family of curves of general type.

@ There are many senses in which curves of general type (g > 2)
are more complicated/interesting. Here are my favorites:

Number Theory. By a theorem of Faltings, they have at most
finitely many rational solutions (over Q), whereas rational curves
always have infinitely many solutions. (eg. x" + y" = z"l)
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Curves

Curves of general type Il

Topology. The fundamental group of a rational curve is trivial.
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Curves

Curves of general type Il

Topology. The fundamental group of a rational curve is trivial.
The fundamental group of an elliptic curve is Z x Z.

Christopher Hacon Classifying Algebraic Varieties |



Curves

Curves of general type Il

Topology. The fundamental group of a rational curve is trivial.
The fundamental group of an elliptic curve is Z x Z.

The fundamental group of a curve of general type is a free group
on generators a;, b; with 1 </, j < g modulo the relation

—1,-1 —1,-1 —1,-1
aibia; “b; “asbra, " b, ---agbgag bg = I,
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Curves

Curves of general type Il

Topology. The fundamental group of a rational curve is trivial.
The fundamental group of an elliptic curve is Z x Z.

The fundamental group of a curve of general type is a free group
on generators a;, b; with 1 </, j < g modulo the relation

—1p-1 —1p-1 —1p-1
aibia; “b; “asbra, " b, ---agbgag bg =1.

Its abelianization is Z28.
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Curves

Curves of general type IlI

Differential geometry. If g > 2 (respectively g =1 and g = 0),
then X admits a metric with negative (respectively constant and
positive) curvature.
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Curves

Curves of general type IlI

Differential geometry. If g > 2 (respectively g =1 and g = 0),
then X admits a metric with negative (respectively constant and
positive) curvature.

Complex analysis. Consider the space of global holomorphic
1-forms H°(X,wx) (i.e. objects that may locally be written as
f(x)dx). Then HO(X,wx) = C8.
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Curves

Curve embeddings

@ Note that (as mentioned above) for any curve X there are
(infinitely) many different descriptions

({Pi(x1,. .., xm) = 0} C PC.
i=1
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Curves

Curve embeddings

@ Note that (as mentioned above) for any curve X there are
(infinitely) many different descriptions

({Pi(x1,. .., xm) = 0} C PC.
i=1

@ We would like to find a natural (canonical) description for X.
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Curves

Curve embeddings

@ Note that (as mentioned above) for any curve X there are
(infinitely) many different descriptions

({Pi(x1,. .., xm) = 0} C PC.
i=1

@ We would like to find a natural (canonical) description for X.

@ Since X is compact, the only holomorphic functions on X are
constant.
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Curves

Curve embeddings

@ Note that (as mentioned above) for any curve X there are
(infinitely) many different descriptions

({Pi(x1,. .., xm) = 0} C PC.
i=1

@ We would like to find a natural (canonical) description for X.

@ Since X is compact, the only holomorphic functions on X are
constant.

@ It is then more interesting to consider meromorphic functions
on X.
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Curves

Rational functions

e A divisor D =) d;P; is a formal sum of points P; € X with
multiplicities d; € Z.
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Curves

Rational functions

e A divisor D =) d;P; is a formal sum of points P; € X with
multiplicities d; € Z.

o The set HO(X,Ox(D)) is the set of rational functions f on X
whose poles are no worse than D.
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Curves

Rational functions

e A divisor D =) d;P; is a formal sum of points P; € X with
multiplicities d; € Z.

o The set HO(X,Ox(D)) is the set of rational functions f on X
whose poles are no worse than D.

@ In other words if (f) = (f)o — (f)oo = zeroes(f) — poles(f),
then f € H(X,Ox(D)) if and only if (f)+ D > 0.
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Curves

Rational functions

e A divisor D =) d;P; is a formal sum of points P; € X with
multiplicities d; € Z.

o The set HO(X,Ox(D)) is the set of rational functions f on X
whose poles are no worse than D.

@ In other words if (f) = (f)o — (f)oo = zeroes(f) — poles(f),
then f € H(X,Ox(D)) if and only if (f)+ D > 0.

o The set HO(X,Ox(D)) is a finite dimensional complex vector
space.
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Rational functions

A divisor D =) d;P; is a formal sum of points P; € X with
multiplicities d; € Z.

The set HO(X, Ox(D)) is the set of rational functions f on X
whose poles are no worse than D.

In other words if (f) = (f)o — (f)s = zeroes(f) — poles(f),
then f € H(X,Ox(D)) if and only if (f)+ D > 0.

The set HO(X,Ox(D)) is a finite dimensional complex vector
space.

E.g. HO(PE, OIP}C(dPoo)) corresponds to homogeneous p(x) of
degree < d.
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Curves

Rational functions Il

o Given a basis s, . . ., s, of HO(X, Ox(D)), we obtain a map
X --» P{ given by

x = [so(x) ... sm(x)]

(undefined at the common zeroes of the s;).
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Curves

Rational functions Il

o Given a basis s, . . ., s, of HO(X, Ox(D)), we obtain a map
X --» P{ given by

x = [so(x) i ... 1 sm(x)]

(undefined at the common zeroes of the s;).

@ Alternatively one can think of Ox(D) as a line bundle and s;
as sections of this line bundle.
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Rational functions Il

o Given a basis s, . . ., s, of HO(X, Ox(D)), we obtain a map
X --» P{ given by

x = [so(x) i ... 1 sm(x)]

(undefined at the common zeroes of the s;).

@ Alternatively one can think of Ox(D) as a line bundle and s;
as sections of this line bundle.

@ To find a natural embedding X C P, it suffices to find a
“natural” line bundle Ox(D) such that the sections
si € H°(X,Ox(D)) separate the points and tangent directions
of X.
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Curves

Holomorphic 1-forms

@ There is essentially only one choice for such a line bundle: the
canonical line bundle wx.
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Holomorphic 1-forms

@ There is essentially only one choice for such a line bundle: the
canonical line bundle wx.

e The sections of H(X,wx) are holomorphic 1-forms. l.e. they
can locally be written as f(x)dx.
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Holomorphic 1-forms

@ There is essentially only one choice for such a line bundle: the
canonical line bundle wx.

e The sections of H(X,wx) are holomorphic 1-forms. l.e. they
can locally be written as f(x)dx.

Let X be a curve of genus g > 2, then for any k > 3 the sections
of HO(X, (wx)®X) define an embedding

X o PRADE DT
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Curves

Holomorphic 1-forms Il

@ There is a more abstract/natural point of view:
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Holomorphic 1-forms Il

@ There is a more abstract/natural point of view:
@ Define the canonical ring

R(X @ HO ®k)

k>0
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Curves

Holomorphic 1-forms Il

@ There is a more abstract/natural point of view:
@ Define the canonical ring

R(X @ HO ®k)

k>0

@ Then R(X) is finitely generated C-algebra and
X = ProjR(X).
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Curves

Holomorphic 1-forms Il

@ There is a more abstract/natural point of view:
@ Define the canonical ring

R(X @ HO ®k)

k>0

@ Then R(X) is finitely generated C-algebra and
X = ProjR(X).
@ In coordinates this may be described as follows. If ry,- -« , rm
are generators of R(X) and
K = ker (C[xq, . . ., xm] = R(X)),

then X C P{ is defined by the equations in K.
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Holomorphic 1-forms Il

@ There is a more abstract/natural point of view:
@ Define the canonical ring

R(X @ HO ®k)

k>0

@ Then R(X) is finitely generated C-algebra and
X = ProjR(X).

@ In coordinates this may be described as follows. If ry,- -« , rm
are generators of R(X) and

K = ker (C[xq, . . ., xm] = R(X)),
then X C P{ is defined by the equations in K.

@ There are many interesting open problems on the structure of
R(X) (even if dim X = 1).
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Higher dimensions. Preview.

Outline of the talk

@ Higher dimensions. Preview.
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Higher dimensions. Preview.

The Canonical Ring

@ In the following two lectures | will explain how one may
understand solution sets of dimension > 2.
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Higher dimensions. Preview.

The Canonical Ring

@ In the following two lectures | will explain how one may
understand solution sets of dimension > 2.

@ Let X be an irreducible Zariski closed set of dimension d. The
sections s € HO(X,wf?k) may be locally written as
f(Xl, S ,xd)(dxl VANRAN dXd)®k.
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Higher dimensions. Preview.

The Canonical Ring

@ In the following two lectures | will explain how one may
understand solution sets of dimension > 2.

@ Let X be an irreducible Zariski closed set of dimension d. The
sections s € HO(X, ka) may be locally written as
f(Xl, S ,xd)(dxl VANRAN dXd)®k.

@ The Canonical Ring of X given by

R(X) = P H (X, wi)
k>0
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Higher dimensions. Preview.

Surfaces and 3-folds

@ The geometry of complex surfaces (d = 2) was well
understood in terms of R(X) by the Italian School of
Algebraic Geometry at the beginning of the 20-th century.
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Higher dimensions. Preview.

Surfaces and 3-folds

@ The geometry of complex surfaces (d = 2) was well
understood in terms of R(X) by the Italian School of
Algebraic Geometry at the beginning of the 20-th century.

@ The geometry of complex 3-folds (d = 3) was understood in
the 1980’s by work of S. Mori, Y. Kawamata, J. Kollar, V.
Shokurov and others.
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Higher dimensions. Preview.

Surfaces and 3-folds

@ The geometry of complex surfaces (d = 2) was well
understood in terms of R(X) by the Italian School of
Algebraic Geometry at the beginning of the 20-th century.

@ The geometry of complex 3-folds (d = 3) was understood in
the 1980’s by work of S. Mori, Y. Kawamata, J. Kollar, V.
Shokurov and others.

@ In particular, if dim X = 3, then R(X) is finitely generated.
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Higher dimensions. Preview.

Higher dimensions

Recently there have been some very exciting developments in
higher dimensions (d > 4). In particular we have:
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Higher dimensions. Preview.

Higher dimensions

Recently there have been some very exciting developments in
higher dimensions (d > 4). In particular we have:

Theorem (Birkar-Cascini-Hacon-M“Kernan, Siu)

The canonical ring

R(X) = P HO(X, wih)
k>0

is finitely generated.
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Higher dimensions. Preview.

Higher dimensions

Recently there have been some very exciting developments in
higher dimensions (d > 4). In particular we have:

Theorem (Birkar-Cascini-Hacon-M“Kernan, Siu)

The canonical ring

R(X) = P HO(X, wih)
k>0

is finitely generated.

It follows that there is a natural map ¢ : X --» ProjR(X) = P{.
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Higher dimensions. Preview.

Higher dimensions

Recently there have been some very exciting developments in
higher dimensions (d > 4). In particular we have:

Theorem (Birkar-Cascini-Hacon-M“Kernan, Siu)

The canonical ring

R(X) = P HO(X, wih)
k>0

is finitely generated.

It follows that there is a natural map ¢ : X --» ProjR(X) = P{.
In most cases, ¢ carries a lot of information about X and it can be
used to study the geometry of X in a coordinate free manner.
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